The Dynamics of Road Vehicles

The Dynamics of Road Vehicles Werner Krantz Workshop „Piloten- / Fahrermodelle“ Manching, 10./11. Mai 2011 Forschungsinstitut für Kraftfahrwesen und ...
Author: Calvin Küchler
16 downloads 2 Views 2MB Size
The Dynamics of Road Vehicles Werner Krantz Workshop „Piloten- / Fahrermodelle“ Manching, 10./11. Mai 2011

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

1

Introduction Driving Dynamics – Basics and Models Driving Characteristics

Control Systems Driver-Vehicle Interaction Summary

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

2

Introduction

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

3

Introduction

Demands on the Driving Characteristics: The vehicle‘s control response shall be reasonable, adequate and predictable. It shouldn’t overburden the driver or put an unneeded workload on him. The vehicle’s stability limit shall be perceptible early enough. The response to disturbances (ambient winds, road irregularities) shall always be moderate. In case compensatory steering action is required from the driver, this should be perceptible early and in a distinct way. Variations in the driving dynamics characteristics because of loading, tire and road properties, etc. should be as small as possible.

 Ride comfort  Active driving safety

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

4

Introduction

Driving Characteristics Development: Large number of open-loop criteria Closed-loop evaluation by expert drivers  Correlation to customer’s subjective assessment Closed-loop evaluation in simulation requires driver models and assessment criteria

Quelle: Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

5

Driving Dynamics – Basics and Models

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

6

Driving Dynamics – Basics and Models

Side Force Generation Mechanism

Fy vT

vV v C =

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

Fy

RESEARCH IN MOTION

7

Driving Dynamics – Basics and Models

Side Force Generation Mechanism

Fy v

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

8

Driving Dynamics – Basics and Models vx

’Spring’

Yawing dynamics vx

’Damper’ vy

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

9

Driving Dynamics – Basics and Models

Full vehicle

Steering system Compliance

Bicycle model

Fy

F

Steering

Axle (concept dependent)

F

Fy

Elastokinematics Roll steer

Overall cornering stiffness



CG

Axle

Left tire SideRight forcetire Fy stiffness Side force Fy stiffness Fz

R Fz

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

10

Driving Dynamics – Basics and Models

Detailed MBS Model

Detailed dynamics Body motion

~ 1 to 3 Hz

(with flexible body) ~ 30 Hz Engine

~ 8 Hz

Unsprung mass

~ 12 Hz

Detailed nonlinearities

Kinematics / elastokinematics Friction (steering / damper) Power steering assist force Tire  Conceptual design

 Characteristics development  Large parameterization effort

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

11

Driving Dynamics – Basics and Models

(Linear) Bicycle Model

Simple modeling approach 2 DOF in the road plane

F

Minimum set of parameters (7 lateral dyn., 3 aerodyn.) Parameterization from simulation or road test data Linear model valid up to approximately 0.4 g



CG

 Basic analysis  Control system design

R

Other modeling approaches: Enhanced single track models 5-mass models

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

12

Driving Characteristics

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

13

Driving Characteristics

A

lF

lR r

lF

lR

r Steady state cornering, ay

P

0

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

14

Driving Characteristics

A

EG a y

FFF

EG:R C Steering l F C Gradient lR , Neutral steer:Self F EG > 0: Understeer C steer lR , Understeer: EGC= 0:l FNeutral F R Oversteer:

F

R

F

R

EG < 0: Oversteer C

EG

F

lF

m (C ( lF

C

R

R

lR ,

lR C

lR ) C

F

F

F

C

R

lF ) R

R

r

P

Steady state cornering, ay > 0 Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

15

Driving Characteristics

Steering angle

Yaw rate Steering angle

Steady State Vehicle Response

EG = 0 (Neutral steer) A

Max. steady state yaw gain EG > 0 (Understeer)

vcrit

Lateral acc. ay

Critical Velocity vcrit

( lF m (C

lF

vcrit

Velocity v

Characteristic Velocity

l R )2 C F

vch

C

F

C

R

R

lR )

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

vch

( lF m (C

l R )2 C R

C

F

lR C

F

R

lF )

RESEARCH IN MOTION

16

Driving Characteristics

Magnitude of frequency response of lateral acceleration due to steering wheel angle [m/s²rad]

Magnitude of frequency response of yaw rate due to steering wheel angle [1/s]

Dynamic Vehicle Response

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

 Limited accuracy of 2 DOF bicycle model

Frequency response criteria: Yaw damping (overshoot) Amplitude response drop at higher frequencies Phase margin



RESEARCH IN MOTION

17

Driving Characteristics

Dynamic Vehicle Response T  ,max

Peak-Response-Time

T  ,max

SW ,0

1

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

2

 ay = 4 m/s²

SW ,0

RESEARCH IN MOTION

18

Driving Characteristics

Driving Characteristics Development: Large number of open-loop criteria Closed-loop evaluation by expert drivers  Correlation to customer’s subjective assessment Closed-loop evaluation in simulation requires driver models and assessment criteria

Quelle: Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

19

Control Systems

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

20

Control Systems

Linear region (up to 4 m/s²): ‘Normal driving’ Lateral / longitudinal dynamics usually controlled by driver only

 Latest assistance systems: Lane keeping Crosswind compensation Vertical dynamics: CDC, ABC

High lateral acceleration levels: Highly nonlinear behavior

Fy

Rear axle Rear axle * E.g. with 50:50 load distribution

Saturation of tire forces Possible loss of controllability / spinout

Front axle

 Electronic Stability Control  Wheel slip control (ABS, ASR)

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

21

Control Systems

ESC (Electronic Stability Control)

CG

Oversteer:  brake front outer wheel Understeer:  brake rear inner wheel

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

22

Control Systems

Trajectory Control Nonlinear ‘virtual test driver’  Autonomous testing  Future crash avoidance systems?

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

23

Driver-Vehicle Interaction

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

24

Driver-Vehicle Interaction

Navigation level

Path planning

Velocity planning

Lateral control

Longitudinal control

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

Guidance level

Stabilization level

RESEARCH IN MOTION

25

Driver-Vehicle Interaction

Driver Model Partly conscious to the driver

Not conscious to the driver

Preview time Effective delay time  Control performance  Workload  Subjective evaluation Quelle: Donges, E. in Winner, H., Hakuli, S., Wolf, G.: Handbuch Fahrerassistenzsysteme Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

26

Driver-Vehicle Interaction

Crosswind Compensation: Processing of near field / far field information

,  , 

y ,v y , a y

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

27

Driver-Vehicle Interaction

Closed-loop Yaw Response to Crosswind

2 vres

2.5

Magnitude of frequency response of yaw rate to wind excitation [10-4 s/m²]



With driver

Without driver

2.0



1.5

2 vres

max

1.0



2 vres 2 vres max

0.5 0.0 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Frequency [Hz]

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

28

Driver-Vehicle Interaction

Driver-Vehicle Interaction under Natural Crosswind

+ Objective assessment criteria

 , ,...

Closed loop system model

SW

Virtual driver • Realistic control behavior • Realistic adaptation to different vehicles

Digital design process Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

Vehicle model

• Accurate lateral dynamics • Accurate aerodynamics RESEARCH IN MOTION

29

Summary

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

30

Summary Large number of open-loop criteria for a vehicle’s driving characteristics

Closed-loop evaluation is done by expert drivers  Correlation to customer’s subjective assessment The driver is in full control of the vehicle motion in the road plane  full responsibility

In critical situations control systems assist the driver by maintaining vehicle controllability Latest assistance systems also aim on increasing ride comfort (reducing workload) during normal driving

Appropriate driver models and assessment criteria would allow evaluating general driving characteristics as well as assistance systems in simulation

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart

RESEARCH IN MOTION

31

Suggest Documents