Transparent glass - ceramics

Transparent glass - ceramics Edgar D. Zanotto Vitreous Materials Lab Federal University of São Carlos, Brazil www.lamav.ufscar.br Presented at the IMI...
Author: Aubrey Melton
82 downloads 0 Views 5MB Size
Transparent glass - ceramics Edgar D. Zanotto Vitreous Materials Lab Federal University of São Carlos, Brazil www.lamav.ufscar.br Presented at the IMI-NFG US-Japan Winter School , Jan 14, 2008 and Reproduced by the International Materials Institute for Glass for use by the glass research community; Available at: www.lehigh.edu/imi

Vitreous Materials Lab – www.lamav.ufscar.br

OUTLINE „ „ „ „ „ „

Introduction to glass-ceramics Brief literature review on TGC Potential applications of TGC Conditions for transparency Mature TGC – nanocrystals New TGC: Properties ‰ ‰ ‰ ‰ ‰ ‰

„ „

Sintered aluminate GC IR transmitting CG Ce: YAG GC for lighting Laser crystallized GC PTR GC LGHC GC

Opt & Mech Opt & Mech Opt Opt Opt & Mech Opt & Mech

Surprise.... Conclusions

Vitreous Materials Lab – www.lamav.ufscar.br

Glass-ceramic synthesis „ „

Entropy vs. T plot Heat-treatment plot

Vitreous Materials Lab – www.lamav.ufscar.br

INTRODUCTION null porosity

controlled volume crystallization

designed microstructures: size & shape & GLASS-CERAMICS uniform grain size, % crystallinity, high thermal and etc. chemical stability tougher than glasses

reproducible properties

optical transparency

interesting electrical properties Vitreous Materials Lab – www.lamav.ufscar.br

INTRODUCTION Applications of transparent glass-ceramics

Thermo-mechanical

Optical (potential)

Cooking ware Fire resistant plates Security windows Telescope mirrors…

saturable absorber media; illumination devices using IR; heat-resistant materials that absorb UV, that reflect infrared and are transparent to visible light; that absorb UV and fluoresce in red/IR; second harmonics generating; substrates for LCD devices; optical amplifiers for up-conver; substrates for arrayed waveguide grating (AWG); radiation sources of lamps; Laser pumps; Laser media; Materials for precision photolithography; ring laser gyroscopes; solar collectors; printed optical circuits; etc. Vitreous Materials Lab – www.lamav.ufscar.br

The inventor of GLASS-CERAMICS

S.D. Stookey discovering GC in the middle 1950s

Vitreous Materials Lab – www.lamav.ufscar.br

LITERATURE REVIEW- PIONEERS OF TGC STOOKEY,S.D. V Int. Congress on Glass, pp. V/1-8 1959 BORRELLI, N.F. ELECTRO-OPTIC EFFECT IN TRANSPARENT NIOBATE GLASS-CERAMIC SYSTEMS Journal of Applied Physics, 38 (11): 4243 1967 BEALL, G.H.; DUKE, D.A. TRANSPARENT GLASS-CERAMICS Journal of Materials Science, 4 (4): 340 1969 Recent articles in the next slide Vitreous Materials Lab – www.lamav.ufscar.br

LITERATURE REVIEW (TGC title ) „

YEAR

„

„

1967 1969 1978 1982 1984 1985 1986 1987 1988 1993 1994 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005

1 2 3 3 2 2 5 3 2 2 2 4 5 8 5 7 9 11 5 20 5

„

2006

5

„ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „

112 ISI papers

Derwent II ~90 patents

Corning Schott Nippon Others

25 20 15 10 5

30 years

0 1960

1980

2000

2020

Vitreous Materials Lab – www.lamav.ufscar.br

Crystalline phases in TGC „ „ „ „ „ „ „ „ „ „ „ „ „ „

Β−quartz ss Β-eucriptite Mullite Spinel Willemite Ghanite Forsterite β-BBO LiNbO3 NaNbO3 PbF2 LaF3 ZnO Etc.

Most TGC have nanosize crystals & small crystallized volume fraction (~ 50% or less) Vitreous Materials Lab – www.lamav.ufscar.br

THEORY Light attenuation

atomic absorption (β) surface reflection (R)

+ scattering (S)

scattered light

Io

Reflection losses (%) Transmitted light

10

reflected light

reflected light

fluorescence

I = I o (1 − R ) 2 exp(−( β + S ) x) ⎛ n −1 ⎞ R=⎜ ⎟ ⎝ n +1⎠

12

2

8

R

Incident light

6 4 2 0 1

1.2

1.4

1.6

1.8

2

n

Vitreous Materials Lab – www.lamav.ufscar.br

Conditions for transparency Transparent glass-ceramics

crystal size > Tx

0.6 W

Temp. < Tx 50μm

J. Am. Ceram. Soc. 88 (2005) 989

Refractive index change

Vitreous Materials Lab – www.lamav.ufscar.br

Laser crystallization in São Carlos C. A. C. Feitosa, L. J. Q. Maia, A. L. Martinez, A. C. Hernandes, Valmor R. Mastelaro,

IFQSC, University of São Paulo, São Carlos, Brazil Vitreous Materials Lab – www.lamav.ufscar.br

40BaO - 45B2O3 - 15 TiO2 (BBT) Microstructures from two crystallization processes

BBT glass after irradiation with CO2 laser (λ= 10.6 μm) 4 min, 40 W/cm2. = 10,000 J/cm2 Glass at 300oC (Tg = 580 oC)

BBT GC in resistive furnace at 620oC.

Mastelaro et. al.

Vitreous Materials Lab – www.lamav.ufscar.br

Surface crystallization of BBT glass Vidros 4% e 15% # (006)

* BaTi(BO3)2 # β-BBO

* (009)

* (003)

Intensidade (u.a.)

* (006)

15% de TiO2

# (104) # (006)

20 μm

4% de TiO2

10

20

30

40

50

60

2 θ Graus

It is possible to produce policrystalline lines. 5 μm

200 μm

Details; crystals within the line and diffraction pattern Mastelaro et. al.

Vitreous Materials Lab – www.lamav.ufscar.br

SHG in partially crystallized BBT glass Mastelaro et. al.

Laser beam Nd:YAG (λ = 1064 nm)

Second harmonic generation Vitreous Materials Lab – www.lamav.ufscar.br

PTR Glasses Oxy fluor bromide glasses S.D. Stookey et al. (1954) – Corning, USA L.B. Glebov et al. (1990) - Vavilov SOI, Russia + Creol/ UCF, USA

„

Composition

„

Major: SiO2, Na2O, ZnO, Al2O3

„

Minor: K2O, F, Br

„

Dopants (~200 ppm): Ag, Ce, Sb, Sn

„

Impurities ( < 2 ppm): transition metals Vitreous Materials Lab – www.lamav.ufscar.br

PTR glass is a F-Br sodium-zinc-aluminumsilicate glass doped with Ag, Ce, Sn and Sb

Ce4+

hν 3+

Ce

Current technology at UCF/CREOL - optical quality PTR glasses with aperture up toVitreous 50 mm.Materials Lab – www.lamav.ufscar.br

e-

Mechanism of photo-thermo-crystallization

Ce4+

hν 3+

Ce

e-

Ce4+

Valence change Photoionization

Valence change

kT

hν Ce3+

e

-

Ag+

Ag0

Electron Trapping

Latent Image

Ag0

Ag0 kT

UV excitation

kT

Ag0

Ag0

Ag0

Ag0

kT

Silver atoms diffusion

Sodium fluoride crystal

kT

Growth of Silver nanocrystal

Na+

Silver nucleation center

kT

Ag0 Ag0 Ag0 Ag0

Ag0

kT

kT

F

-

Na+

F

F F

-

-

Na+ F

-

Ag0 Ag0 Na

+

F

-

kT F

Na+

Ag0 Ag0

-

Na+ -

Na+ F

-

kT Na+

3D image (hologram) of object is transformed to the phase pattern (refractive index variations) caused by selective NaF crystal distribution in accordance with the UV intensity distribution in glass interior.

Vitreous Materials Lab – www.lamav.ufscar.br

„

.

PTRG (only the active ions are shown) Proposed mechanism of photo induced crystallization

Vitreous Materials Lab – www.lamav.ufscar.br

University of Central Florida School of Optics - CREOL Laboratory of Photo-Induced Processes

Ce4+

hν Ce3+

Absorption spectrum of photo-thermo-refractive glass

Absorption, cm

-1

2

HF 2.7 μm

COIL Nd, Yb, Er 1-1.6 μm

1.5 1 0.5

DF 3.6-4.2 μm

0 0

1000

2000

3000

4000

Wavelength, nm

No detectable absorption in the range of 1 μm Absorption of hydroxyl in theMaterials range ofLab 4 μm Vitreous – www.lamav.ufscar.br

e-

PTR glasses S.D. Stookey et. al. Corning’s Fotalite Creol’s PTRG Hologram Leon Glebov et. al.

Vitreous Materials Lab – www.lamav.ufscar.br

LARGE GRAIN, HIGHLY CRYSTALLINE, HIGHLY TRANSPARENT GC T. Berthier, V.M. Fokin, E.D. Zanotto LaMav- Federal University São Carlos, Brazil Vlad Fokin

Thiana Berthier

Vitreous Materials Lab – www.lamav.ufscar.br

STRATEGY Simultaneous compositional variation of solid solution crystals and glassy matrix decreases Δn New type of transparent glass-ceramic small or large grain size

high crystallized volume fraction Vitreous Materials Lab – www.lamav.ufscar.br

OPTICAL PROPERTIES Crystal morphology Transmission Spectra 200 nm – 1100 nm

Grain size Degree of crystallinity OM

Transmittance measured for different sample thicknesses Estimated parameters (P1 and P2):

I = P1 exp(− P2 x ) I0

P1 = (1-R)2 P2 = (β+S)

Vitreous Materials Lab – www.lamav.ufscar.br

MICROSTRUCTURES The crystals are solid solutions: TA4+2xAE4-x[GF6O18] (0 ≤ x ≤ 1) T = trace element

Their morphology can vary from

A = alkali

J, spherical to

V8, cubic

AE = alkaline earth GF = Si, P, B

Vitreous Materials Lab – www.lamav.ufscar.br

TRANSMITTANCE Morphology Distinct crystal shapes

Different transmittances V8, cubic 5-6 μm J, spherical 7-8 μm

crystal/crystal Interfaces are quite different for spherical and cubic crystals

Best transmittance

Cubic crystals Vitreous Materials Lab – www.lamav.ufscar.br

TRANSMITTANCE

Grain size

glass J, spherical crystals, ~42% crystallized I(λ) dependence

Crystal size

Affects P2 * Same crystalline fraction

Importance of thermal history

Vitreous Materials Lab – www.lamav.ufscar.br

TRANSMITTANCE glass V8, cubic crystals (3-5 μm)

Degree of crystallinity

Glass V8 & T6, maximum transmission for ~ 9597% OM crystallinity

Vitreous Materials Lab – www.lamav.ufscar.br

The beasts! Transparency of 4 mm thick specimens Glass

GC 97% crystallinity

50% crystallinity

Vitreous Materials Lab – www.lamav.ufscar.br

DISCUSSION 1.64 18

1.62

crystals glassy matrix 16

n

CA, at%

crystal

1.60

1

1.58

14

12

2

glass phase

10 0,0

1.56

0,2

0,4

α

0,6

0,8

1,0

alkali content in

1.54 5

10

15

20

25

30

Alkali oxide, wt%

35

crystals 30% > glassy matrix

EDS measurements Vitreous Materials Lab – www.lamav.ufscar.br

DISCUSSION

High crytallized fraction

reduced crystal / glass interface

Simultaneous variations of the glass-matrix and s/s-crystal compositions during crystallization

refractive indexes of crystal and glass verge

Main reasons for improved transparency in these new TGC Vitreous Materials Lab – www.lamav.ufscar.br

„ Mechanical

behaviour of HCHTGC

‰

A new, specially designed, method of impact testing! Vitreous Materials Lab – www.lamav.ufscar.br

Impact testing of glass Courtesy of Leo Siiman, Creol/ UCF

Vitreous Materials Lab – www.lamav.ufscar.br

„Don’t

try this experiment in your lab! Vitreous Materials Lab – www.lamav.ufscar.br

Kic versus volume fraction crystallized Anstis Average grain size from 3 to 6 um

⎛E K IC = 0.016 ⎜ ⎟ ⎝H⎠

F 3 c2

Kic Anstis Kic Niihara kic Anstis (Thiana) Kic Niihara (Thiana)

1.5

c

1/2

Kic (MPa. m )

1 ⎞2

Eglass 71 GPa

1.0

Nihara 2 1 − − ⎛ l ⎞ 2⎛ H ⎞ 5⎛ H

a⎞ ⎜ ⎟ ⎟ ⎜ kic 0 , 035 = ⎜ ⎟ Ecr ~105 ⎟ ⎜ ⎜ ⎝a⎠ ⎝ Eφ⎠ ⎝ φ ⎟⎠

0.5

0

20

40

60

Fr. cristalizada (%)

80

100

φ~3, a,l,c [um]

Vitreous Materials Lab – www.lamav.ufscar.br

„ Why

do the transparency and impact strength drop significantly for > 97% crystallinity?

Vitreous Materials Lab – www.lamav.ufscar.br

SPONTANEOUS CRACKING for > 97% crystallinity! accelerated 300X „

.

Vitreous Materials Lab – www.lamav.ufscar.br

CONCLUSIONS - highly transparent in the visible ~ 90% for 1mm New type of TGC

- nm to μm grain size - up to 97% crystallized volume fraction - chemical durability OK - good mechanical properties, which can probably be much improved by ionexchange. - can be drawn into fibers - luminescence ? doping with Cr and RE ions should be tested... Vitreous Materials Lab – www.lamav.ufscar.br

On the origem of misterious biomorphs and geoglyphs in Nazca, Peru, 200 B.C. .

Vitreous Materials Lab – www.lamav.ufscar.br

Sm2O3-Bi2O3-B2O3 glass SmxBi1-xBO3 crystal

SHG

Crystals

Courtesy of T. Komatsu

Bird in Nazca, Peru

300 μm

Vitreous Materials Lab – www.lamav.ufscar.br

VITREOUS MATERIALS LAB, UFSCar, São Carlos BRAZIL

Thank you!

Vitreous Materials Lab – www.lamav.ufscar.br

Suggest Documents