32

Idempotency and Projection Matrices c Copyright 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 A square matrix P is idempotent ...
31 downloads 3 Views 157KB Size
Idempotency and Projection Matrices

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

1 / 32

A square matrix P is idempotent iff PP = P.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

2 / 32

A square matrix P is a projection matrix that projects onto the vector space S ⊆ Rn iff (a) P is idempotent, (b) Px ∈ S ∀ x ∈ Rn , and (c) Pz = z ∀ z ∈ S.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

3 / 32

Result P.1:

Suppose P is an idempotent matrix. Prove that P projects onto a vector space S iff S = C(P).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

4 / 32

Proof of Result P.1:

(=⇒) Property (b) of a projection matrix implies that Px ∈ S ∀ x ∴ C(P) ⊆ S.

By Property (c) of a projection matrix, Pz = z ∀ z ∈ S. Thus, any z ∈ S also in C(P). ∴ S ⊆ C(P), and we have C(P) = S.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

5 / 32

(⇐=) Need to show that any idempotent P is a projection matrix that projects onto C(P) as follows: (a) PP = P, (b) Px ∈ C(P) ∀ x, (c) z ∈ C(P) ⇒ ∃ x 3 z = Px. Therefore, Pz = PPx = Px = z.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611



6 / 32

Result A.14:

AA− is a projection matrix that projects onto C(A).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

7 / 32

Proof of Result A.14:

(a) (AA− )(AA− ) = (AA− A)A− = AA− . Therefore, AA− is idempotent. (b) AA− x = Az ∀ x, where z = A− x. Thus AA− x ∈ C(A) ∀ x. (c) ∀ z ∈ C(A), ∃ y 3 z = Ay, ∴ AA− z = AA− Ay = Ay = z.

c Copyright 2012 Dan Nettleton (Iowa State University)



Statistics 611

8 / 32

Alternatively, we could have proved idempotency and then shown C(A) = C(AA− ) as below: Ax = (AA− A)x = (AA− )Ax ⇒ C(A) ⊆ C(AA− ). AA− x = A(A− x) ⇒ C(AA− ) ⊆ C(A). ∴ C(A) = C(AA− ).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

9 / 32

Result A.15:

I − A− A is a projection matrix that projects onto N (A).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

10 / 32

Proof of Result A.15:

(a) (I − A− A)(I − A− A) = I − A− A − A− A + A− AA− A = I − A− A − A− A + A− A = I − A− A.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

11 / 32

(b) Note that A(I − A− A)x = (A − AA− A)x

c Copyright 2012 Dan Nettleton (Iowa State University)

= (A − A)x = 0 ∀ x. ∴ (I − A− A)x ∈ N (A) ∀ x.

Statistics 611

12 / 32

(c) If z ∈ N (A), then (I − A− A)z = z − A− Az =z−0 = z. 

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

13 / 32

Prove that C(I − A− A) = N (A).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

14 / 32

Proof:

The result follows from Result A.15 and P.1. An alternative proof is as follows.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

15 / 32

Proof: Suppose z ∈ N (A). Then Az = 0 ⇒ A− Az = 0 ⇒ z − A− Az = z ⇒ (I − A− A)z = z ⇒ z ∈ C(I − A− A).

∴ N (A) ⊆ C(I − A− A).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

16 / 32

Suppose z ∈ C(I − A− A). Then ∃ x 3 z = (I − A− A)x. Thus Az = A(I − A− A)x = (A − AA− A)x = (A − A)x = 0. Thus, z ∈ N (A). It follows that C(I − A− A) ⊆ N (A). Hence, C(I − A− A) = N (A).

c Copyright 2012 Dan Nettleton (Iowa State University)



Statistics 611

17 / 32

Result A.16:

Any symmetric and idempotent matrix P is the unique symmetric projection matrix that projects onto C(P).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

18 / 32

Proof of Result A.16:

Suppose Q is a symmetric projection matrix that projects onto C(P). Then Pz = Qz = z ∀ z ∈ C(P) ⇒ PPx = QPx ∀ x ⇒ Px = QPx ∀ x ⇒ P = QP.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

19 / 32

Now Q is a projection matrix that projects on C(P), therefore, C(P) = C(Q). Thus Qz = Pz = z ∀ z ∈ C(Q) ⇒ QQx = PQx ∀ x ⇒ Qx = PQx ∀ x ⇒ Q = PQ.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

20 / 32

Now note that (P − Q)0 (P − Q) = P0 P − P0 Q − Q0 P + Q0 Q = PP − PQ − QP + QQ =P−Q−P+Q = 0. ∴ P − Q = 0 ⇒ P = Q.

c Copyright 2012 Dan Nettleton (Iowa State University)



Statistics 611

21 / 32

Any symmetric, idempotent matrix P is known as an orthogonal projection matrix because (Px) ⊥ (x − Px), i.e., (Px)0 (x − Px) = x0 Px − x0 P0 Px

c Copyright 2012 Dan Nettleton (Iowa State University)

= x0 Px − x0 PPx = x0 Px − x0 Px = 0.

Statistics 611

22 / 32

Corollary A.4:

If P is a symmetric projection matrix, then I − P is a symmetric projection matrix that projects onto C(P)⊥ = N (P).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

23 / 32

Proof of Corollary A.4:

First note that C(P)⊥ = N (P0 ) = N (P) by the symmetry of P. We need to show that properties (a-c) of a projection matrix hold for I − P onto N (P).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

24 / 32

(a) Is I − P idempotent? (I − P)(I − P) = I − P − P + PP

c Copyright 2012 Dan Nettleton (Iowa State University)

=I−P−P+P = I − P.

Statistics 611

25 / 32

(b) Is (I − P)x ∈ N (P) ∀ x? P(I − P)x = (P − PP)x = (P − P)x = 0. ∴ (I − P)x ∈ N (P) ∀ x.

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

26 / 32

(c) Does (I − P)z = z ∀ z ∈ N (P)? ∀ z ∈ N (P), (I − P)z = z − Pz =z−0 = z. Finally, we should note that (I − P)0 = I0 − P0 = I − P so that I − P is symmetric as claimed in statement of the result.

c Copyright 2012 Dan Nettleton (Iowa State University)



Statistics 611

27 / 32

Suppose A =

" # 1

.

1

Find the orthogonal projection matrix that projects onto C(A). Find the orthogonal projection matrix that projects onto N (A0 ).

Find the orthogonal projection of x =

" # 4 2

onto C(A) and onto

N (A0 ).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

28 / 32

Need to find a symmetric, idempotent matrix whose column space is C(A), where C(A) = {x ∈ R2 : x1 = x2 }. Thus, P must have the form

c Copyright 2012 Dan Nettleton (Iowa State University)

P=

" # a a

.

a a

Statistics 611

29 / 32

Because P must be idempotent, "

a a a a

This implies

2a2

#" # a a a a

" =

2a2 2a2 2a2 2a2

= a ⇒ a = 1/2. ∴ P =

c Copyright 2012 Dan Nettleton (Iowa State University)

#

" =

a a

# .

a a

" # 1/2 1/2

.

1/2 1/2

Statistics 611

30 / 32

We know " I−P=

1/2 −1/2 −1/2

#

1/2

is the orthogonal projection matrix that projects onto C(P)⊥ = C(A)⊥ = N (A0 ).

c Copyright 2012 Dan Nettleton (Iowa State University)

Statistics 611

31 / 32

P

" # 4 2

=

" # 3 3

, (I − P)

" # 4

" =

2

# 1 −1

.

C(A) (3,3) (4, 2)

(1,-1)

c Copyright 2012 Dan Nettleton (Iowa State University)

N(A')

Statistics 611

32 / 32