Fe-Alloys Database, Version 7.0

Thermo-Calc Software TCFE7 TCFE7 - TCS Steels/Fe-Alloys Database, Version 7.0 TCFE7 is a thermodynamic database for different kinds of steels, Fe-ba...
Author: Nelson Lewis
3 downloads 2 Views 1MB Size
Thermo-Calc Software

TCFE7

TCFE7 - TCS Steels/Fe-Alloys Database, Version 7.0 TCFE7 is a thermodynamic database for different kinds of steels, Fe-based alloys (stainless steels, high-speed steels, tool steels, HSLA steels, cast iron, corrosion-resistant high strength steels and more) and cemented carbides for use with the Thermo-Calc, DICTRA and TCPRISMA software packages. Included Elements Ar Al B C N Nb Ni O

Ca P

Co S

Cr Si

Cu Ta

Fe Ti

H V

Mg Mn Mo W Zr

Limits The database is applicable for various types of steels/Fe-alloys with a Fe-minimum of 50wt%, and for alloying elements the recommended composition limits (in weight percent) are as follows: Element Al B C Ca Co Cr

max 5.0 Trace 7.0 Trace 20.0 30.0

Element Cu Mg Mn Mo N Nb

max 5.0 Trace 20.0 10.0 5.0 5.0

Element Ni O P S Si Ta

Max 20.0 Trace Trace Trace 5.0 10.0

Element Ti V W Zr

max 3.0 15.0 15.0 10.0

Note that Ar and H are only considered in the gas phase and no modelling of solubility in the solid solution phases or liquid has been taken into account.

Sensible calculations cannot be expected if all alloying elements are at their highest limits. Some combinations of elements at high values will not give reasonable results; but, some alloying elements can exceed their limits considerably and the calculations will still give good results. Critical calculations must always be verified by equilibrium experimental data; it is the user’s responsibility to verify the calculations but Thermo-Calc Software AB is interested in knowing about any significant deviations in order to improve future versions of the database. The database has been based on complete reassessments of binary and many ternary systems; however, many intermediate compounds that do not occur in steels/Fe-alloys have been deleted from the database. Therefore, it is not suitable to calculate complete binary and ternary systems, but rather only in the iron-rich corner. Each parameter in the database has a reference to its origin. Sometimes, for some special steels/Fe-alloys, one may also prefer to append some other stoichiometric or solution phases (usually as intermediate compound phases that have been ignored in TCFE7) from another compatible database (e.g. SSOL5 and/or SSUB4). But the user must be very cautious on appropriately appending such data in the combination.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 The TCFE7 database contains an extensive GAS mixture phase (Ar and different species in the C-H-N-O-S system) for the main purpose of considering oxygen/nitrogen-gas controls in steelmaking processes, and different gas atmospheres under e.g. heat treatments; however, it can be replaced by a large GAS phase appended from a compatible database (e.g. SSUB4, SLAG3 or TCMP2). Similarly, an IONIC_LIQ solution phase can be appended from the TCOX5 database, when it is really necessary to consider a more comprehensive ionic liquid phase for calculations of e.g. formations of complex oxides on steel-surfaces. However, for the purposes of investigating various steel-making metallurgical processes, it is highly recommended to append the so-called SLAG solution phase from e.g. SLAG3 or TCMP2 database. In the meantime, one must keep in mind that the SLAG and IONIC_LIQ phases should never be simultaneously considered in the same defined system/calculation, as they both represent the slag mixture phase on two different scales (and using two different models). In the TCFE7 database Al and Si are modelled to dissolve into the CEMENTITE phase. This is necessary to be able to calculate para-equilibrium between e.g. BCC_A2 and CEMENTITE for alloys containing Al and Si [1]. The CEMENTITE phase is described with two sublattices with the ratio 3:1, with the following constituents; (Al, Co, Cr, Fe, Mn, Mo, Nb, Ni, Si, V, W)3(B, C, N)1. Ni and Si are available in the LAVES_PHASE_C14, which is modelled with two sublattices with the ratio 2:1. The Si solubility in the laves phase can be relatively high as has been shown by Zhao et al.[2]. The solubility of many other elements are included in the laves phase and with TCFE7, the description for the whole laves phase takes into account the elements Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, Si, Ti and W. This description has shown satisfying accuracy of the predictions compared to experimental information [3-5]. The present description of the SPINEL, HALITE and CORUNDUM phases and more, for the Fe-Al-Ca-Cr-Mg-Mn-Ni-Si-Ti-C-O system [6-11, in TCFE7 allows for accurate predictions in different fields, e.g. oxide scale formation on various steels [12-16]. In Figure 1 the oxide scale formed on a steel is predicted and the agreement with experimental information [12] is very good. One can see that below the outer scale (rich in corundum) a Fe-Mn spinel is formed and closest to the substrate a layer with halite and a Cr-Mn rich spinel, which also is verified in the work by Douglas et al.[12]. The model used for the spinel and corundum phases makes it possible to simulate diffusion inside these phases using the DICTRA software (also possible for other oxides such as halite) provided suitable mobility data are available. TCFE7 contains molar volume data for all phases in the database (this was introduced first in TCFE4), which allows for the calculation of volume fraction of phases, as well as density and thermal expansivity using Thermo-Calc. Molar volumes are also needed when utilizing the TCPRISMA software simulating precipitations. Validation of predicted densities in different alloys are shown in Figure 7 and in Figure 8 the relative length change in a commercial steel is shown.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 The TCFE7 database can also be used in a combination with the TCAQ2 or AQS2 database for aqueous solution system, and together with a compatible database (e.g. SSUB4) for a larger gaseous mixture phase, for Pourbaix diagrams (i.e., Eh-pH plots) and many other types of thermodynamic calculations on multicomponent steel-aqueous-gas heterogeneous interactions. Such calculated diagrams and thermodynamic properties can gain some fundamental insights into that how the investigated alloys would be preserved or corroded, depending upon the formations of various simple and complex oxides, sulfides (and/or other secondary solid phases) under different pH-Eh-T-P-X circumstances, which significantly provide important information to investigations of materials corrosion in some industrial and environmental processes [17]. Graphically illustrated in Figure 9 and 10 are two examples of such calculations for complex interactions, inflecting their corrosion behaviours under different environments and conditions.

Validation of the TCFE7 database against experimental data shows accurate predictions for: 

Tool steels and high-speed steels, especially in predicting correct phases and phase compositions. Figure 3 demonstrates the latter for a number of different tool steels and high-speed steels.



HSLA steels, especially in predicting correct phases and phase compositions in all possible precipitates, see Figure 4 and Table 1.



Solidification of cast irons and general steels. Inclusions containing complex oxides and sulphides, see Figure 5.



Stainless steels, tool steels, high-speed steels and other Fe-based alloys with high concentrations of N.



The relative stability between the austenite and ferrite phases in Al and Cu-rich alloys.



The relative stability between the austenite and ferrite phases in alloys containing Al, Cr, Mn and Ni.



Sulphides, oxides, borides and phosphides. Figure 1 and 2 shows calculation of oxide scale formation on a steel and a Fe-Cr-C alloy.



Carbides, nitrides, carbonitrides and intermetallic phases such as sigma and laves phase.



Liquidus and solidus temperatures. In addition, the accuracy to predict the correct primary phase to form from the liquid is reliable. In Figure 6 measured liquidus temperatures are compared with calculated liquidus temperatures for various steels.



Cemented carbides, especially in predicting correct phases and fractions, phase compositions and invariant solid/liquid equilibrium temperatures, see Table 2.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7

Figure 1. a) Oxidation of a steel (17.8 wt.% Mn, 9.5 Cr, 1.0 Ni and 0.27 C) at 900 ºC. b) Calculated composition of the spinel phase in the oxide scale at 900 ºC.

Figure 2. a) Calculated oxide scale formed on a low-Cr boiler steel (Fe-1.44Cr-0.06C wt.%) at 550 ºC. b) Calculated oxygen partial pressure versus composition in different oxides for the same steel as in a. These results agree very well compared with experimental information [18]. A small amount of graphite is present for the whole oxygen partial pressure interval.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7

Figure 3. Calculated vs. experimental equilibrium composition for: a) MC, b) M7C3 and c) M6C carbides in different tool steels and high-speed steels. The experimental data has been taken from references 19, 20 and 21.

Figure 4. Predicted mass fraction of Nb, Ti, V, and Al in precipitates compared with experimental information[22] for a microalloyed steel with 0.09%C, 1.51%Mn, 0.035%Al, 0.010%Ti, 0.030%Nb, 0.08%V and 0.0105%N (mass percent).

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7

Table 1. Predicted compositions for (TixNb1-x)NyC1-y and (NbtTi1-tCuN1-u carbonitrides (site fractions) in two microalloyed steels compared with measurements from Craven et al.[23]. All calculations were made at 1000 ºC. Both steels contain the following alloy contents: 0.036%Al, 1.4%Mn, 0.50%Ni, 0.015%P, 0.002%S and 0.4%Si in addition to the composition provided in the table (mass percent). Steel 1 Experiment Calculation Steel 2 Experiment Calculation

0.07%C x 0.86 ± 0.04 0.94

0.0079%N y ≈1 0.94

0.025%Nb t 1 0.98

0.009%Ti U ≈ 0.7 0.71

0.097%C x 0.91 ± 0.03 0.97

0.0049%N y 0.84 ± 0.05 0.92

0.017%Nb t 1 or ≈ 0.8 0.97

0.010%Ti U ≈1 0.78

Figure 5. Scheil simulation for the following alloy in mass percent; Fe-0.02C-0.54Si0.003Al-0.0005Ca-0.0005Mg-2.19Mo-0.008S-17.01Cr-10.15Ni-0.002O. The Halite phase consists mostly of MgO and the MnS phase is mainly Ca and Mg sulphide. The results fit the experimental data reasonable well [24].

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7

Figure 6. Experimental liquidus temperatures [25, 26 and 27] for various steels (stainless steels, carbon and low alloy steels, high-speed steels with high Nb content and chromium steels) compared with calculations performed using the TCFE7 databases.

Figure 7. Calculated density of several different steels at room temperature compared with experimental data provided by Sandvik [28] and Uddeholm Tooling [29].

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7

Figure 8. Relative length change [30] of steel Fe-0.11C-0.5Mn-0.03Si-0.01Cr-0.02Ni (mass percent) compared with predictions using TCFE7.

q9s

5

s+

1.0 0.9 2

0.8

Eh (V)

FUNCTION EH (V) Eh

17

0.6 16 0.6 15 14 0.3 0.4

0.2

0

0 -0.3 -0.2 -0.6 -0.4

-0.6 -0.9 -0.8 -1.20

eO 4 + Fe 2 Mn Aqs O+ 4 Fe +Hm 17 2 NiO +Cr 4 O 2 Aqs + 3 M +Hm nO Aqs (OH +M +Hm )+F nO + (OH e2 N 1 MnO iO ) 2

10 A 8 1 q

Hm 1

Aq s

+H 5 m+ Aq Cr s+H 2O 10 3 +F m+ 3 e2 N 2 1 Cr iO 3 Aq 2 O3 3 4 s+ 2 Hm 3 3 +C 5 r2 F Aq 8 eO s + Aqs+Cr 4 Mt 9 2O3 1 +C 8 2 1 2 r2 F eO Aqs+Cr FeO 2 4 7 7 1

5

8

3

4

4

9 1

3

6

1

1

6 6

4

4

5

Aqs +Cu O

5

4

9:*GAS 4:*CU2FE2O4_S 1:*CR2O35:*CR2O3_S 2:*HEMATITE 6:*CU1O1_S 6:*MAGNETITE 7:*CR2FE1O4_S 4:*FECR2O4 3:*MOO28:*GAS 9:*FCC_A1 14:*MOO2_75 10:*FE2O3_HEMATITE 15:*MOO2_875 11:*FE2MN1O4_S 16:*MOO2_889 17:*MOO3 12:*BCC_A2 11:*PYRRHOTITE_FE_877S 13:*H2MN1O2_S 7:*PYRITE 14:*MAGNETITE 12:*NI3S215:*B1H1O2_S 13:*NIS 8:*NIS2 5:*MOS2

4 5 9 10 7 2 5 4 7 1Aqs+Hm+Cr2O3 10 7 2 7 4+Cu2Fe2O4 +Fe2NiO4+MnO(OH) Ga 6 s(H 11 7 1 9 Aqs 7 2 )+B 1 9 14 Aqs+Hm+Cr2O3+Cu2Fe2O4 4 15 10 +F2 O(O CC 8 2 12 H) + 2 +Fe2MnO4 +Fe2NiO4 Aq14s 8 5 11Hm 8 9 +Cr + 4 6 13 F1CC+7 12 2 FeO Mt+ 6 9 4 +Fe 13C Aqs+FCC+Cr2O3 Gas 12 12 13 r2 FeO 102 MnO (H ) + 4 4 +Fe M 11 2 +B nO ( Aqs+FCC+Cr2FeO4 CC+ 2 NiO Steel: Fe- 17.00Cr-12.00Ni-2.5Mo (wt% ) OH 5 B ) 4 11 O Aqs+FCC+Mt+Cr (OH 12 9 12 Aqueous Solution: 1 kg 2FeO 4 of water with 0.537 m H2SO4 15 8

8

13 11

Aqs+BCC+Mt+Cr2FeO4

T=85oC, P=1 bar

5 0

2

4

10 6 8 10 FUNCTION PH

pH

)

15 12

14

pH

Figure 9. Pourbaix diagram (pH-Eh) for the heterogeneous interaction between 0.001 mole of steel [Fe-7.676Cr-5.0Ni-2.1887Mn-1.0Cu (mole %)] and 1 kg of water (and with 1.2 mole/L H3BO3, 0.022 mole/L Li and 0.001 mole/L NH3), at 25℃ and 1 bar. This application is particular useful for safety assessments of nuclear reactors and nuclear waste repositories.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

2003-11-26 12:29:31.64 output by user pingfang from PIFF

THERMO-CALC (2003.11.26): Pourbaix Diagram Calculation T=358.15 K, P=1 bar, B(H2O)=1000 g, N(H2SO4)=0.537 m 1.4 1:*MN1O2_S N(Fe)=1.2266E-3, N(Cr)=3.2695E-4, N(Ni)=2.0446E-4 AqN(Mo)=2.6058E-5, Gas s +H 2:*FE2NI1O4_S (H ) m+ 8 Cr 1.2 2 3:*H1MN1O2_S 1.2 A 10:*AQUEOUS 2F

Thermo-Calc Software THERMO-CALC (2003.11.26): Property Diagram Calculation T=358.15 K, P=1 bar, B(H2O)=1000 g, N(H2SO4)=0.537 m N(Fe)=1.2266E-3, N(Cr)=3.2695E-4, N(Mo)=2.6058E-5, N(Ni)=2.0446E-4

TCFE7

10000

Aqueous Solution

1

.01

.001 -1.5

Pyrite

NiS2 Cr2O3

FeCr2O4

.1

Gaseous Mixture (H2O-dominant)

Gaseous Mixture (O2-dominant)

10

Magnetite

Gaseous Mixture (H2-dominant)

100

Austenite

Stable Phases / grams

1000

Steel: 0.1 g [Fe-17.00Cr-12.00Ni-2.5Mo (wt% )] Aqueous Solution: 1 kg of water with 0.537 m H2SO4 T=85oC, P=1 bar Aqueous Solution

MoS2

MoO2.889

MoO2 MoO2.75

-1.0

-0.5

0

0.5

1.0

1.5

2.0

Eh (V) Figure 10. Property diagram (stable phase amount versus varied Eh condition) for the heterogeneous interaction system between 0.1 g of stainless steel [Fe-17Cr-12Ni-2.5Mo (mass%)] and 1 kg of water (and with 0.537 mole/L H2SO4), at 85℃ and 1 bar.

Table 2. Predicted invariant temperatures of solid/liquid equilibria including WC, (cubic carbide), and graphite or M6C compared with experimental data [31 and 32].

System Co-W-C +Nb +Ta +Ti +Zr

Invariant temperature graphite, °C Experimental Calculated 1298 1298 1282 1287 1289 1288 1289 1292 1283 1291

Invariant temperature M6C, °C Experimental Calculated 1368 1368 1345 1349 1352 1348 1361 1363 1358 1362

Acknowledgement Professor Bo Sundman and Doctor Bengt Hallstedt are acknowledged for many valuable discussions and important contributions. Special acknowledgements are given to Associate Professor Malin Selleby and Doctor Lina Kjellqvist (now at Thermo-Calc Software AB) at the Royal Institute of Technology, Stockholm, Sweden for their contributions in oxide systems [6-11].

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 References 1. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara and T. Maki, Acta Materialia, Vol. 55, 2007, pp. 5027-5038. 2. J.-C. Zhao, M.R. Jackson and L.A. Peluso, Acta Materialia, Vol. 51, 2003, pp. 6395-6405. 3. J. Fritzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser and W.J. Quadakkers, J. of Power Sources, Vol. 178, 2008, pp. 163-173. 4. Z. Yang, G.-G. Xia, C.-M. Wang, Z. Nie, J. Templeton, J. Stevenson and P. Singh, J. of Power Sources, Vol. 183, 2008, pp. 660-667. 5. European Commission, technical steel research, special and alloy steels, Report EUR 20315, ISBN 92-894-3655-7, 2002. 6. L. Kjellqvist, M. Selleby and B. Sundman, Calphad, Vol. 32, 2008, pp. 577-592. 7. L. Kjellqvist and M. Selleby, Calphad, Vol. 33, 2009, pp. 393-397. 8. L. Kjellqvist and M. Selleby, J. of Phase Equilibria and Diffusion, Vol. 31, 2010, pp. 113-134. 9. L. Kjellqvist and M. Selleby, J. of Alloys and Compounds, Vol. 507, 2010, pp. 84-92. 10. L. Kjellqvist and M. Selleby, International J. of Materials Research, Vol. 101, 2010, pp. 12221231. 11. L. Kjellqvist, PhD Thesis, KTH Royal Institute of Technology, ISBN 978-91-7415-428-3, Stockholm, Sweden 2009. 12. D. L. Douglas, F. Gesmundo and C. De Asmundis, Oxidation of Metals, Vol. 25, 1986, pp. 235268. 13. D. L. Douglas and F. Rizzo-Assuncao, Oxidation of Metals, Vol. 29, 1988, pp. 271-287. 14. P. Nanni, V. Buscaglia, G. Battilana and E. Ruedl, J. of Nuclear Materials, Vol. 182, 1991, pp. 118-127. 15. H. Kurokawa, K. Kawamura and T. Maruyama, Solid State Ionics, Vol. 168, 2004, pp. 13-21. 16. R. Wang, M. J. Straszheim and R. A. Rapp, Oxidation of Metals, Vol. 21, 1984, pp. 71-79. 17. Pingfang Shi, A. Engström and B. Sundman. Journal of Environmental Sciences, Vol. 23, 2011, pp. S1-S7. 18. V. B. Trindade, U. Krupp, H.-J. Christ, M. J. Monteiro and F. C. Rizzo, Mat.-wiss. u. Werkstofftech., Vol. 36, No. 10, 2005, pp. 471-476. 19. J. Bratberg and K. Frisk, Met. Mat. Trans. A, Vol. 35A, No. 12, 2004, pp. 3649-3663. 20. J. Bratberg and K. Frisk, Proceeding of the Powder Metallurgy World Congress and EUROPM2004, Vienna, Vol. 4, 2004, pp. 337-342. 21. J. Bratberg, Z. für Metallk., Vol. 96, No. 4, 2005, pp. 335-344. 22. S. Zajac, Internal report IM-3566, Swedish Institute for Metals Research, Stockholm, Sweden, 1998. 23. A. J. Craven, K. He, L. A. J. Garvies and T. N. Baker, Acta Mater., Vol. 48, 2000, pp 3857-3868. 24. O. Ericsson, Personal Communication 2008, Royal Institute of Technology, Stockholm, Sweden. 25. Jernkontoret, ’’A Guide to the Solidification of Steels’’, 1977, Stockholm, Sweden. 26. G. Allan, EU technical steel research, Castability, solidification mode and residual ferrite distribution in highly alloyed stainless steels, 1997. 27. G. C. Coelho, J. A. Golczewski and H. F. Fischmeister, Mat. Trans. A, Vol. 34A, No. 9, 2003, pp. 1749-1758. 28. Personal Communication with Sandvik. 29. www.uddeholm.se 30. C. Garcia de Andrés, F. G. Caballero, C. Capdevila and L. F. Álvarez, Materials Characterization, Vol. 48, Issue 1, 2002, pp. 101-111. 31. O. Kruse, B. Jansson and K. Frisk, Journal of Phase Equilibria, Vol. 22, No. 5, 2011, pp. 552-555. 32. J. Bratberg and B. Jansson, Journal of Phase Equilibria and Diffussion, Vol. 27, No. 3, pp. 213219.

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 List of all phases included in TCFE7 AF AL2S3 AL2TIO5 AL4C3 ALN ALPHA_SPINEL ANDALUSITE ANORTHITE B2_BCC B2_VACANCY B2M B3SI B4C BCC_A2 (Ferrite) BETA_RHOMBO_B BM BN_HP4 C1A1 C1A2 C1A6 C1A8M2 C2A14M2 C2F C3A1 C3A2M1 C4WF4 C4WF8 CA1CR2O4_A CA1CR2O4_B CA2SIO4_ALPHA CA2SIO4_ALPHA_PRIME CAMN2O4 CAMNO3 CEMENTITE CF CF2 CHI_A12 CLINO_PYROXENE CORDIERITE CORUNDUM_M2O3 CR2B_ORTH

CR3SI CRB2 CRISTOBALITE CU3P CW3F CWF DIAMOND_FCC_A4 DIGENITE FC_ORTHORHOMBIC FCC_A1 (Austenite and M(C,N) carbonitrides) FE2S3O12 FE2SI FE4N_LP1 FE4NB2O9 FE8SI2C FECN_CHI FEP FESO4 FLUORITE_C1 G_PHASE GAS:G GRAPHITE HALITE HATRURITE HCP_A3 (M2(C,N)) HIGH_SIGMA KAPPA KSI_CARBIDE KYANITE L12_FCC LARNITE LAVES_PHASE_C14 LIQUID LOWCLINO_PYROXENE M12C M23C6 M2B_TETR M2P M3B2

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 M3C2 M3P M3SI M5C2 M5SI3 M6C M7C3 MB_B33 MC_ETA MC_SHP MELILITE MERWINITE MG2NI MG2SI MGC2 MN1O2 MN2O3 MN6N4 MN6N5 MNS MO2B5 MSI MU_PHASE MULLITE NBNI3 NBO NI3S2 NI3TI NI6MNO8_TYPE NIMNO3 NITI2 OLIVINE ORTHO_PYROXENE

P_PHASE PI PROTO_PYROXENE PSEUDO_WOLLASTONITE PYRRHOTITE QUARTZ R_PHASE RANKINITE RED_P RHODONITE RUTILE_MO2 S2ZR1 SAPPHIRINE SI3N4 SIC SIGMA SILLIMANITE SIS2 SPINEL TAN_EPS TI2N TI3O2 TI4C2S2 TIO TIO_ALPHA TRIDYMITE WHITE_P WOLLASTONITE Z_PHASE ZR2S3 ZRO2_MONO ZRO2_TETR

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 List of models for all the phases included in TCFE7

Phase Name

Phase Constitutions

Model

GAS

(AR,C,C1H1,C1H1N1O1,C1H1N1_HCN,C1H1N1_HNC,C1H1O1,C1H1O2, C1H2,C1H2O1,C1H2O2_CIS,C1H2O2_DIOXIRANE,C1H2O2_TRANS,C1H3, C1H3O1_CH2OH,C1H3O1_CH3O,C1H4,C1H4O1,C1N1,C1N1O1, C1N1O1_NCO,C1N2_CNN,C1N2_NCN,C1O1,C1O1S1,C1O2,C1S1,C1S2, C2,C2H1,C2H1N1,C2H2,C2H2O1,C2H3,C2H4,C2H4O1_ACETALDEHYDE, C2H4O1_OXIRANE,C2H4O2_ACETICACID,C2H4O2_DIOXETANE, C2H4O3_123TRIOXOLANE,C2H4O3_124TRIOXOLANE,C2H5,C2H6, C2H6O1,C2H6O2,C2N1_CCN,C2N1_CNC,C2N2,C2O1,C3,C3H1,C3H1N1, C3H4_1,C3H4_2,C3H6,C3H6O1,C3H6_2,C3H8,C3N1,C3O2,C4,C4H1, C4H10_1,C4H10_2,C4H2,C4H4,C4H4_1_3,C4H6_1,C4H6_2,C4H6_3, C4H6_4,C4H6_5,C4H8,C4H8_1,C4H8_2,C4H8_3,C4H8_4,C4H8_5, C4N1,C4N2,C5,C5H1N1,C5N1,C60,C6H6,C6H6O1,C6N1,C6N2,C9N1, H,H1N1,H1N1O1,H1N1O2_CIS,H1N1O2_TRANS,H1N1O3,H1N3,H1O1, H1O1S1_HSO,H1O1S1_SOH,H1O2,H1S1,H2,H2N1,H2N2O2, H2N2_1_1N2H2,H2N2_CIS,H2N2_TRANS,H2O1,H2O1S1_H2SO, H2O1S1_HSOH,H2O2,H2O4S1,H2S1,H2S2,H3N1,H3N1O1,H4N2, N,N1O1,N1O2,N1O3,N1S1,N2,N2O1,N2O3,N2O4,N2O5,N3, O,O1S1,O1S2, O2,O2S1,O3,O3S1,S,S2,S3,S4,S5,S6,S7,S8)

RKM

IONIC_LIQ

(AL+3,CR+3,CO+2,CU+1,CU+2,FE+2,MN+2,MO+2,NI+2,SI+4,V+2,W+2)p (O-2,S-2,SIO4-4,ALN,ALO3/2,B,C,FEO3/2,MNO3/2,N,P,S,SIN4/3, SIO2,VA)q

RKM

LIQUID

(AL,ALN,ALO3/2,B,C,CA,CO,CR,CRO3/2,CU,CU2S,FE,FEO,FEO3/2, FES,MG,MN,MNO,MNO3/2,MNS,MO,N,NB,NBO,NBO2,NI,NIO,NIS, P,S,S2ZR,S3ZR2,SI,SIO2,TA,TI,TIO,TIO2,TIO3/2,V,W,ZR)

RKM

FCC_A1 & M(C,N)

(AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,ZR)1 (B,C,N,O,VA)1

RKM+MO

DICTRA_FCC_A1

(AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,ZR)1 (B,C,N,O,VA)1

RKM+MO

L12_FCC

(AL,CO,FE,NI,TI)0.75(AL,CO,FE,NI,TI)0.25(VA)1

RKM+MO

BCC_A2

(AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,ZR)1 (B,C,N,O,VA)3

RKM+MO

B2_BCC

(AL,CO,CR,CU,FE,MG,NI,SI,TA,TI,ZR)0.5 (AL,CO,CR,CU,FE,MG,NI,SI,TA,TI,ZR)0.5 (C,VA)3

RKM+MO

B2_VACANCY

(AL,NI)1(NI,VA)1

RKM

HCP_A3 & M2(C,N)

(AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,V,W,ZR)1 (B,C,N,O,VA)0.5

RKM+MO

DIAMOND_FCC_A4

(AL,B,C,O,SI%)

RKM

GRAPHITE

(B,C%)

RK

BETA_RHOMBO_B

(B)93(B,C,SI)12

RKM

FC_ORTHORHOMBIC

(S)

RED_P

(P)

WHITE_P

(P)

SIGMA

(AL,CO,CR,FE,MN,NI,TA,V)10 (CR,MO,NB,TA,TI,V,W)4 (AL,CO,CR,FE,MN,MO,NB,NI,SI,TA,TI,V,W)16

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

RKM

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 HIGH_SIGMA

(FE,MN,NI)8(CR,MO)4(CR,FE,MN,MO,NI,SI)18

RKM

MU_PHASE

(CO,CR,FE,MN,NB,NI,TA)7(MO,NB,TA,W)2(CO,CR,FE,MO,NB,NI,TA,W)4

RKM

G_PHASE

(AL,CO,FE,NI,TI)16(MN,NB,TI,ZR)6(CO,FE,NI,SI)7

RKM

P_PHASE

(CR,FE,NI)24(CR,FE,MO,NI)20(MO)12

RKM

R_PHASE

(CO,CR,FE,MN,NI)27(MO,W)14(CO,CR,FE,MN,MO,NI,W)12

RKM

CHI_A12

(CR,FE,NI)24(CR,MO,W,ZR)10(CR,FE,MO,NI,W)24

RKM

LAVES_PHASE_C14

(AL,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,W,ZR)2 (AL,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,W,ZR)1

RKM

MSI

(CR,FE,MN)0.5(SI)0.5

RKM

FE2SI

(FE)0.666667(SI)0.333333

MG2SI

(MG)2(SI)1

CR3SI

(CR,FE,MO,NB,SI)3(AL,CR,NB,SI)1

RKM

M3SI

(FE,MN)3(SI)1

RK

M5SI3

(CR,FE,MN)0.625(SI)0.375

RK

MG2NI

(MG)2(NI)1

NBNI3

(NB,NI)1(NB,NI)3

NI3TI

(NI,TI)0.75(NI,TI)0.25

NITI2

(NI)0.3333(TI)0.6667

CEMENTITE

(AL,CO,CR,FE,MN,MO,NB,NI,SI,V,W)3( B,C,N)1

RKM

M23C6

(CO,CR,FE,MN,NI,V)20(CO,CR,FE,MN,MO,NI,V,W)3(B,C)6

RKM

M7C3

(AL,CO,CR,FE,MN,MO,NB,NI,SI,V,W)7(B,C)3

RKM

M6C

(CO,FE,NI)2(MO,NB,W)2(CO,CR,FE,MO,NB,NI,SI,V,W)2(C)1

RKM

M5C2

(FE,MN,V)5(C)2

RKM

M3C2

(CR,MO,V,W)3(C)2

RKM

MC_ETA

(MO,TI,V,W)1(C,VA)1

RKM

MC_SHP

(MO,W)1(C,N)1

RKM

KSI_CARBIDE

(CR,FE,MO,W)3(C)1

RKM

A1_KAPPA

(AL,FE)1(C,VA)0.25

RKM+MO

KAPPA

(AL,FE)0.25(AL,FE)0.25(AL,FE)0.25(AL,FE)0.25(C,VA)0.25

RKM+MO

AL4C3

(AL,SI)4(C)3

RK

MGC2

(MG)1(C)2

SIC

(SI)1(C)1

FE8SI2C

(FE)8(SI)2(C)3

M12C

(CO)6(W)6(C)1

BN_HP4

(B)1(N)1

FECN_CHI

(FE)2.2(C,N)1

RKM

FE4N_LP1

(CO,CR,FE%,MN,NI)4(C,N%)1

RKM

ALN

(AL)1(N)1

SI3N4

(SI)3(N)4

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 TI2N

(TI)2(C,N)1

MN6N4

(MN)6(N)4

MN6N5

(MN)6(N)5

TAN_EPS

(TA)1(N)1

PI_PHASE

(CR)12.8(FE,NI)7.2(N)4

RK

Z_PHASE

(CR,FE)1(MO,NB,V)1(N,VA)1

RKM

HALITE

(AL+3,CA+2,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,NI+2,NI+3,SI+4,VA)1 (O-2)1

RKM+MO

CORUNDUM_M2O3

(AL+3,CR+2,CR+3,FE+2,FE+3,MN+3,TI+3)2 (CR+3,FE+3,NI+2,VA)1 (O-2)3

RKM+MO

SPINEL

(AL+3,CR+2,CR+3,FE+2,FE+3,MG+2,MN+2,NI+2)1 (AL+3,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,MN+4,NI+2,VA)2 (CR+2,FE+2,MG+2,MN+2,VA)2 (O-2)4

RKM+MO

ALPHA_SPINEL

(AL+3,CR+2,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,NI+2)1 (AL+3,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,NI+2,VA)2 (CR+2,FE+2,MN+2,VA)2 (O-2)4

RKM+MO

FLUORITE_C1

(ZR,ZR+4)1(O-2,VA)2

RKM

OLIVINE

(CA+2,FE+2,MG+2,MN+2,NI+2)1 (CA+2,FE+2,MG+2,MN+2,NI+2)1 (SI+4)1 (O-2)4

RK

MULLITE

(AL+3)1(AL+3)1(AL+3,SI+4)1(O-2)5

RKM

MELILITE

(CA+2)2(AL+3,MG+2)1(AL+3,SI+4)1(SI+4)1(O-2)7

RKM

QUARTZ

(SIO2)

TRIDYMITE

(SIO2)

CRISTOBALITE

(SIO2)

TIO

(TI+2,TI+3,VA)1(TI,VA)1(O-2)1

TIO_ALPHA

(TI+2)1(O-2)1

TI3O2

(TI+2)2(TI)1(O-2)2

RUTILE_MO2

(MN+4,NB+4,TI+4)1(O-2)2

ZRO2_MONO

(ZR+4)1(O-2,VA)2

RK

ZRO2_TETR

(ZR+4)1(O-2,VA)2

RK

MN1O2

(MN+4)1(O-2)2

MN2O3

(AL+3,CR+3,FE+3,MN+3,MN+4,NI+2)2(O-2)3

NBO

(NB+2)1(O-2)1

AF

(AL2O3)1(FE2O3)1

C1A1

(CA+2)1(AL+3)2(O-2)4

C1A2

(CA+2)1(AL+3)4(O-2)7

C1A6

(CA+2)1(AL+3)12(O-2)19

C3A1

(CA+2)3(AL+3)2(O-2)6

C1A8M2

(CAO)1(AL2O3)8(MGO)2

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

RK

RKM

RKM

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 C2A14M2

(CAO)2(AL2O3)14(MGO)2

C3A2M1

(CAO)3(AL2O3)2(MGO)1

CF

(CA+2)1(FE+3)2(O-2)4

C2F

(CA+2)2(FE+3)2(O-2)5

CF2

(CA+2)1(FE+3)4(O-2)7

CWF

(CA+2)1(FE+2)1(FE+3)2(O-2)5

CW3F

(CA+2)1(FE+2)3(FE+3)2(O-2)7

C4WF4

(CA+2)4(FE+2)1(FE+3)8(O-2)17

C4WF8

(CA+2)4(FE+2)1(FE+3)16(O-2)29

WOLLASTONITE

(CA+2,FE+2,MG+2)1(SI+4)1(O-2)3

PSEUDO_WOLLASTON

(CA+2)1(SI+4)1(O-2)3

RHODONITE

(MN+2)1(SI+4)1(O-2)3

HATRURITE

(CA+2)3(SI+4)1(O-2)5

RANKINITE

(CA+2)3(SI+4)2(O-2)7

LARNITE

(CA+2)2(SI+4)1(O-2)4

CA2SIO4_ALPHA

(CA+2,MG+2)2(SI+4)1(O-2)4

RKM

RK

CA2SIO4_ALPHA_PRIME (CA+2,FE+2,MG+2)2(SI+4)1(O-2)4

RKM

CLINO_PYROXENE

(CA+2,FE+2,MG+2)1(FE+2,MG+2)1(SI+4)2(O-2)6

RKM

LOWCLINO_PYROXENE

(CA+2,MG+2)1(MG+2)1(SI+4)2(O-2)6

RK

ORTHO_PYROXENE

(CA+2,MG+2)1(MG+2)1(SI+4)2(O-2)6

RK

PROTO_PYROXENE

(CA+2,MG+2)1(SI+4)1(O-2)3

RK

MERWINITE

(CA+2,MG+2)3(MG+2)1(SI+4)2(O-2)8

RK

ANDALUSITE

(AL+3)1(AL+3)1(SI+4)1(O-2)5

KYANITE

(AL+3)1(AL+3)1(SI+4)1(O-2)5

SILLIMANITE

(AL+3)1(AL+3)1(SI+4)1(O-2)5

ANORTHITE

(CA+2)1(AL+3)2(SI+4)2(O-2)8

CORDIERITE

(AL4MG2SI5O18)

SAPPHIRINE

(AL18MG7SI3O40)

AL2TIO5

(AL+3)2(TI+4)1(O-2)5

CA1CR2O4_A

(CA1CR2O4)

CA1CR2O4_B

(CA1CR2O4)

CAMN2O4

(CA+2)1(MN+3)2(O-2)4

CAMNO3

(CA+2)1(MN+4)1(O-2)3

NIMNO3

(MN+3,MN+4,NI+2)2(O-2)3

RKM

NI6MNO8_TYPE

(MG+2,NI+2)6(MN+4)1(O-2)8

RK

FE4NB2O9

(FE+3)4(NB+2)1(NB+4)1(O-2)9

PYRRHOTITE

(CU,FE%,MN,NI,TI,VA)1(S)1

RKM

MNS

(CA,CU,FE,MG,MN%)1(S)1

RKM

DIGENITE

(CU,FE,VA)2(CU,VA)1(S)1

RKM

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]

Thermo-Calc Software

TCFE7 NI3S2

(NI)0.6(S)0.4

AL3S2

(AL2S3)

SIS2

(SIS2)

ZRS2

(ZRS2)

ZR2S3

(ZR2S3)

FESO4

(FE)1(S)1(O)4

FE2S3O12

(FE)2(S)3(O)12

TI4C2S2

(TI)4(C)2(S)2

B4C

(B11C,B12)1(B2,C2B,CB2)1

RKM

BM

(B)1(CR,FE,MO,TI)1

RKM

B2M

(B)2(AL,TI)1

RK

B3SI

(B)6(SI)2(B,SI)6

RK

FEB

(FE)0.5(B)0.5

CR2B_ORTH

(CR,FE,MN,NI)0.667(B)0.333

CRB2

(CR)0.333(B)0.667

MO2B5

(MO)0.32(B)0.68

M2B_TETR

(CR,FE,MO,NI,W)0.667(B)0.333

RKM+MO

M3B2

(CR,FE,MO,NI,W)0.4(CR,FE,NI)0.2(B)0.4

RKM

BM_B33

(CR,FE,MO,NB,NI,TA,TI,V)1(B)1

RKM

FEP

(FE)1(P)1

M2P

(CR,FE%,NI)2(P)1

RKM

M3P

(CR,CU,FE%,NI)2(P)1

RKM

CU3P

(CU%,FE)3(P)1

RK

RKM

Note that the IONIC_LIQ, L12_FCC, B2_BCC, B2_VACANCY and HIGH_SIGMA phases, and the DICTRA_FCC_A1 phase as well, are always rejected by default; while, if it is necessary for some systems, they can be restored in the TDB Module.

RK:

Redlich-Kister

RKM:

Redlich-Kister-Muggianu

MO:

Magnetic Ordering

Thermo-Calc Software AB Norra Stationsgatan 93, Plan 5 SE-113 64 Stockholm www.thermocalc.com

Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 e-mail: [email protected]