WINERY WASTEWATER TREATMENT & REUSE: Membrane Bioreactor Technology

WINERY WASTEWATER TREATMENT & REUSE: Membrane Bioreactor Technology By: Anu Shah, P.E. SUMMIT ENGINEERING, INC. 463 AVIATION BLVD. STE 200 SANTA ROSA...
Author: Felix Anthony
0 downloads 0 Views 2MB Size
WINERY WASTEWATER TREATMENT & REUSE: Membrane Bioreactor Technology

By: Anu Shah, P.E. SUMMIT ENGINEERING, INC. 463 AVIATION BLVD. STE 200 SANTA ROSA, CA 95403 707.636.9157 [email protected] www.summit-sr.com

Membrane Bioreactor • Membrane bioreactor (MBR) – High-rate activated sludge process – Microfiltration replaces clarifier – Compact treatment unit – High effluent quality allows recycling • 0.1 micron pore size, polyvinylidene fluoride (PVDF) membranes

Membrane Bioreactor Schematic Aeration Zone Excess Sludge Membrane Module

Raw PW

Effluent to storage/reuse

2 mm Screening

EQ Zone

Diffusers Anoxic Zone Blower

Membrane Filtration Spectrum

Membrane Bioreactor • Typical flow rate: 5,000 to 20,000 gpd • Optimal winery size: 50,000 to 250,000 cases • 10,000 gpd unit: 60’ L x 12’ W x 11.5’ High reactor, -

roughly 1/10th of a pond area.

-

energy: 30 HP

• Modularity

Flat Plate Membrane • 0.08 micron pore size, polyvinylidene fluoride (PVDF) membranes • Design Flux: 15 gpd/sf • TMP: 1.03 – 2.90 PSI • Cleaning: In-place, semi-annual, 4 hours, Hypochlorite followed by Citric acid • Filtration via static water pressure • Membranes relaxed every few minutes

Hollow Fiber Membrane •

0.1 micron pore size,

Polyvinylidene fluoride (PVDF) membranes Design Flux: 5 gpd/sf TMP: 1.0 – 5.5 PSI Cleaning: In-place, Hypochlorite 90 days, semi-annual Citric Acid • Filtration via pump pulling suction pressure • Relaxation every 12 minutes for 60 sec • • • •

Membrane Bioreactor Process Parameters • Flow – readout • Dissolved Oxygen – readout • pH - readout • Transmembrane Pressure - readout • Effluent Quality – BOD, TSS, N, P – wet chemistry

Membrane Bioreactor Costs • Reactor cost $ 300,000 to $ 600,000 • Overall installed cost $ 1 to 1.8 million dollars • Membrane replacement every 5 years - $ 50,000 • Energy costs 10 to 25 % more than a comparable pond

Organics, Inorganics and Total Suspended Solids (TSS) 10000 8000 6000 Organics Inorganics TSS

4000 2000 0 Source Process Treated Water WW Effluent

Pollution Level Characteristic

Units

Crushing Season Range

mg/L

500 – 12,000

2 - 10

--

2.5 - 9.5

6.5-9.5

Total Suspended Solids

mg/L

40 – 800

2 - 10

Total Dissolved Solids

mg/L

80 – 2,900

300 -1,500

Nitrogen

mg/L

5 - 50

5 - 50

BOD5 pH

MBR Effluent

Membrane Bioreactor Effluent Quality • BOD and TSS < 10 mg/L consistently, majority of samples below 2 mg/L • Instrumentation, process control and lab testing ensures better operation and effluent quality • Effluent quality independent of sludge settling characteristics • Membrane tear - small but distinct increase in the TSS/BOD • Ability to denitrify with anoxic zone – low nitrogen achievable

Membrane Bioreactor Effluent Reuse • Consistent effluent quality with low BOD & TSS allows for more reuse options • Vineyard and landscape Irrigation • Reuse inside the winery – toilet flushing, floor rinsing, initial rinse of tanks • Prepares the effluent for further membrane treatment

Membrane Bioreactor Case Study Sterling Vineyards - 10,000 gpd system • Existing pond system • Limited room to expand ponds • Desire for superior effluent quality • Reduce water consumption • Effluent reuse for irrigation

Sterling MBR

Hess Collection Winery Case Study

• • • •

10,000 gpd PW Flow Pretreatment for Sewer Discharge Compact system Superior Effluent Quality

Truck Loading Dock

Aeration Zone

Treated Effluent

Membrane Bioreactor Case Studies DeLoach Winery – 5000 gpd system • Leachfield overloaded • Preserve vineyards, ponds not desired • Superior effluent quality • Effluent reused for irrigation

Membrane Bioreactor Case Studies Francis Ford Copolla Winery 20,000 gpd SS system

• Leachfield soils not available • Minimize impact to native vegetation • Denitrification required • MBR treatment with the Title 22 standards

/1

9/ 2 1/ 006 9/ 1/ 200 23 7 /2 2/ 007 6/ 2/ 200 20 7 / 3/ 200 12 7 / 3/ 200 27 7 / 4/ 200 10 7 / 4/ 200 24 7 /2 5/ 007 8/ 5/ 200 24 7 /2 6/ 007 5/ 6/ 200 20 7 / 7/ 200 10 7 / 7/ 200 23 7 /2 8/ 007 7/ 8/ 200 21 7 / 9/ 200 11 7 / 9/ 200 25 7 / 10 200 /8 7 /2 1/ 007 8/ 1/ 200 24 8 / 2/ 200 05 8 / 2/ 200 19 8 /2 3/ 008 3/ 20 3/ 08 18 4/ /08 1/ 4/ 200 21 8 / 5/ 200 12 8 /2 6/ 008 2/ 6/ 200 16 8 /2 00 8

12

Influent COD, mg/L

Hess Collection Influent COD Influent COD

100000

90000

80000 Influent COD (HR) Influent COD AVG

70000

60000

50000

40000

30000

20000

10000

0

Date

/1

9/ 2 1/ 00 9/ 6 1/ 20 23 07 /2 2/ 00 6/ 7 2/ 20 20 07 3/ /2 0 12 07 3/ /20 27 07 4/ /20 10 07 4/ /20 24 07 /2 5/ 00 8/ 7 5/ 20 24 07 /2 6/ 00 5/ 7 6/ 20 20 07 7/ /2 0 10 07 7/ /20 23 07 /2 8/ 00 7/ 7 8 / 20 21 07 9/ /20 11 07 9/ /2 0 25 07 10 /20 / 8 07 /2 1/ 00 8/ 7 1/ 20 24 08 2/ /20 05 08 2/ / 20 19 08 /2 3/ 00 3/ 8 20 3 / 08 18 4/ / 0 1 8 4/ /20 21 08 5/ /2 0 12 08 /2 6/ 00 2/ 8 6/ 20 16 08 /2 00 8

12

Influent TSS, mg/L

Hess Collection Influent TSS Influent TSS

10000

9000

TSS Influent TSS AVG

8000

7000

6000

5000

4000

3000

2000

1000

0

Date

2/ 27 / 3/ 200 13 7 / 3/ 200 27 7 / 4/ 200 10 7 / 4/ 200 24 7 /2 5/ 007 8/ 5/ 200 22 7 /2 6/ 007 5/ 6/ 200 19 7 /2 7/ 007 3/ 7/ 200 17 7 / 7/ 200 31 7 / 8/ 200 14 7 / 8/ 200 28 7 / 9/ 200 11 7 / 9/ 200 25 7 / 10 200 /9 7 10 /20 /2 07 3/ 11 200 /6 7 11 /20 /2 07 0/ 12 200 /4 7 12 /20 /1 07 8/ 2 1/ 007 1/ 1/ 200 15 8 / 1/ 200 29 8 / 2/ 200 12 8 / 2/ 200 26 8 / 3/ 200 11 8 / 3/ 200 25 8 /2 4/ 008 8/ 20 08

Effluent BOD, mg/L

Hess Collection Effluent BOD Effluent BOD Both Tanks

12 BOD Tank 2 BOD Tank 1

10

8

6

4

2

0

Date

12 /1 9/ 2 1/ 006 9/ 1/ 200 23 7 /2 2/ 007 6/ 2/ 200 20 7 / 3/ 200 12 7 / 3/ 200 27 7 / 4/ 200 10 7 / 4/ 200 24 7 /2 5/ 007 8/ 5/ 2 00 24 7 /2 6/ 007 5/ 6/ 200 20 7 / 7/ 200 10 7 / 7/ 200 23 7 /2 8/ 007 7/ 8/ 200 21 7 / 9/ 200 11 7 / 9/ 200 25 7 / 10 200 /8 7 /2 1/ 007 8/ 1/ 200 24 8 / 2/ 200 05 8 / 2/ 20 0 19 8 /2 3/ 008 3/ 20 3/ 08 18 4/ /08 1/ 4/ 200 21 8 / 5/ 200 12 8 /2 6/ 008 2/ 6/ 200 16 8 /2 00 8

Effluent TSS, mg/L

Hess Collection Effluent TSS Effluent TSS Both Tanks

200

180 TSS Tank 1 TSS Tank 2

160

140

120

100

80

60

40

20

0

Date

Low Rate Systems • • • •

Simple Robust Large land use Low operational involvement

• • •

Includes: Subsurface Treatment Facultative Aerated Ponds Wetlands

Medium Rate Treatment • Less land use than the low rate systems Includes: • Activated sludge treatment including sequencing batch reactors (SBRs).

• Advantex

High Rate Treatment • Advanced Treatment • Minimal Land Use Includes: • Membrane Bioreactors (MBR) • Upflow Anaerobic Sludge Blankets (UASB)

Subsurface Treatment • Settling (Septic) Tank Followed By Perforated Subsurface Piping • Low visual impact • Require low maintenance and operator attention • Downside is these systems require large land use Factors affecting Subsurface Treatment: • Depth and quality of the soil • Depth to groundwater • Setback from wells, flood zones, etc.

Septic Tanks and Leachfield

Facultative Aerated Ponds • Earthen Pond with Aeration • High Retention Time (60 to 120 days) • Low Maintenance • Aerobic and Anaerobic Reactions • Provides for Effluent Storage

Summary

• MBR is an option when high effluent quality is desired for effluent reuse • Over 99 percent removal efficiencies were achieved for BOD5, COD and TSS • Space saving technology • Current pricing attractive for 50,000 to 250,000 case wineries

Suggest Documents