32 ( )

TEPZZ ¥76 4_B_T (19) (11) EP 2 376 241 B1 EUROPEAN PATENT SPECIFICATION (12) (45) Date of publication and mention (51) Int Cl.: B21B 3/00 (200...
10 downloads 0 Views 203KB Size
TEPZZ ¥76 4_B_T

(19)

(11)

EP 2 376 241 B1

EUROPEAN PATENT SPECIFICATION

(12)

(45) Date of publication and mention

(51) Int Cl.:

B21B 3/00 (2006.01) B21B 37/32 (2006.01)

of the grant of the patent: 29.10.2014 Bulletin 2014/44

B21B 27/10 (2006.01)

(86) International application number:

(21) Application number: 09801762.7

PCT/GB2009/051590

(22) Date of filing: 23.11.2009

(87) International publication number: WO 2010/070310 (24.06.2010 Gazette 2010/25)

(54) ROLLING MILL TEMPERATURE CONTROL WALZWERKTEMPERATURSTEUERUNG COMMANDE DE LA TEMPÉRATURE D’UN LAMINOIR (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 19.12.2008 GB 0823227 (43) Date of publication of application: 19.10.2011 Bulletin 2011/42

(73) Proprietor: SIEMENS PLC Camberley GU16 8QD (GB)

• McRAE, Alan Douglas Dorset BH22 9PW (GB) • SMITH, Peter Derrick Dorset BH14 0QF (GB)

(74) Representative: Payne, Janice Julia et al Siemens AG Postfach 22 16 34 80506 München (DE)

(56) References cited: DE-A1-102005 001 806 JP-A- 2001 096 301

JP-A- 60 238 012 US-A1- 2007 175 255

(72) Inventors:

EP 2 376 241 B1

• OSBORNE, Paul Ronald Dorset BH12 5EQ (GB)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR)

1

EP 2 376 241 B1

Description [0001] The invention relates to the field of aluminium strip or foil rolling mills and describes a new process which will improve the temperature control of the mill rolls, in order to improve strip flatness and give other safety and production benefits. [0002] An apparatus and a method in accordance with the preambles of claim 1 and claim 16 respectively is e. g. known from JP-A6023812. [0003] The process of rolling aluminium requires lubrication in order to gain a satisfactory surface finish of the strip at higher reductions. However, even with lubrication, the rolling process generates a large amount of heat, which must be dissipated to prevent equipment overheating and the breakdown of the lubricant. Therefore additional cooling of the rolls is required. At present this has only been achieved in two ways:

5

10

15

A small number of mills rolling cold aluminium strip or foil use water based emulsions as the rolling coolant and lubricant. This would seem to be an ideal solution as water has a high cooling capacity, whilst the oil content can be tuned to give good lubrication properties. However, unless the water is completely removed from the strip immediately after rolling, stains are created on the strip surface, spoiling its appearance. In practise, it has been very difficult to ensure completely dry strip unless the strip exit temperature from the mill is considerably greater than 100°C. This limits the practicality of rolling and hence just a few specialist mills rolling specific products use this method.

20

[0004] The vast majority of mills rolling cold aluminium strip or foil use kerosene as both rolling lubricant and coolant. Kerosene was found to have the best compromise between cooling and lubricating properties without having any strip marking issues. However, kerosene is not the best lubricant or coolant and has significant fire safety, environmental and health problems associated with it. [0005] In order to provide effective cooling with kerosene, flow rates of up to several thousand litres per minute may be required. Such volumes require expensive recirculation and filtration systems and will inevitably cause oil mist to form which requires expensive fume extraction and cleaning systems. The inventors have shown that for the purpose of lubrication alone, flow rates of less that 10litre/ minute can suffice. [0006] In both the above solutions, banks of spray nozzles apply the fluid directly to the rolls in order to effectively cool them, whilst further separately controlled spray nozzles direct fluid on to the rolls nearer to the roll nip in order to lubricate the rolling process. [0007] A further use for the cooling sprays is also known. One of the main challenges in the cold rolling of aluminium strip and foil is to ensure that the product is

35

25

30

40

45

50

55

2

2

flat after rolling. Bad flatness is caused by the strip being reduced in thickness by different amounts across the width of the mill. This is caused by variations in the gap between the rolls across the mill. By varying the cooling effect across the roll’s width, it is possible to impart different degrees of thermal expansion to different parts of the roll, thereby providing a mechanism to compensate for local variations in roll gap. [0008] A number of patents (e.g. GB2012198, EP41863) exist illustrating the technology for varying the cooling rate across the width of the roll and, with the use of a flatness measuring device on the exit side of the mill, directly controlling the flatness of the rolled strip. [0009] GB2156255 describes a process which employs separate lubrication and cooling (SLC). Banks of water jets are used to cool the rolls and effect shape control, whilst low quantities of more suitable lubricating oil are applied directly to the strip upstream of the mill. [0010] The effect known in the aluminium industry as "tight edge" is one of the main causes of strip breaks during rolling. GB2080719 describes partial roll heating using the so called "Tight Edge inductors" (TEls) - This technology uses the induction effect to locally heat up the mill rolls in the area of the strip edge in order prevent the under rolling of the strip edges. [0011] This technology has been used successfully on a number of mills, however, there are significant challenges with using electrical heating devices on a mill using kerosene coolant. [0012] In their paper "Thermal Shape Control in Cold Strip Rolling by Controlled Inductive Roll Heating", International Conference of Steel Rolling, Japan, 1980, Sparthmann & Pawelsky, describe experiments done using a combination of water cooling jets and induction heaters to effect flatness changes during the rolling of steel strip. [0013] Further developments in this field up to the present day have been limited to improvements in the control and resolution of the kerosene cooling effect. [0014] Meanwhile, in other fields some work had been done in using cryogenic gases or liquids as a coolant in industrial rolling processes. Various patents have been published on this topic including DE3150996, JP2001096301, WO02/087803, US6874344. [0015] However, all this prior work has concentrated on cooling the processed material for metallurgical and other effects. [0016] US 2007/0175255 discloses a method and apparatus for cold rolling of a metallic rolling stock in which a number of nozzles are used to apply various combinations of lubricant emulstion or base oil, coolant and inert gas are applied to the wedge and arc areas of upper and lower rolls, for the purpose of cleaning, cooling, lubrication and rendering inert. Flatness control of a thermal working roll barrel is alluded to, however, it is described as being achieved by using a combination of inert gas and conventional coolants, which in the field of aluminium rolling implies a high kerosene flow rate with all its asso-

3

EP 2 376 241 B1

ciated equipment and safety issues. [0017] JP60 238012 describes shape control of a rolling mill using induction heating or air cooling on the work rolls controlled by feedback from a shape controller. [0018] DE 10 2005 001806 describes a method of cold rolling in which surface temperature of one of the rolls is measured and a supply of cooling gas to the roll is controlled according to the measured temperature [0019] According to the invention, an apparatus of controlling the temperature of a roll during rolling of a metal strip or foil comprises the features set out in claim 1 attached hereto. [0020] According to a second aspect of the invention, a method for controlling the temperature of a roll during rolling of a metal strip or foil comprises the features set out in claim 16 attached hereto. [0021] In the context of this specification, the term cryogen refers to a substance which is normally gaseous at room temperature but which is maintained in liquid state by suitable control of temperature and pressure and which is used as a coolant. Related terms such as cryogenic should be construed accordingly. [0022] Cryogen includes, but is not limited to nitrogen, carbon dioxide, argon and oxygen. [0023] Embodiments of the invention offer a new improved cooling and flatness control technology to be conceived with the following features: •

Banks of cryogenic gas or liquid applicators apply cooling to either or both sides of the mill rolls



Additionally, one or more full width roll heating devices are used in conjunction with the roll coolant applicators.



The roll heating devices are split into a number of individually controllable zones across the width of the roll. The number of zones may or may not be the same as the number of cooling zones depending on process requirements.

4

with a double staged containment and ventilation system. The inner compartment containing the mill stand is kept at a positive pressure to ensure no ingress of water vapour into the chilled regions, whilst the outer regions are kept at a negative pressure compared to the main plant in order to prevent oxygen depletion in personnel access areas.

5

• 10

Separate rolling lubricant is applied to the strip prior to rolling. This is applied in a very thin even layer using a process such as electrostatic deposition.

[0024] This system offers numerous and large benefits over the prior art: 15



The complete replacement of kerosene as a roll coolant with a cryogenically cooled inert liquid or gas completely removes the risk of fires on the mill. At once removing a large safety, and production loss risk, whilst removing the need to install expensive fire prevention equipment.



Reduced environmental impact of the aluminium rolling process. Release of hydrocarbons into the atmosphere is reduced to zero once kerosene is removed from the process.



Introduction of full width zoned roll cooling and heating enables the flatness control system to react quicker to process changes than a cooling only system. It also enables easy roll temperature management situations such as width changes or cold starts where all or part of the roll needs to be heated and other parts need to be cooled.



The outer zones of the heating devices will also provide effective reduction of the "tight edge" flatness defect



Application of very small amounts of alternative rolling oil directly to the strip prior to rolling will lead to the following benefits over existing systems:

20

25

30

35







A flatness control system in conjunction with a flatness measuring device mounted on the exit side of the mill varies the amount of cooling or heating applied to each zone of roll width in order to produce flat strip. In its simplest form, the flatness control system is realised by a human operator who varies the amount of heating and, or cooling responsive to data provided by the flatness measuring device. In a more sophisticated embodiment, an electronic controller is provided and arranged to vary the heating and, or cooling responsive to such data. Insulated and protected cryogenic feed lines connect the storage tanks to the application headers

40

45

o Optimisation of oil properties for lubrication of rolling only, allowing larger reductions to be taken for a given set of mill parameters compared to kerosene rolling - this leads to higher production

50

o Reduced incidences of coil staining during annealing caused by excess lubricant left on the strip after rolling - this leads to higher product yield

55

o Reduced incidences of coil staining due to contamination of coolant by oil leaks - this leads to higher product yield

In order to prevent condensation of water vapour due to cold temperatures the mill stand may be provided

3

5

EP 2 376 241 B1

o Reduced time for coil annealing due to reduced requirement to evaporate excess kerosene •

Additionally, the replacement of kerosene with a cryogenic coolant removes the requirement for the following pieces of equipment and their associated operating costs:

5

o Kerosene storage tanks and circulation systems

10

o Kerosene fume treatment plant o Kerosene filtration plant

15

o Mill exit strip blow off equipment •





Removal of the kerosene filtration plant removes the requirement for the use and subsequent costly disposal of hazardous filtration media, leading to a safety and cost benefit. Mill civil works are substantially simplified as the need for specially protected oil flumes and storage cellars are removed. Space requirements for mill as a whole are reduced with the removal of the large kerosene handling systems.

20

25

30

[0025] The invention will now be described, by nonlimiting example, with reference to figures 1, 2, & 3 in which: 35

figure 1 shows a perspective sketch of a rolling mill according to the invention; figure 2 is a detail view showing an additional preferred feature of the invention and figure 3 is a schematic illustration of the invention illustrating a further preferred feature of the invention. [0026] Figure 1 shows a schematic diagram of a rolling mill stand 1 according to the invention with aluminium strip or foil 2 passing through the stand from left to right as arrowed. The mill work rolls 3 and back up rolls 4 are loaded and rotated in order to perform the reduction in thickness of the metal as is widely known in the art. Before entering the area shown in the diagram, the metal to be rolled 2 has a suitable rolling lubricant applied to it in a very thin uniform layer. By the present invention, a lubricant flow rate of less than 10l/minute is typically sufficient. [0027] The local temperature (and therefore diameter) of the work rolls 3 is controlled during the rolling process as follows:

40

45

50

55

A cryogenic storage and delivery system 5 supplies

4

6

cryogenic coolant to coolant applicators 7 via insulated and protected feed pipes 6. In this embodiment, the cryogenic coolant applicators 7 are located on the exit side of the mill, however, they could be located anywhere around the work roll 3 diameter as dictated by mill size, available space and cooling effect required. [0028] The cryogenic coolant applicators 7 are divided into individually controllable zones in order to apply different cooling effects across the width of the rolls as required by the strip flatness control system. [0029] In addition to the cryogenic coolant applicators 7, full width heating devices 8 are shown on the entry side of the mill. These heating devices 8 may be located anywhere around the work roll periphery as dictated by the mill size, available space and heating effect required. [0030] The heating devices 8 are divided into individually controllable zones in order to apply varying heating effects across the width of the rolls as required by the strip flatness control system. [0031] A flatness measuring device 9, known as a "shape meter" in the art, is used to provide feedback signals relating to the flatness of the strip produced by the mill. These signals are used by the flatness control system. Any signal indicative of the flatness of the strip can serve as a feedback upon which the control system bases adjustments of the heating devices and, or cryogenic applicators. For example, since flatness of the strip is a function of the profile of the roll, using the shape meter to measure the latter provides a signal indicative of the strip flatness, albeit indirectly (the term "profile of the roll" is intended to mean uniformity of roll diameter across its width). However, in the preferred embodiment illustrated, the shape meter 9 is used to measure strip flatness directly. [0032] An electronic computer based flatness control system (not illustrated) is used to ensure the metal processed is as flat as possible. The electronic control system uses the feed back signals from the shape meter plus the other rolling parameters as inputs to a computer based flatness model. The model then calculates the correct actions to be taken to ensure flat strip. These actions are transmitted as electronic signals to the cryogenic coolant applicators, full width heating devices, and the conventional mechanical flatness actuators provided as part of the rolling mill stand (for example, roll bending cylinders). [0033] Flatness control systems for use in conjunction with kerosene based cooling are known in the art and, in light of this knowledge, a skilled person is well able to provide a system suitable for use with a cryogenic coolant. [0034] The unique full width dual cooling and heating system enables greater flexibility of control and faster temperature change response times. [0035] Referring to figure 2, the inventors have found that for the purpose of flatness control, application of cool-

7

EP 2 376 241 B1

ant to the ’wedge’ area 10 of the roll is undesireable for at least two reasons, namely: 1) this gives rise to an ill defined and uneven spray area which makes flatness control more difficult and

5

2) some of the coolant inevitably contacts the strip itself and uncontrolled cooling of the strip on either side of the roll can give rise to flatness errors. 10

[0036] For these reasons, according to a preferred embodiment of the invention, the cryogenic coolant is directed to the ’arc’ area 11 of the roll and a barrier 12 is included to prevent coolant reaching the wedge area and the strip. [0037] Barrier 12 is illustrated schematically in figure 3. In practice, the barrier 12 could be realised as (for example) a gas curtain, a solid barrier or a combination of both. [0038] In order to realise the effectiveness of the above system, it is preferrable that the cryogenic equipment used does not cause water to condense on the mill equipment and drip on to the strip. Figure 3 shows the preferred method of excluding water vapour from the mill stand area and hence preventing any condensation. [0039] The mill stand equipment 13 is surrounded by an inner chamber 14. The chamber is created by sheet material 15 and will include closable access points and removable sections as required to allow maintenance access to the mill stand equipment 13. The metal to be processed 16 by the mill will pass through openings on either side of the inner chamber 14. The inner chamber 14 is not a sealed unit, but the sheet material 15 reduces the remaining openings 17 to a size where the pressure within the chamber can be controlled. [0040] Before the start of rolling (for example after a maintenance activity) a suitable amount of dry gas is introduced into the inner chamber in order to force out any water vapour that may be present before the cryogenic coolant applicators 19 are activated. The dry gas is introduced at one or more points 18 within the inner chamber 14. [0041] One or more gas extraction points 20 are provided for the inner chamber. These extraction points are connected to a separate gas extraction system as is well known in the art. A valve or damper 21 is present at each extraction point 20 to control the amount of extraction which occurs. [0042] During rolling, the cryogenic coolant used to cool the mill rolls produces a pressure of dry gas within the inner chamber 14. The dry gas feed points 18 or the dampers 21 as appropriate are used to ensure that a small positive pressure of dry gas is maintained within the inner chamber 14. This control may be affected manually or automatically using a suitable pressure sensor. The small positive pressure will prevent any ingress of water vapour but will also cause an amount of dry gas to constantly escape from the inner chamber through the

15

20

8

gaps represented by 17. [0043] In order to prevent a build up of gas reducing oxygen levels in operator access areas around the mill stand, an outer chamber 22 surrounds the inner chamber. The outer chamber is of similar sheet material construction as the inner chamber. Similarly, to the inner chamber, the outer chamber is not fully sealed, but openings are reduced in size sufficiently for some pressure control to be possible. [0044] Extraction points 23 connected to the same gas extraction system as the inner chamber are provided. Valves or dampers 24 control the extraction rate to ensure that the outer chamber is always held at a negative pressure compared to the operator areas and hence ambient air will be sucked in through the openings 25 in the outer chamber 22. By this method, minimal gas is emitted from the outer chamber, ensuring the safety of the mill operators. [0045] The correct functioning of the extraction system is verified by appropriately positioned oxygen depletion detectors 26.

Claims 25

1.

a pair of working rolls (3) arranged to receive the strip (2) in a nip region therebetween; a plurality of fluid applicators (7) arranged to direct a fluid to one or more of a plurality of zones on the surface of at least one of the rolls; and, means for heating one or more of the plurality of zones on the surface of the roll via one or more heating devices (8); characterized in that: the fluid applicators comprise cryogenic fluid applicators; the fluid comprises cryogenic fluid; the plurality of cryogenic fluid applicators (7) are arranged to direct the cryogenic fluid to one or more of a plurality of zones in the arc region (11) of at least one of the rolls (3); and the apparatus further comprises at least one barrier (12) arranged to prevent intrusion by the cryogenic fluid to the wedge region (10) of the roll and, or the strip.

30

35

40

45

2.

Apparatus according to claim 1, further comprising a flatness measuring device (9) arranged to provide a signal indicative of flatness of the metal strip (2) after it passes from the roll (3).

3.

Apparatus according to claim 2, further comprising means for varying the application of heat and, or cryogenic fluid to the one or more zones, responsive to said signal.

4.

Apparatus according to claim 3, comprising a processor arranged to receive data from the flatness

50

55

5

Apparatus for rolling a metal foil or strip comprising:

9

EP 2 376 241 B1

measuring device (9) and to control the heating devices (8) and, or the cryogenic fluid applicators (7) responsive to the data, thereby varying the application of heat and, or cryogenic fluid to the one or more zones.

5

5.

Apparatus according to any of claims 1 to 3, wherein the flatness measuring device (9) is arranged to measure the profile of the roll (3).

6.

Apparatus according to any of claims 1 to 3, wherein the flatness measuring device (9) is arranged directly to measure the flatness of the metal strip (2).

7.

Apparatus according to any of claims 1 to 6, further comprising a lubricant supply and means for directing the lubricant to the strip (2), upstream of the rolls (3).

15

8.

Apparatus according to claim 7, where lubricant supply is arranged to direct lubricant at less that 10litre/minute.

20

9.

Apparatus according to any preceding claim, where the barrier (12) comprisies a solid barrier.

10

an inner compartment (14) enclosing the rolls (3); an outer compartment (22) enclosing the inner compartment; means (18, 21) for maintaining the inner compartment at a positive pressure relative to ambient pressure and means (23, 24) for maintaining the outer compartment at a negative pressure relative to ambient pressure. 12. Apparatus according to claim 11, further comprising dry gas injection means (18).

17. A method according to claim 16, further comprising the steps of:

25

30

18. A method according to claim 17, wherein application of cryogenic fluid and, or heat to the one or more zones is manually varied by a human operator, responsive to said data.

35

40

45

19. A method according to claim 17, wherein application of cryogenic fluid and, or heat to the one or more zones is varied by a processor, arranged to receive data from the flatness measuring device (9) and control the one or more cryogenic fluid applicators (7) and, or the one or more heating devices (8). 20. A method according to claims 16 to 19, where the flatness measuring device (9) is arranged to measure the profile of the roll (3). 21. A method according to claims 16 to 19, where the flatness measuring device (9) is arranged directly to measure the flatness of the strip (2). 22. A method according to any of claims 16 to 21, further comprising applying a lubricant to the strip (2), upstream of the roll (3).

13. Apparatus according to claim 12, further comprising gas extraction means (23). 14. Apparatus according to any of claims 1 to 13 wherein the cryogenic fluid comprises nitrogen.

the surface of one or more rolls via one or more fluid applicators (7), the plurality of zones being evenly distributed across the width of the roll and heating one or more of the plurality of zones on the surface of the roll via one or more heating devices(8), thereby controlling the radial size of the roll across the roll’s width; characterized in that: the fluid applicators direct a cryogenic fluid; the cryogenic fluid is directed to the arc region (11) of at least one roll, and the method further characterized in that it comprises the step of providing a barrier (12) to cryogenic fluid intruding on the wedge region (10) and, or the strip (2).

arranging a flatness measuring device (9) to provide a signal indicative of flatness of the metal strip (2) after it passes from the roll (3); receiving data from the flatness measuring device and varying the application of cryogenic fluid and, or heat to the one or more zones, responsive to said data.

10. Apparatus according to any of claims 1 to 8, where the barrier (12) comprises a gas curtain. 11. Apparatus according to any of claims 1 to 8, further comprising:

10

50

23. A method according to claim 22, where the lubricant is applied at a rate of less than 10litre/minute.

15. Apparatus according to any of claims 1 to 13, wherein the cryogenic fluid comprises carbon dioxide. 55

16. A method of controlling the shape of a metal strip (2) or foil during rolling, said method comprising directing a fluid to one or more of a plurality of zones on

24. A method according to any of claims 16 to 23, where the barrier (12) is a solid barrier. 25. A method according to any of claims 16 to 23, where the barrier (12) is a gas curtain.

6

11

EP 2 376 241 B1

26. A method according to claims 16 to 25, further comprising the steps of: enclosing the rolls in an inner compartment (14); enclosing the inner compartment in an outer compartment (22); maintaining a positive pressure in the inner compartment, relative to ambient pressure; and, maintaining a negative pressure in the outer compartment, relative to ambient pressure.

10

27. A method according to claim 26, where the pressure of the inner compartment (14) is controlled by dry gas injection means (18) and, or gas extraction means (23).

15

12 die Fluidapplikatoren Applikatoren für kryogenes Fluid umfassen; das Fluid kryogenes Fluid umfasst; die Vielzahl von Applikatoren für kryogenes Fluid (7) dafür eingerichtet ist, das kryogene Fluid zu einer oder mehreren von einer Vielzahl von Zonen in dem Bogenbereich (11) wenigstens einer der Walzen (3) zu lenken; und die Vorrichtung ferner wenigstens eine Barriere (12) umfasst, die dafür eingerichtet ist, ein Eindringen des kryogenen Fluids in den Keilbereich (10) der Walze und/oder des Bandes zu verhindern.

5

2.

Vorrichtung nach Anspruch 1, welche ferner eine Planheitsmessvorrichtung (9) umfasst, die dafür eingerichtet ist, ein Signal zu liefern, das hinsichtlich der Planheit des Metallbandes (2), nachdem es die Walze (3) passiert hat, indikativ ist.

3.

Vorrichtung nach Anspruch 2, welche ferner Mittel zum Variieren der Zufuhr von Wärme und/oder kryogenem Fluid zu der einen oder den mehreren Zonen in Reaktion auf das Signal umfasst.

4.

Vorrichtung nach Anspruch 3, welche einen Prozessor umfasst, der dafür eingerichtet ist, Daten von der Planheitsmessvorrichtung (9) zu empfangen und die Heizvorrichtungen (8) und/oder die Applikatoren für kryogenes Fluid (7) in Reaktion auf die Daten zu steuern und dadurch die Zufuhr von Wärme und/oder kryogenem Fluid zu der einen oder den mehreren Zonen zu variieren.

5.

Vorrichtung nach einem der Ansprüche 1 bis 3, wobei die Planheitsmessvorrichtung (9) dafür eingerichtet ist, das Profil der Walze (3) zu messen.

6.

Vorrichtung nach einem der Ansprüche 1 bis 3, wobei die Planheitsmessvorrichtung (9) dafür eingerichtet ist, die Planheit des Metallbandes (2) direkt zu messen.

7.

Vorrichtung nach einem der Ansprüche 1 bis 6, welche ferner eine Schmiermittelzufuhr und Mittel zum Lenken des Schmiermittels zu dem Band (2) stromaufwärts der Walzen (3) umfasst.

8.

Vorrichtung nach Anspruch 7, wobei die Schmiermittelzufuhr dafür eingerichtet ist, Schmiermittel mit weniger als 10 Litern/Minute zuzuführen.

9.

Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Barriere (12) eine massive Barriere umfasst.

28. A method according to claim 27, where the pressure of the outer compartment (22) is controlled by gas extraction means (23). 20

29. A method according to claims 27 or 28, where the control of said compartment pressures is controlled manually as an open loop system. 30. A method according to claims 27 or 28, where the control of said compartment pressures is controlled automatically using pressure sensing means in conjunction with a computer control system.

25

31. A method according to any of claims 16 to 30, wherein the cryogenic fluid directed to one or more of a plurality of zones on the surface of one or more rolls (3) comprises nitrogen.

30

32. A method according to any of claims 16 to 30, wherein the cryogenic fluid directed to one or more of a plurality of zones on the surface of one or more rolls (3) comprises carbon dioxide.

35

40

Patentansprüche 1.

Vorrichtung zum Walzen einer Metallfolie oder eines Metallbandes, welche umfasst: 45

ein Paar Arbeitswalzen (3), die dafür eingerichtet sind, das Band (2) in einem Walzspaltbereich zwischen sich aufzunehmen; eine Vielzahl von Fluidapplikatoren (7), die dafür eingerichtet sind, ein Fluid zu einer oder mehreren von einer Vielzahl von Zonen auf der Oberfläche wenigstens einer der Walzen zu lenken; und Mittel zum Erwärmen einer oder mehrerer der Vielzahl von Zonen auf der Oberfläche der Walze durch eine oder mehrere Heizvorrichtungen (8); dadurch gekennzeichnet, dass:

50

55

10. Vorrichtung nach einem der Ansprüche 1 bis 8, wobei die Barriere (12) einen Gasvorhang umfasst.

7

13

EP 2 376 241 B1

11. Vorrichtung nach einem der Ansprüche 1 bis 8, welche ferner umfasst: eine innere Kammer (14), welche die Walzen (3) umschließt; eine äußere Kammer (22), welche die innere Kammer umschließt; Mittel (18, 21) zum Aufrechterhalten eines Überdrucks zum Umgebungsdruck in der inneren Kammer; und Mittel (23, 24) zum Aufrechterhalten eines Unterdrucks zum Umgebungsdruck in der äußeren Kammer. 12. Vorrichtung nach Anspruch 11, welche ferner Trockengas-Einspritzmittel (18) umfasst.

ogenem Fluid zu der einen oder den mehreren Zonen in Reaktion auf die Daten.

5

10

15

13. Vorrichtung nach Anspruch 12, welche ferner Gasabsaugmittel (23) umfasst. 20

14. Vorrichtung nach einem der Ansprüche 1 bis 13, wobei das kryogene Fluid Stickstoff umfasst. 15. Vorrichtung nach einem der Ansprüche 1 bis 13, wobei das kryogene Fluid Kohlendioxid umfasst. 16. Verfahren zum Steuern der Form eines Metallbandes (2) oder einer Metallfolie während des Walzens, wobei das Verfahren das Lenken eines Fluids zu einer oder mehreren von einer Vielzahl von Zonen auf der Oberfläche einer oder mehrerer Walzen durch einen oder mehrere Fluidapplikatoren (7), wobei die Vielzahl von Zonen gleichmäßig über die Breite der Walze verteilt ist, und das Erwärmen einer oder mehrerer der Vielzahl von Zonen auf der Oberfläche der Walze durch eine oder mehrere Heizvorrichtungen (8), wodurch die radiale Größe der Walze über die Breite der Walze gesteuert wird, umfasst; dadurch gekennzeichnet, dass: die Fluidapplikatoren ein kryogenes Fluid zuführen; das kryogene Fluid zu dem Bogenbereich (11) wenigstens einer Walze gelenkt wird; und Verfahren, das ferner dadurch gekennzeichnet ist, dass es den Schritt des Vorsehens einer Barriere (12) gegen das Eindringen von kryogenem Fluid in den Keilbereich (10) und/oder zu dem Band (2) umfasst.

18. Verfahren nach Anspruch 17, wobei die Zufuhr von kryogenem Fluid und/oder Wärme zu der einen oder den mehreren Zonen durch eine Bedienperson in Reaktion auf die Daten manuell variiert wird. 19. Verfahren nach Anspruch 17, wobei die Zufuhr von kryogenem Fluid und/oder Wärme zu der einen oder den mehreren Zonen durch einen Prozessor variiert wird, der dafür eingerichtet ist, Daten von der Planheitsmessvorrichtung (9) zu empfangen und den einen oder die mehreren Applikatoren für kryogenes Fluid (7) und/oder die eine oder die mehreren Heizvorrichtungen (8) zu steuern. 20. Verfahren nach den Ansprüchen 16 bis 19, wobei die Planheitsmessvorrichtung (9) dafür eingerichtet ist, das Profil der Walze (3) zu messen. 21. Verfahren nach den Ansprüchen 16 bis 19, wobei die Planheitsmessvorrichtung (9) dafür eingerichtet ist, die Planheit des Bandes (2) direkt zu messen.

25

22. Verfahren nach einem der Ansprüche 16 bis 21, welches ferner das Aufbringen eines Schmiermittels auf das Band (2) stromaufwärts der Walze (3) umfasst. 30

35

23. Verfahren nach Anspruch 22, wobei das Schmiermittel mit einer Durchflussmenge von weniger als 10 Litern/Minute aufgebracht wird. 24. Verfahren nach einem der Ansprüche 16 bis 23, wobei die Barriere (12) eine massive Barriere ist. 25. Verfahren nach einem der Ansprüche 16 bis 23, wobei die Barriere (12) ein Gasvorhang ist.

40

26. Verfahren nach den Ansprüchen 16 bis 25, welches ferner die folgenden Schritte umfasst:

50

Umschließen der Walzen in einer inneren Kammer (14); Umschließen der inneren Kammer in einer äußeren Kammer (22) ; Aufrechterhalten eines Überdrucks zum Umgebungsdruck in der inneren Kammer; und Aufrechterhalten eines Unterdrucks zum Umgebungsdruck in der äußeren Kammer.

55

27. Verfahren nach Anspruch 26, wobei der Druck der inneren Kammer (14) durch Trockengas-Einspritzmittel (18) und/oder Gasabsaugmittel (23) gesteuert wird.

45

17. Verfahren nach Anspruch 16, welches ferner die folgenden Schritte umfasst: Anordnen einer Planheitsmessvorrichtung (9), um ein Signal zu liefern, das hinsichtlich der Planheit des Metallbandes (2), nachdem es die Walze (3) passiert hat, indikativ ist; Empfangen von Daten von der Planheitsmessvorrichtung; und Variieren der Zufuhr von Wärme und/oder kry-

14

28. Verfahren nach Anspruch 27, wobei der Druck der äußeren Kammer (22) durch Gasabsaugmittel (23)

8

15

EP 2 376 241 B1

ailleurs un dispositif (9) de mesure de planéité agencé pour fournir un signal indicatif de la planéité de la bande (2) de métal après qu’elle soit sortie du cylindre (3).

gesteuert wird. 29. Verfahren nach den Ansprüchen 27 oder 28, wobei die Steuerung der Drücke der Kammern manuell als ein System mit offener Schleife erfolgt. 30. Verfahren nach den Ansprüchen 27 oder 28, wobei die Steuerung der Drücke der Kammern automatisch unter Verwendung von Druckerfassungsmitteln in Verbindung mit einem Computersteuerungssystem erfolgt. 31. Verfahren nach einem der Ansprüche 16 bis 30, wobei das kryogene Fluid, das zu einer oder mehreren von einer Vielzahl von Zonen auf der Oberfläche einer oder mehrerer Walzen (3) gelenkt wird, Stickstoff umfasst. 32. Verfahren nach einem der Ansprüche 16 bis 30, wobei das kryogene Fluid, das zu einer oder mehreren von einer Vielzahl von Zonen auf der Oberfläche einer oder mehrerer Walzen (3) gelenkt wird, Kohlendioxid umfasst.

5

3.

Appareil selon la revendication 2, comprenant par ailleurs des moyens pour varier l’application de chaleur et/ou de fluide cryogénique sur la ou les plusieurs zones, en réaction audit signal.

4.

Appareil selon la revendication 3, comprenant un processeur agencé pour recevoir des données du dispositif (9) de mesure de planéité et pour réguler les dispositifs de chauffage (8) et/ou les applicateurs (7) de fluide cryogénique en réaction aux données, ce qui fait varier l’application de chaleur et/ou de fluide cryogénique sur la ou les plusieurs zones.

5.

Appareil selon l’une quelconque des revendications 1 à 3, dans lequel le dispositif (9) de mesure de planéité est agencé pour mesurer le profil du cylindre (3).

6.

Appareil selon l’une quelconque des revendications 1 à 3, dans lequel le dispositif (9) de mesure de planéité est agencé pour mesurer directement la planéité de la bande (2) de métal.

7.

Appareil selon l’une quelconque des revendications 1 à 6, comprenant par ailleurs une alimentation en lubrifiant et des moyens pour diriger le lubrifiant sur la bande (2), en amont des cylindres (3).

8.

Appareil selon la revendication 7, dans lequel l’alimentation en lubrifiant est agencée pour débiter le lubrifiant à moins de 10 litres/minute.

9.

Appareil selon l’une quelconque des revendications précédentes, dans lequel la barrière (12) consiste en une barrière solide.

10

15

20

25

Revendications 1.

Appareil pour laminer une feuille ou une bande de métal, comprenant : 30

une paire de cylindres de travail (3) agencés pour recevoir la bande (2) dans une zone de pression entre eux ; une pluralité d’applicateurs (7) de fluide agencés pour diriger un fluide sur l’une ou plusieurs des zones d’une pluralité de zones de la surface d’au moins l’un des cylindres, et des moyens pour chauffer une ou plusieurs des zones de la pluralité de zones de la surface du cylindre au moyen d’un ou de plusieurs dispositifs de chauffage (8), caractérisé en ce que : les applicateurs de fluide consistent en applicateurs de fluide cryogénique, en ce que le fluide consiste en fluide cryogénique, en ce que la pluralité d’applicateurs (7) de fluide cryogénique est agencée pour diriger le fluide cryogénique sur l’une ou plusieurs des zones d’une pluralité de zones dans la zone formant arc (11) d’au moins l’un des cylindres (3) et en ce que l’appareil comprend par ailleurs au moins une barrière (12) agencée pour empêcher l’infiltration du fluide cryogénique sur la zone formant coin (10) du cylindre et/ou sur la bande. 2.

16

35

40

10. Appareil selon l’une quelconque des revendications 1 à 8, dans lequel la barrière (12) consiste en un rideau de gaz. 45

11. Appareil selon l’une quelconque des revendications 1 à 8, comprenant par ailleurs :

50

55

Appareil selon la revendication 1, comprenant par

9

un compartiment interne (14) renfermant les cylindres (3) ; un compartiment externe (22) renfermant le compartiment interne ; des moyens (18, 21) pour maintenir le compartiment interne à une pression positive par rapport à la pression ambiante, et des moyens (23, 24) pour maintenir le compartiment externe à une pression négative par rapport à la pression ambiante.

17

EP 2 376 241 B1

12. Appareil selon la revendication 11, comprenant par ailleurs des moyens (18) d’injection de gaz sec. 13. Appareil selon la revendication 12, comprenant par ailleurs des moyens (23) d’extraction de gaz.

génique et/ou le ou les plusieurs dispositifs de chauffage (8) varie l’application de fluide cryogénique et/ou de chaleur sur la ou les plusieurs zones. 5

14. Appareil selon l’une quelconque des revendications 1 à 13, dans lequel le fluide cryogénique consiste en azote. 10

15. Appareil selon l’une quelconque des revendications 1 à 13, dans lequel le fluide cryogénique consiste en dioxyde de carbone. 16. Procédé de régulation de la forme d’une bande (2) ou d’une feuille de métal pendant le laminage, ledit procédé consistant à diriger un fluide sur l’une ou plusieurs zones d’une pluralité de zones de la surface d’un ou de plusieurs cylindres au moyen d’un ou de plusieurs applicateurs (7) de fluide, la pluralité de zones étant uniformément distribuées sur toute la largeur du cylindre et à chauffer l’une ou plusieurs zones de la pluralité de zones de la surface du cylindre au moyen d’un ou de plusieurs dispositifs de chauffage (8), ce qui régule la dimension radiale du cylindre sur toute la largeur du cylindre, caractérisé en ce que les applicateurs de fluide dirigent un fluide cryogénique, en ce que le fluide cryogénique est dirigé sur la zone formant arc (11) d’au moins un cylindre, et le procédé étant par ailleurs caractérisé en ce qu’il comprend l’étape consistant à réaliser une barrière (12) contre l’infiltration de fluide cryogénique sur la zone formant coin (10) et/ou sur la bande (2).

15

20

20. Procédé selon les revendications 16 à 19, dans lequel le dispositif (9) de mesure de planéité est agencé pour mesurer le profil du cylindre (3). 21. Procédé selon l’une quelconque des revendications 16 à 19, dans lequel le dispositif (9) de mesure de planéité est agencé pour mesurer directement la planéité de la bande (2). 22. Procédé selon l’une quelconque des revendications 16 à 21, consistant par ailleurs à appliquer un lubrifiant sur la bande (2), en amont du cylindre (3). 23. Procédé selon la revendication 22, dans lequel le lubrifiant est appliqué à un débit inférieur à 10 litres/minute. 24. Procédé selon l’une quelconque des revendications 16 à 23, dans lequel la barrière (12) est une barrière solide.

25

25. Procédé selon l’une quelconque des revendications 16 à 23, dans lequel la barrière (12) est un rideau de gaz. 30

35

17. Procédé selon la revendication 16, comprenant par ailleurs les étapes consistant : à agencer un dispositif (9) de mesure de planéité pour fournir un signal indicatif de planéité de la bande (2) de métal après qu’elle est sortie du cylindre (3) ; à recevoir des données du dispositif de mesure de la planéité, et à varier l’application de fluide cryogénique et/ou de chaleur sur la ou les plusieurs zones, en réaction auxdites données.

18

40

45

18. Procédé selon la revendication 17, dans lequel un opérateur humain varie manuellement l’application de fluide cryogénique et/ou de chaleur sur la ou les plusieurs zones, en réaction auxdites données.

50

19. Procédé selon la revendication 17, dans lequel un processeur agencé pour recevoir des données du dispositif (9) de mesure de planéité et pour commander le ou les plusieurs applicateurs (7) de fluide cryo-

55

26. Procédé selon les revendications 16 à 25, comprenant par ailleurs les étapes consistant : à renfermer les cylindres dans un compartiment interne (14) ; à renfermer le compartiment interne dans un compartiment externe (22) ; à maintenir une pression positive dans le compartiment interne, par rapport à la pression ambiante, et à maintenir une pression négative dans le compartiment externe, par rapport à la pression ambiante. 27. Procédé selon la revendication 26, dans lequel la pression du compartiment interne (14) est régulée par des moyens (18) d’injection de gaz sec et/ou par des moyens (23) d’extraction de gaz. 28. Procédé selon la revendication 27, dans lequel la pression du compartiment externe (22) est régulée par des moyens (23) d’extraction de gaz. 29. Procédé selon les revendications 27 ou 28, dans lequel la régulation desdites pressions de compartiment est commandée manuellement sous la forme d’un système en boucle ouverte. 30. Procédé selon les revendications 27 ou 28, dans le-

10

19

EP 2 376 241 B1

quel la régulation desdites pressions de compartiment est commandée automatiquement par des moyens de détection de pression conjugués à un système de commande par ordinateur. 5

31. Procédé selon l’une quelconque des revendications 16 à 30, dans lequel le fluide cryogénique dirigé sur l’une ou plusieurs des zones d’une pluralité de zones de la surface d’un ou de plusieurs cylindres (3) consiste en azote. 32. Procédé selon l’une quelconque des revendications 16 à 30, dans lequel le fluide cryogénique dirigé sur l’une ou plusieurs des zones d’une pluralité de zones de la surface d’un ou de plusieurs cylindres (3) consiste en dioxyde de carbone.

10

15

20

25

30

35

40

45

50

55

11

20

EP 2 376 241 B1

12

EP 2 376 241 B1

13

EP 2 376 241 B1

14

EP 2 376 241 B1 REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description • • • • • •

• • • • • •

JP 023812 A [0002] GB 2012198 A [0008] EP 41863 A [0008] GB 2156255 A [0009] GB 2080719 A [0010] DE 3150996 [0014]

Non-patent literature cited in the description •

SPARTHMANN ; PAWELSKY. Thermal Shape Control in Cold Strip Rolling by Controlled Inductive Roll Heating. International Conference of Steel Rolling, 1980 [0012]

15

JP 2001096301 B [0014] WO 02087803 A [0014] US 6874344 B [0014] US 20070175255 A [0016] JP 60238012 A [0017] DE 102005001806 [0018]