i'1 -j.nznxmi]ia tit- i -

i'1 | - j . n z n x m i ] i a tit- i 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. — - vegetable oils contained in was...
1 downloads 0 Views 4MB Size
i'1

| - j . n z n x m i ] i a tit- i

19.

20.

21.

22. 23.

24. 25. 26. 27. 28. 29. 30. 31.

32. 33.

34. 35. —

-

vegetable oils contained in waste activated bleaching earth", Process Biochemistry, Vol. 38, '¿OUi. pp. 1077-1082 L. Li, W. Du, D. Liu, L. Wang and Z. Li, "Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium", Journal of Molecular Catalysis B: Enzymatic, Vol. 43, 2006. pp. 58-62 W. Li, W. Du and D. Liu, "Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology Journal of Molecular Catalysu B: Enzymatic, Vol. 45, 2007. pp. 122-127 J. Lu, K. Nie, F. Xie, F. Wang and T. Tan, "Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125", Process Biochemistry, Vol. 42, 2007. pp. 13671370 I. Rivera, J. C. Mateos and G. Sandoval, "Efficient immobilized lipases for biodiesel syn thesis from waste lipids", Journal of Biotechnology, Vol. 131, 2007. pp. S265-1128 A. Salis, M. Pinna, M. Monduzzi and V. Solinas, "Biodiesel production from triolein anc short chain alcohols through biocatalysis", Journal of Biotechnology, Vol. 119, 2005. pp. 291 299 T. Samukawa, M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda and H. Fukuda, "Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant o i l J o u r n a l of Bioscience and Bioengineering, Vol. 90, 2000. pp. 180-183 S. Shah and M. N. Gupta, "] .ipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system", Process Biochemistry, Vol. 42, 2007. pp. 409-414 Y. Shimada, Y. Watanabe, A. Sugihara and Y. Tominaga, "Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing", Journal of Mokcula Catalysis B: Enzymatic, Vol. 17, 2002. pp. 133-142 Y. Guo and D. S. Clark, "Activation of enzymes for nonaqueous biocatalysis by denaturin concentrations of urea", et, Biophysica Acta (BBA) - Protein Structure and Molecular Enmology, Vol. 1546, 2001. Biochimica pp. 406-411 F. Yagiz, Kazan, D., Akin, N., "Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites", Chemical Engineering Journal, Vol. 134, 2007. pp. 262-267 A. Illanes, "Stability of biocatalysis", Electronic Journal of Biotechnology, Vol. 2, 1999. pp. 7-15 W. Tischer and V. Kasche, "Immobilized enzymes: crystals or carriers?" Tibtech, Vol. 17, 1999. pp. 326 M. Yasuda, T. Kiguchi, H. Kasahara, H. Ogino and H. Ishikawa, "Effect of additive on transesterification activity of Rhizopus chinensis lipase", Journal of Bioscience and Bioengineering, Vol. 90, 2000. pp. 681-683 M. Persson, I. Mladenoska, E. Wehtje and P. Adlercreutz, "Preparation of lipases for use in organic solvents", Enzyme and Microbial Technology, Vol. 31, 2002. pp. 833-841 J.-C. Wu, B.-D. Song, A.-H. Xing, Y. Hayashi, M. M. R. Talukder and S.-C. Wang "Esterification reactions catalyzed by surfactant-coated Candida rugosa lipase in organic solvents", Process Biochemistry, Vol. 37, 2002. pp. 1229-1233 S. Shah, Sharma, S., Gupta, M.N., , "Biodiesel Preparation by Lipase-Catalyzed Transeste rification of Jatropha Oil", Energy Al. .i:

Vol. 68, 2002. pp. 5136-5141 35. J. Narita, K. Okano, T. Tateno, T. Tanino, T. Sewaki, M.-H. Sung, H. Fukuda and A, Kondo, "Display of active enzymes on the cell surface of Escherichia coli using PgsA anchotj protein and their application to bioconversion", Appl. Microbiol. Biotechnol., Vol. 70, 2005. pp.j 564-572 36. B. Atkinson, G. M. Black, P. J. S. Lewis and A. Pinches, "Biological particles of mensize, shape, and density for use in biological reactors", Biotechnol. Bioeng, Vol. 21, 1979. pp. 193-200 37. T. Miura and T. Yamane, "Screening for fungi that have high lipolytic and acidolytic activities in biomass support particles", Biosci BiotechnolBiochem Vol. 61, 1997. pp. 1252-1257 38. M. Elibol and D. Ozer, "Lipase production by immobilized Rhizopus arrhizus", Process Biochem., Vol. 36, 2000. pp. 219-223 39. H. Fukuda, Y. Turugida, T. Nakajima, E. Nomura and A. Kondo, "Phospholipase D production using immobilized cells of Streptoverticillium cinnamoneum", Biotechnol iMtVo 18, 1996. pp. 951-956 40. J. Zeng, W. Du, X. Liu, D. Liu and L. Dai, "Study on the effect of cultivation parameter! and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils fo biodiesel production", Journal of Molecular Catalysis B: Enzymatic, Vol. 43, 2006. pp. 15-18 41. K. Ban, M. Kaieda, T. Matsumoto, A. Kondo and H. Fukuda, "Whole cell biocatalyst fo biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass suppo particles", Biochem. Eng. J., Vol. 8, 2001. pp. 39-43 42. T. Nakashima, T. Kyotani, E. Izumoto and H. Fukuda, "Cell aggregation as a trigger f enhancement of intracellular lipase production by a Rhizopus species", J. Ferment. Bioeng. , Vo 70, 1990. pp. 83-89 43. T. Nakashima, H. Fukuda and S. Kyotani, "Culture conditions for intracellular lipa production by Rhizopus chinensis and its immobilization within biomass support particles' J. Ferment.Techno! , Vol. 66, 1988. pp. 441-448 44. T. Nakashima, H. Fukuda, Y. Nojima and S. Nagai, "Intracellular lipase production b Rhizopus chinensis using biomass support particles in a circulated bed fermentor."/. Fermen Bioeng, Vol. 68, 1989. pp. 19-24 45. S. Kyotani, T. Nakashima, E. Izumoto and H. Fukuda, "Continuous interesterificatio of oils and fats using dried fungus immobilized in biomass support particles",/. Ferment. B eng., Vol. 71, 1991. pp. 286-288 46. M. Adamczak and W. Bednarski, "Enhanced activity of intracellular lipases from Rhizc mucor meihi and Yarrowia lipolytica by immobilization on biomass support particles", Proct Biochem., Vol. 39, 2004. pp. 1347 47. S. Hama, S. Tamalampudi, T. Fukumizu, K. Miura, H. Yamaji, A. Kondo and I Fukuda, "Lipase localization in Rhizopus oryzae cells immobilized within biomass suppo particles for use as whole-cell biocatalysts in biodiesel-fuel production", Journal of Biosciet. and Bioengineering, Vol. 101, 2006. pp. 328-333 48. M. Adamczak and W. Bednarski, "Enhanced activity of intracellular lipases from Rl: zomucor miehei and Yarrowia lipolytica by immobilization on biomass support particle Process Biochemistry, Vol. 39, 2004. pp. 1347-1361 49. S. Tamalampudi, M. R. Talukder, S. Hama, T. Numata, A. Kondo and H. Fuku • I ^ M B H M M H i | 68 | ,mrnmmmmmm^mmm^^M^MB

"Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilizedwhole cell and commercial lipases as a biocatalyst", Biochemical Engineering, journal Vol. 39, 2008. pp. 185-189 S. Hama, H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda and H. Fukuda, "Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles", Biochemical Engineering journal Vol. 34, 2007. pp. 273-278 W. Li, W. Du and D. Liu, "Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology", Journal of Molecular Catalysis B: Enzymatic, Vol. 45, 2007. pp. 122-127 M. G. Devanesan, T. Viruthagiri and N. Sugumar, "Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens", African Journal of Biotechnology, Vol. 6, 2007. pp. 2497-2501 Q. He, Y. Xu, Y. Teng and D. Wang, "Biodiesel Production Catalyzed by Whole-Cell Lipase from Rhizopus chinensis", Chinese Journal of Catalysis, Vol. 29, 2008. pp. 41-46 T. Matsumoto, Takahashi, S., Kaieda, M., Ueda, M., Tanaka, A., Fukuda, H., Kondo, A., "Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production", Applied Microbiology Biotechnology, Vol. 57, 2001. pp. 515-520 T. Matsumoto, H. Fukuda, M. Ueda, A. Tanaka and A. Kondo, "Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flolp flocculation functional domain", Appl. Environ. Microbiol., Vol. 68, 2002. pp. 4517-4522 B. Gao, "Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production", Journal of Biotechnology, Vol. 139, 2009. pp. 169-175

Avances Investigativos en la Producción de Biocombustible

CAPÍTULO 4 PRODUCCIÓN DE BIODIESEL UTILIZANDO TECNOLOGÍA DE FLUIDOS SUPERCRÍTICOS Diana Catalina Cubides R, Carlos Ariel Cardona A*.

Introducción En los últimos años ha aumentado la necesidad de procesar materias primas baratas, tales como aceites usados, insaturados, grasas animales y de descarte, con el fin de bajar los costos de producción del biodiesel, cuya obtención se basa actualmente en el procesamiento de aceites vegetales de alto costo. Estas materias primas alternativas poseen alta acidez y han motivado opciones al proceso clásico catalizado por bases, como: la pre-neutralización de los ácidos grasos libres presentes en la alimentación, la pre-esterificación de los ácidos grasos libres con metanol o glicerina (catalizada por ácidos fuertes, seguida de esterificación en medio alcalino), o la esterificación catalizada completamente por ácidos [1]. Los procesos catalizados por bases (NaOH, KOH) o por ácidos (H2S04) demandan etapas de lavado para eliminar el catalizador y esto produce grandes cantidades de efluentes [2]. Otra importante alternativa propuesta para trabajar con materias primas de baja calidad es la transesterificación en condiciones supercríticas [3; 4], cuando se habla de condiciones supercríticas en la producción de biodiesel pueden presentarse varios escenarios, el primero es que la mezcla de reactivos, en este caso el aceite y el alcohol, se encuentren ambos en estado supercrítico, sin embargo, a medida que éstos reaccionan cambian las condiciones necesarias para que la mezcla se considere supercrítica. Otra alternativa es que sólo uno de los componentes de la mezcla, ya sea reactivo o producto se comporte como un fluido supercrítico, o finalmente puede usarse un solvente que se encuentre en estado supercrítico y modifique la solubilidad de una o más sustancias de la mezcla, lo cual altera la velocidad de la reacción. Los procesos para producir biodiesel en condiciones supercríticas pueden clasificarse en ca* Universidad Nacional de Colombia-Sede Maníjales, Plantas Piloto de Biotecnologíaj Agroitidustria, Campus la Nubia, Maníjales, AA 127, Colombia. Tel-fax: +57-68879400 Ext. 55880.E-mail: [email protected]

| 71 |

«i