Prof. Dr.-Ing. Arnd Stephan

OpenPowerNet – Simulation of Railway Power Supply IT08 Rail Userworkshop OpenPowerNet Simulation von Bahnstromsystemen Simulation of Railway Power ...
Author: Erik Leonard
17 downloads 0 Views 3MB Size
OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

OpenPowerNet Simulation von Bahnstromsystemen Simulation of Railway Power Supply Systems

Prof. Dr.-Ing. Arnd Stephan Institut für Bahntechnik GmbH

Stephan_080124_OpenPowerNet_engl.ppt (Figure 1)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation of Railway Power Supply Systems – why? The electrical load flow and the energy consumption within the railway power supply network depend on the running trains and the power supply system characteristics. • There are consumers with a time-dependent and locationdependent power demand (picking up and recovering energy). • The network structure and the voltage influence the load flow. • The power supply system may influence the energy consumption. Simulation of these dynamic processes allow analysis and prognosis: • Load flow and energy consumption • Technical layout and design of the electrical installations.

Stephan_080124_OpenPowerNet_engl.ppt (Figure 2)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Requirements The voltage situation of the railway power supply network determines the load flow and may have retroaction to the propulsion characteristics of the trains: • current and power losses increase with decreasing voltage, • under low voltage current and power limitations of the propulsion control are activated ⇒ with impact on the driving dynamics, • the network voltage influences the braking energy recovering decisively (energy absorption capability). These retroactions to be emulated in the simulation: • for a.c. networks less relevant because of stable voltage level, • for d.c. networks with high load dynamics absolutely essential

Stephan_080124_OpenPowerNet_engl.ppt (Figure 3)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Initial Situation Energy consumption simulation for electrical railway systems requires detailed information available at the same time concerning • each train’s driving state and the required traction power, • the train’s positions within the network, • the layout and capability of the power supply system. For that reason a number of compromises were made in the past • either concerning the complexity of the railway operation simulation, • or regarding the modelling depth of the propulsion technology and the electrical network.

Stephan_080124_OpenPowerNet_engl.ppt (Figure 4)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation Requirements Railway Operation

Load Flow and Energy

• • • • • • • •

• • • • • • • • • • •

Line routing and alignment Track layout Signalling system Train data Propulsion data Timetable Connecting conditions Operating rules

Line routing and alignment Track layout Signalling system Train data Propulsion data Timetable Connecting conditions Operating rules Power grid / Substations Feeder lines and cables Catenary system

Stephan_080124_OpenPowerNet_engl.ppt (Figure 5)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Separation of Simulation Tasks Railway Operation • • • •

Load Flow and Energy

Line routing and alignment Track layout Signalling system Train data

Plug-in

• Propulsion data

• Timetable • Connecting conditions • Operating rules • Power grid / Substation • Feeder lines and cables • Catenary system

Stephan_080124_OpenPowerNet_engl.ppt (Figure 6)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Railway Operation Simulation

“Co-Simulation”

ATM

PSC

Advanced Train Module

Interaction

Power Supply Calculation

OpenPowerNet

Power Supply System

Propulsion Technology

Stephan_080124_OpenPowerNet_engl.ppt (Figure 7)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Simulation Sequence per Time Step

OpenTrack Train Position, Requested Effort

Achieved Effort

PSC

ATM Train Current

OpenPowerNet

Line Voltage, Requested Effort

Stephan_080124_OpenPowerNet_engl.ppt (Figure 8)

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Modelling levels available for propulsion simulation a) constant efficiency factors for propulsion equipment b) driving state related efficiency factors c) load depending efficiency factors of components d) detailed engine models of components +

auxiliary power and eddy current break

+

additionally: limiting values of propulsion control (e.g. voltage related current limitation)

Stephan_080124_OpenPowerNet_engl.ppt (Figure 9)

OpenPowerNet – Simulation of Railway Power Supply Propulsion Structure

Pel

Pmech

Stephan_080124_OpenPowerNet_engl.ppt (Figure 10)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Efficiency Characteristics of ICE3 train Wirkungsgradverläufe ICE 3 für maximale Zugkraft 1 AC 15 kV 16,7 Hz Herstellerangabe für Betrieb bei 15 kV 16,7 Hz 1

Wirkungsgrad

0,9

0,8 Transformator 4-QS Pulswechselrichter

0,7

Asynchron-Fahrmotor Radsatzgetriebe Gesamt

0,6

0,5 0

20

40

60

80

100

120

140

Motorfrequenz

Stephan_080124_OpenPowerNet_engl.ppt (Figure 11)

160

180

Hz

200

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Propulsion Component Modelling (example for traction motor)

i1

R1

Lσ 1

L'σ 2

Ψ1

Ψ '2

u1

M

e le k t

= M

m ech

L ä u fe r v e r lu s te

i '2

i1 + i '2

ΨH

M

R '2 s

+ M

LH

L ä u fe r v e r lu s te

P = R o to r v e r lu s te = 2πn

3 2

i '2 2 ⋅ R '2 2πn

Stephan_080124_OpenPowerNet_engl.ppt (Figure 12)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Propulsion Model Verification Spannung in Volt Strom in Ampere Train Current and Pantograph Voltage 27000

500,00

400,00 26500 300,00 26000 200,00

25000

0,00

-100,00 24500 -200,00 24000 -300,00 23500 -400,00

Zeit in Minuten

Stephan_080124_OpenPowerNet_engl.ppt (Figure 13)

09:00

08:30

08:00

07:30

07:00

06:30

06:00

05:30

05:00

04:30

04:00

03:30

03:00

02:30

02:00

01:30

01:00

-500,00 00:30

23000

Strom in Ampere

100,00

00:00

Spannung in Volt

25500

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Train Speed and Power Characteristics Fahrschaubild und Leistungsverlauf ICE1

Measurement and Simulation ResultsTriebkopf, Betriebsfahrt Hannover - Göttingen, Meßwerte am führenden Simulation IFB: Standardparameter und Wirkungsgradmodell ICE1/2 ICE1 Hannover – Göttingen

260 km/h

8

240

MW

220

6

200 180

v

140 2

120 100

v Meßfahrt v Simulation

80

0

P Meßfahrt

60

P Simulation

40

-2 Fehlertoleranzen:

20

Fahrschaubild < 1 % Energie ab Stromabnehmer < 2 %

km

0 0

10

20

30

40

50

60

70

Weg

Stephan_080124_OpenPowerNet_engl.ppt (Figure 14)

80

90

-4 100

Quelle: IFB

PStr

4

160

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Requirements to the electrical network model -

Simulation of all common AC- and DC-railway power supply systems

-

Representation of the entire electrical network structure

-

Unrestricted choice of conductor configuration along the line

-

Precise consideration of electromagnetic coupling of conductors for a.c.-systems

-

Switch state change within the railway power supply system

-

Retroaction to the railway operation simulation (OpenTrack)

-

Iterative communication with the propulsion simulation (ATM)

-

Configurable data output

-

Interfaces for post-processing

Stephan_080124_OpenPowerNet_engl.ppt (Figure 15)

OpenPowerNet – Simulation of Railway Power Supply Modelling of infrastructure Catenary arrangement and switch state

Stephan_080124_OpenPowerNet_engl.ppt (Figure 16)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Modelling of the Railway Power Supply System -

Electrical network structure (feeding sections, feeding points, switch state) in congruence to the track topology

-

Electrical characteristics of the feeding power grid

-

Electrical characteristics of the substations

-

Electrical characteristics of the conductors (cables, Catenary wires, tracks, rails)

-

Electrical characteristics rail-to-earth

-

Modelling of additional power consumers (e.g. switch heatings)

-

Loading capacity (conductors, converters, transformers)

-

Protection settings

Stephan_080124_OpenPowerNet_engl.ppt (Figure 17)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Power Supply Network Structure (DC 0.6 … 3.0 kV) Power Grid Connection 3 AC 10 / 20 / 30 kV

SS1 sw

SS2

Substation

sw

sw

SS3 sw

sw sw

sw

single-end GO1

SS4

sw

sw

double-end GO2

sw

sw

sw

double-end GO4

GO3

GO5

0.6 kV

OCS GR1

GR3

GR2

GR4

Rails

G’RE

G’RE

G’RE

G’RE

G’RE

G’RE

G’RE

Earth

train NOT in section

train in section

Stephan_080124_OpenPowerNet_engl.ppt (Figure 18)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Power Supply Network Structure (1 AC 15 kV 16,7 Hz) Power Grid Connection 1 AC 110 kV 16,7 Hz

SS1 sw

SS2

CS

Substation

sw

sw

sw

sw

sw

sw

sw

YO2

YO1

YO3

15 kV

OCS YR2

YR1

YR3

Rails

Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Earth

Stephan_080124_OpenPowerNet_engl.ppt (Figure 19)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Power Supply Network Structure (2 AC 25 kV ~ 50 / 60 Hz) Power Grid Connection 3 AC 110 / 220 kV

Substation

AT1

SS sw

sw

Autotransformer

Autotransformer

AT2 sw

sw

YO1

AT3 sw

sw

sw

sw

Autotransformer

sw

sw

YO3

YO2

sw

sw

YO4

25 kV

OCS YR1

YR3

YR2

YR4

Rails YN1

YN3

YN2

-25 kV Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Y’RE

Negative Feeder Earth

train NOT in section

train in section

Stephan_080124_OpenPowerNet_engl.ppt (Figure 20)

OpenPowerNet – Simulation of Railway Power Supply Substation / AT Structure (2 AC 25 kV ~ 50/60 Hz)

Stephan_080124_OpenPowerNet_engl.ppt (Figure 21)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Trackside Arrangement of Conductors

Source: DB KoRiL 997

Stephan_080124_OpenPowerNet_engl.ppt (Figure 22)

OpenPowerNet – Simulation of Railway Power Supply Trackside Arrangement of Conductors NF MW RF E

30 0

m

CW

RL

RR

Stephan_080124_OpenPowerNet_engl.ppt (Figure 23)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Catenary Arrangement and Conductor Model

„Slice“

Stephan_080124_OpenPowerNet_engl.ppt (Figure 24)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Catenary Arrangement and Conductor Model y

Slice n

material, diameter (x1; y1)

electro-magnetic coupling effects

(0; 0)

x

Stephan_080124_OpenPowerNet_engl.ppt (Figure 25)

OpenPowerNet – Simulation of Railway Power Supply Sequence of Slices

Stephan_080124_OpenPowerNet_engl.ppt (Figure 26)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply Mathematical Network Model

Stephan_080124_OpenPowerNet_engl.ppt (Figure 27)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Electrical network calculation using the advanced method of nodes

Voltage drops caused by self- and mutual induction

Stephan_080124_OpenPowerNet_engl.ppt (Figure 28)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Verification of the simulation  Punctual theoretical evaluation -

current sum cero for network slices

-

energy picking up and recovering

-

correspondence of voltage minimum and maximum / jumps with the network structure during constant load test

 Comparison of measurement data with the simulation results for predefined load cases -

driving dynamics of the trains

-

current-, voltage- and power characteristics

Stephan_080124_OpenPowerNet_engl.ppt (Figure 29)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Verification: Measurement and Simulation AB07, Messfahrt F8, mit Halt 60

Geschwidnigkeit [km/h]

50

40

30

20

10

0 0

20

40

60

80 Zeit [s]

v_TFZ_2099

v_Tfz_Simu

Stephan_080124_OpenPowerNet_engl.ppt (Figure 30)

100

120

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Verification: Measurement and Simulation

900

4000

800

3500

700

3000

600

2500

500

2000

400

1500

300

1000 675 A

200

500 673 A

100

0

0

-500 0

20

40

60

80

100

120

Zeit [s] Toleranz U (EN 50163)

U_nenn

U_TFZ_2099

U_Tfz_Simu

I_TFZ_2099

Stephan_080124_OpenPowerNet_engl.ppt (Figure 31)

I_Tfz_Simu

Strom [A]

Spannung [V]

AB07, Messfahrt F8, mit Halt

OpenPowerNet – Simulation of Railway Power Supply

High Speed Railway 300 km/h 100 km Double Track 2AC 25 kV 50 Hz

Stephan_080124_OpenPowerNet_engl.ppt (Figure 32)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV Current I = f(s) TrainTrain Current 450

400

350

300

I [A]

250

200

150

100

50

0 200

210

220

230

240

km

Stephan_080124_OpenPowerNet_engl.ppt (Figure 33)

250

260

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV Train TrainVoltage Current Train Current I = f(s), Line Voltage at Pantograph U = f(s) 28000 450

400 27500

350

27000 300

U [V] I [A]

250 26500

200

26000 150

100 25500

50

25000 0 200 200

210 210

220 220

230 230

240

km

Stephan_080124_OpenPowerNet_engl.ppt (Figure 34)

250

260

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV PantographMultiple Voltages of all Trains U = f(s) Train Voltage 28000

27500

U [V]

27000

26500

26000

25500

25000 200

210

220

230

240

km

Stephan_080124_OpenPowerNet_engl.ppt (Figure 35)

250

260

Stephan_080124_OpenPowerNet_engl.ppt (Figure 36)

10:04:00

10:03:54

10:03:48

10:03:42

IT08

10:03:36

10:03:30

10:03:24

10:03:18

10:03:12

10:03:06

10:03:00

10:02:54

10:02:48

10:02:42

10:02:36

10:02:30

10:02:24

10:02:18

10:02:12

10:02:06

10:02:00

10:01:54

10:01:48

10:01:42

10:01:36

10:01:30

10:01:24

10:01:18

10:01:12

10:01:06

10:01:00

10:00:54

10:00:48

10:00:42

10:00:36

10:00:30

10:00:24

10:00:18

10:00:12

10:00:06

10:00:00

U[V]

OpenPowerNet – Simulation of Railway Power Supply Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV Overhead Line Voltage U = f(t)

28200

28000

27800

10:02:30 AT-station switched-off

27600

27400

27200

27000

26800

26600

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV Return Current Distribution I = f(s) Conductor Current Train Position

140

120

100

80

I [A]

Return Feeder Earth 60

40

20

0 0

3

6

9

12

15

18

21

24

km

SS

AT1

Stephan_080124_OpenPowerNet_engl.ppt (Figure 37)

AT2

Stephan_080124_OpenPowerNet_engl.ppt (Figure 38) 10:10:23

10:10:16

10:10:09

IT08

10:10:02

10:09:55

10:09:48

10:09:41

10:09:34

10:09:27

10:09:20

10:09:13

10:09:06

10:08:59

10:08:52

10:08:45

10:08:38

10:08:31

10:08:24

10:08:17

10:08:10

10:08:03

10:07:56

10:07:49

10:07:42

10:07:35

10:07:28

10:07:21

10:07:14

10:07:07

10:07:00

10:06:53

10:06:46

0:00:00

P [MW]

OpenPowerNet – Simulation of Railway Power Supply Rail Userworkshop

Simulation Results: High Speed Railway 2AC 25 kV Substation Transformer P = f(t) T r a n s f o r m e r P oPower w er

40

35

30

25

20

15

10

5

0

IT08

Rail Userworkshop

10:09:41

10:09:55

OpenPowerNet – Simulation of Railway Power Supply Simulation Results: High Speed Railway 2AC 25 kV T r a n s fo rat m e Substation r E n e r g y C o n s Busbar u m p tio n E = f(t) Energy Consumption 1 ,2 0 0

1 ,0 0 0

0 ,6 0 0

0 ,4 0 0

0 ,2 0 0

Stephan_080124_OpenPowerNet_engl.ppt (Figure 39)

10:10:23

10:10:16

10:10:09

10:10:02

10:09:48

10:09:34

10:09:27

10:09:20

10:09:13

10:09:06

10:08:59

10:08:52

10:08:45

10:08:38

10:08:31

10:08:24

10:08:17

10:08:10

10:08:03

10:07:56

10:07:49

10:07:42

10:07:35

10:07:28

10:07:21

10:07:14

10:07:07

10:07:00

10:06:53

10:06:46

0 ,0 0 0 0:00:00

E [MWh]

0 ,8 0 0

OpenPowerNet – Simulation of Railway Power Supply

City Light Rail 300 km TRAM 220 km Trolley DC 600 V

Stephan_080124_OpenPowerNet_engl.ppt (Figure 40)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Vehicle modelling TRAM und Trolleybus

2 x Mirage

Tram2000+Pony

Tram2000

Mercedes

GTB Hess

Stephan_080124_OpenPowerNet_engl.ppt (Figure 41)

Cobra

Tram2000 Sänfte

DGTB Hess

OpenPowerNet – Simulation of Railway Power Supply Graphical time table

Line A

Stephan_080124_OpenPowerNet_engl.ppt (Figure 42)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

Stephan_080124_OpenPowerNet_engl.ppt (Figure 43)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Minimum voltage: catenary and pantograph Heuri-Friesen

Heuri-Höfliwe

Baden-Langstr Baden-Kalkbre

Lette-Limmatp

800

Albis-Schweig

Normal operation 900

700

500

400

300

STRVt [5.804]

HEGA [5.398]

IHAG [5.017]

FRIE [4.681]

FRIB [4.304]

HOEF [3.748]

GOLPt [3.469]

ZWIN [3.175]

KALKt [2.762]

KERN [2.493]

MILA [1.913]

ROEN [1.581]

100

HELVt [2.311]

200

LIMMt [1.288]

Spannung [V]

600

0 1

1,5

2

2,5

3

3,5

4

4,5

5

Weg [km] Trenner

Toleranz U (EN 50163)

U_nenn

U_min_abs

Stephan_080124_OpenPowerNet_engl.ppt (Figure 44)

U_min_Tfz

5,5

6

10

1 2 3 4

Weg [km] 5

Stephan_080124_OpenPowerNet_engl.ppt (Figure 45)

6 Frank-ä.Limma

Tobel-m_Limma

Lette-i.Limma

IT08

FRAN [6.915]

WINZ [6.494]

WART [6.051]

ZWIE [5.691]

MEIE [5.374]

SCHT [4.998]

ATRO [4.602]

EGUT [4.234]

WAIF [3.754]

WIPK [3.297]

Lette-Wipking

Rail-to-earth potential

EWYS [3.063]

DAMM [2.689]

70

Lette-o.Limma

80

QUEL [2.416]

LIMMp [2.003] LIMM [2.092]

MUFG [1.732]

SIHL [1.391]

Spannung [V]

OpenPowerNet – Simulation of Railway Power Supply Rail Userworkshop

Normal operation

60

50

40

30

20

0 7

OpenPowerNet – Simulation of Railway Power Supply Converter current and bus-bar voltage

IT08

Rail Userworkshop

Normal operation

750

10000

9000 700 8000

7000

6000 600 5000 550 4000

3000

500

2000 450 1000

400 0

450

900

1350

1800

2250

2700

3150

3600

4050

4500

4950

5400

Zeit [s] U-Sammelschiene

I-Sammelschiene

Stephan_080124_OpenPowerNet_engl.ppt (Figure 46)

5850

6300

6750

0 7200

Strom [A]

Spannung [V]

650

OpenPowerNet – Simulation of Railway Power Supply Converter current and bus-bar-voltage

IT08

Rail Userworkshop

Depot gateway 4:50 - 7:05 h

750

4500

4000 700 3500 650

600

2500

2000

550

1500 500 1000 450 500

400

0 0

450

900

1350 1800 2250 2700 3150 3600 4050 4500 4950 5400 5850 6300 6750 7200 7650 8100 Zeit [s] U-Sammelschiene

I-Sammelschiene

Stephan_080124_OpenPowerNet_engl.ppt (Figure 47)

Strom [A]

Spannung [V]

3000

OpenPowerNet – Simulation of Railway Power Supply Load and loading capacity

IT08

Rail Userworkshop

Substation Normal operation, blackout in neighbouring subst.

9000 Sammelschiene SK i.Limmatst

8000

SK i.Hardturm SK Rosengarte SK Hardbrücke SK ZWest

7000

RK Hardturmst RK Rosengarte BK V, 2381 A

6000 Effektivstrom [A]

BK VI, 2381 A

5000

4000

3000

2000

1000

0 1

10

100 Zeit [s]

Stephan_080124_OpenPowerNet_engl.ppt (Figure 48)

1000

10000

OpenPowerNet – Simulation of Railway Power Supply Load values Station

IT08

Rail Userworkshop

Substation, Normal operation without blackouts Sektor

Imax

Ieff

Pmax

[A]

[A]

[kW]

1s

7200 s

Eab

Eauf

Everl

[kWh] [kWh] [kWh]

IEinst

IKmin

[kA]

[kA]

IKmin/IEinst Imax/IEinst soll > 110% soll < 90%

Promenade

2h SK -o.Rämistraße SK -Seilergraben SK -Hottingerstraße SK -Klosbachstraße SK -Kreuzbühlstraße SK -Heimplatz SK -u.Rämistraße 40 SK -u.Rämistraße 129 SK -Bellevueplatz SK -Zeltweg TB RK -Heimplatz 2 Kabel RK -Kreuzbühlstraße RK -o.Rämistraße RK -Heimplatz RK -Bellevueplatz RK -Zeltweg TB gesamt

1915 1686 1961 1665 3710 1128 172 1145 2824 912 -1242 -2164 -649 -3425 -1742 -912 8773

588 404 475 332 1018 310 50 316 1075 279 513 678 238 1375 657 279 3527

1221 1072 1252 1048 2312 720 111 738 1770 582 -749 -1324 -393 -2065 -1050 -582 5289

520 264 417 257 1000 290 36 220 1226 153 0 2 0 0 0 28 4305

-10 0 0 0 -33 0 0 0 -6 -28 -627 -789 -281 -1683 -804 -153 0

4 2 3 4 36 1 0 1 18 1 3 8 2 8 7 1 97

SK: Speisekabel RK: Rückleiterkabel

Stephan_080124_OpenPowerNet_engl.ppt (Figure 49)

3,5 3,0 3,0 3,5 4,2 3,0 3,0 3,0 3,5 2,5

14,0 11,7 10,4 10,4 12,7 34,0 23,0

400% 390% 347% 297% 302% 1133% 767%

16,6 2,7

474% 108%

54,7% 56,2% 65,4% 47,6% 88,3% 37,6% 5,7% 38,2% 80,7% 36,5%

OpenPowerNet – Simulation of Railway Power Supply Load and loading capacity

IT08

Rail Userworkshop

Catenary wire at feeding point Normal operation, blackout in neighbouring subst.

1400 A

Belastbarkeit Ri107 Abnutzung 0 % Belastbarkeit Ri107 Abnutzung 20 %

1200

Ieff je VL Abnutzung 0 % Ieff je FD Abnutzung 20 %

Stromstärke

1000

800

600

400

200

0 1

10

100 Zeit

Stephan_080124_OpenPowerNet_engl.ppt (Figure 50)

1000

s

10000

OpenPowerNet – Simulation of Railway Power Supply Energy balance

Case 1

Case 2

Case 3

Case 4

Stephan_080124_OpenPowerNet_engl.ppt (Figure 51)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply Power losses balance

Case 1

Case 2

Case 3

Case 4

Stephan_080124_OpenPowerNet_engl.ppt (Figure 52)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply Recovering balance

Case 1

Case 2

Case 3

Case 4

Stephan_080124_OpenPowerNet_engl.ppt (Figure 53)

IT08

Rail Userworkshop

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Post-processing: Electro-magnetic Field Exposition 1AC 15 kV 16,7 Hz

Visualisation

Stephan_080124_OpenPowerNet_engl.ppt (Figure 54)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Summary 1. Operation Simulation (OpenTrack) • Precise railway operation simulation using a commercial simulator • Co-simulation with electrical network calculation of OpenPowerNet (New!) • Online-communication between operation and electrical network simulation via SOAP-Interface (New!) • Retroaction of electrical network calculation to train driving dynamics • automatic disturbance generation caused by the power supply (New!) 2. Load Flow and Energy Calculation (OpenPowerNet) • Complete electrical network calculation by the PSC module considering all electromagnetic coupling effects (New!) • Input of the electrical network parameters by geometrical conductor arrangement and material properties, unrestricted configurable (New!) • Switch state changes of the electrical network during simulation (New!) • Configurable modelling depth for train propulsion system in the ATM module: constant efficiency / characteristic curves / engine models + control (New!) • Comprehensive analyzing and interpreting tools (energy, load flows, currents, voltages, temporal / local) as well as data export for post-processing

Stephan_080124_OpenPowerNet_engl.ppt (Figure 55)

OpenPowerNet – Simulation of Railway Power Supply

IT08

Rail Userworkshop

Eine Expertenrunde für das Gesamtsystem Bahn The Expert Team for the Complete Railway System

IFB

Niederlassung Dresden, Wiener Str. 114-116, 01219 Dresden, Germany

Phone: +49 351 87759-0

E-Mail: [email protected]

www.bahntechnik.de

Stephan_080124_OpenPowerNet_engl.ppt (Figure 56)

Suggest Documents