Concentrating Solar Power Technologies

Concentrating Solar Power Technologies Dr. Raed Sherif V.P., International Markets eSolar, Inc. [email protected] Presented at the iNEMI Alternat...
Author: Edgar Bridges
1 downloads 2 Views 6MB Size
Concentrating Solar Power Technologies Dr. Raed Sherif V.P., International Markets eSolar, Inc. [email protected] Presented at the iNEMI Alternative Energy Workshop San Jose, California ‐ October 20‐21, 2010

Overview of Solar Technologies Platforms

Solar  Technologies

Photovoltaic Silicon  Panels

Thin Film  Panels

Non‐concentrating 2

Solar Thermal Concentrated  PV Panels

Parabolic  Trough

Concentrating

Linear  Fresnel

Power  Tower

Sterling  Engine

Technology

Efficiency

Status

Markets

Pros

Cons

Si panels

14% - 22% DC

Standard, mature (GW deployment), 75% market share

Primarily rooftops and commercial , and lately utility

Diffuse sun, established, proven cost reduction path

Intermittent, no clear path for higher efficiency , higher investment to set up manufacturing

Thin films

~ 11% DC

CdTe of FS 25% market share, other thin film about ready to enter the market

Utilities

Diffuse sun, lowest capital cost

Material set, low efficiency, high BOS costs

CPV

25% - 32% DC

Fragmented, emerging, many technologies, less than 20 MW installed

Commercial, utilities

Very high efficiency potential, low use of semiconductor, lower manufacturing set up costs

Few demonstrations, use of DNI only

CSP-Trough

14-15% AC

Mature, standard, over 650 MW installed and many PPA’s including storage

Utility power generation

Established, over 20 + years, can be hybridized, storage capability

Water use, use of DNI only, low potential for cost reduction

CSP- CLFR

11% AC

Under 10 MW installed, but finalist in the Solar Flagship of Australia

Industrial steam, utility power generation

Low capital cost, steam suitable for industrial process heat

Water use, use of DNI only, low efficiency, low steam temperature

CSP- Tower

18% - 22% AC

Different solar fields, under 40 MW installed, PPA’s signed for hundreds of MW

Utility power generation

High efficiency, path for low LCOE, storage, hybrid

Water use, use of DNI only

Concentrating Photovoltaic ‰ History ‰ CPV Module Components ‰ The Promise of CPV ‰ Status of the Technology ‰ Opportunities & Challenges

History Go back to 1980 and ask: why is solar expensive? To a first degree, the semiconductor is expensive And it is inefficient (low kWh produced for every kW installed)  So you need a lot of semiconductor area

Two solutions were considered ¾ Reduce cost of semiconductor  ¾ Use Concentration 

Some Historical CPV Systems Interest in CPV evident in the  1970’s and 1980’s systems

But back then, CPV was too  expensive – the technology was  not ready!

6

Meanwhile, PV found a niche application  100

Module Price ($/W) ($2002)

Historical 1980 $21.83/W

Projected 2004! 1985 $11.20/W

10

1990 $6.07/W

1995 $4.90/ W

2000 $3.89/W

2005 $2.70/W

2010 $1.82/W

2013 $1.44/W

1 1

10

100

1000

10000

100000

Cum ulative Production (MW)

PV was cost efficient in remote applications, then through FIT and incentive programs,  gained market in grid‐connected  Projections of lower module cost with higher volumes, increased efficiency, and  automation have come true – except the time of silicon shortage

A New, Disruptive Technology High efficiency, super expensive “multi‐junction” solar cells made their way into the  domain of solar energy because of space application, building on the “dual‐junction”  technology that was developed by the DOE 

Picture courtesy of Spectrolab

High‐efficiency solar cells made of III‐V materials used to power spacecrafts

Multijunction PV

Sunlight

TOP CELL

A/R*

MIDDLE CELL 0.6 0.4 BOTTOM CELL 0.2 GaInP2

0 0.25

A/R*

Top Cell: GaInP

0.8 Drawing Not To Scale

INTENSITY (ARB UNITS)

1.0

Contact

0.45

GaInAs 0.65

0.85

Ge 1.05

1.25

1.45

WAVELENGTH (Microns)

Picture courtesy of Spectrolab

1.65

1.85

2

Tunnel Junction Middle Cell: GaInAs Tunnel Junction Bottom Cell: Ge Ge Substrate Contact *A/R: Anti-Reflective Coating

• State of the art is the 3J cell • Typical 3J cell contains 20 layers or more • Divides the solar spectrum (l 8 GWh over a 25 year  life more than a thin film panel

CPV Chip Efficiency vs. Other Technologies •

CPV chips efficiency increase about 1% per year: 40% commercial by end of  2010 , 42‐43% by 2012 and path for > 45%, while prices going down due to  economies of scale, automation, and learning

Picture courtesy of NREL

Where the CPV Industry is now, and where it is heading Parameter

Status in 2007

Status in 2010

Projected  by 2015

$/W installed

$7‐$10/W

$4‐$6/W

$30 cents/kWh

$15‐$20 cents/kWh

Under $10 cents/kWh

Research device  eff.

40.7%

41.6% (recently 42.3%)

48%

Commercial device eff.

35‐37%

39‐40%

42‐43%

Commercial cell  cost

$10‐$15/sq. cm

$6‐$8/sq. c m

$3‐$5/sq. cm

Demonstrations

Under 1 MW

4‐6 MW with PPA’s  signed for 30+ MW

Hundreds of MW

Source: Dr. Sarah Kurtz of NREL Report on CPV

Opportunities & Challenges • Technology has the potential to reach low LCOE • Promises of commercial chip efficiencies of 40% and above are  happening‐ chip efficiencies of 50% and above are doable! • Many new chip suppliers, ensuring continuous drive to increase  efficiency, reduce cost, and meet volume demands • IEC qualification standards established, and CPV modules are meeting  the standards • Field demonstrations are proving viability of the technology • PPA’s are being signed  • No economies of scale achieved yet • Bankability issues • Fragmented technology, no standardization

Concentrating Solar Power Tower ‰ Why Tower? ‰ Traditional Obstacles to CSP  ‰ Innovations in CSP Tower ‰ Opportunities & Challenges

Among CSP technologies, the CSP Tower offers the best  opportunities for scalable solar power at the lowest cost

Trough ƒ Most mature  technology (over 500  MW installed) ƒ Single axis tracking ƒ Synthetic oil ƒ Costly heat  exchangers ƒ Low concentration ƒ Medium efficiency (~  16%)

Linear Fresnel Reflectors ƒ Tubes fixed in place ƒ Use direct steam ƒ Low concentration ƒ Low maximum  temperature ƒ Lowest efficiency (~ 11%) ƒ Limited demonstration

Tower ƒ Dual axis tracking ƒ High concentration ƒ High maximum  temperature ƒ Demonstrated in Solar  One, Solar Two, PS‐10, PS‐ 20, Sierra ƒ Highest efficiency (18‐ 22%)

Question: Why is CSP expensive?

Materials, construction and installation have been costly for CSP ƒ Traditional CSP requires intensive field construction – cranes, power  tools,  and heavy civil work with expensive foundations ƒ Mirrors use up large amounts of steel and concrete to resist wind loads ƒ Precision installation, calibration, and alignment are time consuming 

Source: Abengoa PS‐10 project

Lifting of a trough during construction

Conventional technology Curved trough mirrors and large heliostats (120 m2) require heavy support structures  and expensive manual labor

Trough mirror assembly  on site with large steel   support structures

Other power tower  heliostats require 3’  diameter steel posts set  20’ into the ground

The actuator is large and  heavily engineered

eSolar: Innovative Modular and Scalable CSP  Thermal Receiver   [direct steam generation]

Receiver Tower South field of  tracking mirrors

North field of  tracking mirrors

Award‐winning Technology ƒ ƒ ƒ

2010 World Economic Forum Technology Pioneer Award 2010 Renewable Energy World’s “Renewable Project of the Year” 2009 Power Engineering “Best Renewable Project of the Year”

Commercial Demonstration: Sierra SunTower Project ƒ Each module produces 2.5‐2.8 MW ƒ All solar field components have been  demonstrated at commercial scale ƒ 46 MW units fit on a 250 acre land  (~ 1 square km) ƒ Can be deployed in 18‐22 months The Sierra SunTower produces 5 MW and consists of 2  modules side‐by‐side in Lancaster, California. Each module  has 12,000 tracking mirrors focusing light on a receiver  atop a 60 meter tower.

Concept of a power plant using 12 modules side‐by‐side feeding one steam turbine to form a 46 MW power plant. 

Close‐up view of the mirror field. Notice the fact that there is no  ground penetration. Frames come pre‐wired from the factory.

Pre‐Fabricated Components for Easy & Rapid Construction  

Pre‐fabricated mirrors and frames arrive  in standard shipping containers on site

External boiler designed by  Babcock & Wilcox 

Simple, linear design and field layout  reduce high ground preparation costs

Standard 210’ (65 m) wind towers are  repurposed to host receivers, expediting the  permitting process

Big savings in Construction Costs! Solar Trough/ Other CSP Towers

eSolar System

Expensive crews, cranes and  power tools required, with  excavating, welding and  fabrication done on‐site

Only hand tools (one ratchet  wrench) required to unfold and  tighten entire solar field in place  with NO ground penetration

Cost Reduction and Local Manufacturing Opportunities ƒ

Small, flat mirrors require less steel,  and can be manufactured locally

ƒ

Low profile installation reduces  construction equipment and labor cost

ƒ

Pre‐fabricated components requiring  less skilled labor for assembly on site Small, flat mirrors ~ 1 sq. meters ensure lower material and labor costs

Mirror field is installed using hand tools with no ground penetration

eSolar’s Core Innovation: Automated Calibration & Tracking System Two‐axis tracking is supported by cameras and proprietary software ƒ System of cameras ƒ Fully‐automated ƒ Heliostat availability  > 99.9% ƒ Full calibration in