A Bird s-eye View of the Transparent Ceramics Realm

Israel Ceramic and Silicate Institute, Haifa [email protected] A Bird’s-Eye View of the Transparent Ceramics Realm by Adrian Goldstein Conference...
Author: Coleen Hubbard
37 downloads 0 Views 4MB Size
Israel Ceramic and Silicate Institute, Haifa [email protected]

A Bird’s-Eye View of the Transparent Ceramics Realm by Adrian Goldstein

Conference venue: PARIS

Speakers’ home: Haifa bay

Transparent fire-resistant glass-ceramic

Journee Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected] Transparency  Range (“Window”) Considered Here (MIR – NIR - VIS – NUV)  = 15m 0.2m Window’s width

Definitions [relevant only for this presentation]: ILT, %

Translucent

Transparent

Highly transparent

20-50

50-75

75-Theoretical

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected] 1st TC: (non cubic !) TC = Transparent ceramic • “Lucalox” of General Electrics (R. Coble, C. Bruch, N. Grimm) Sept. 1959. • •

Polycrystalline translucent alumina (PCA) envelope for high pressure Na lamp; also for halogen (incandescent type) lamp envelopes. PCA fine grained (replacement for fused silica glass), transparent at small thickness (t1mm).

High-pressure Na0 lamp envelope

T-PCA

Pore free Al2O3

No MgO

~400ppm MgO 1962 (K. Schmidt, W. Landen 105 lumens/Watt ~white emission (golden-white light). 105 lumen/watt (Edison lamp: 18 lumen/watt). (In 1966 lamps worth 0.5109 sold).

Journée Technique Céramiques Transparentes, 20 January 2015

I. WINDOW Type Apps: VIS, IR

Israel Ceramic and Silicate Institute, Haifa [email protected] Transparent Armor with Ceramic Strike-Face

TC’s assets: high hardness (compared to glass) + stiffness and strength. Drawback: higher TDs. Materials  MgAl2O4  AlON

Fully glass, thick laminate (projectile exit hole seen) L. Goldman et. al., SPIE Conf., 2009

Transparent ceramic (AlON) strike-face+glass (No exit hole) tTC~½t glass

Competition  All glass  Sapphire single-crystal

Use of TCs strike-face allows thickness reduction of up to 50% (Spinel, AlON, sapphire single-crystal)

Other applications: bar-code reader windows, pressure vessels windows, optical lenses, exit windows in laser glow plugs, UV lithography optics, etc.

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected] 2012: T-spinel (72.547.5 cm2) ArmorLine Corp. (TA&T)

I. WINDOW Type Apps: VIS, IR

Transparent Armor SURMET

T-AlON

ICSI, A. Goldstein et. al., J. Jap. Cer. Soc. 2009 J. Eur. Ceram. Soc. 2012

T-spinel with average grains size ~0.5 m

SURMET (RAYTHEON)

Journée Technique Céramiques Transparentes, 20 January 2015

I. WINDOW Type Apps: VIS, IR

Israel Ceramic and Silicate Institute, Haifa [email protected] IR Transparent Missile Noses T-Diamond

As grown

Ground to 1mm roughness Raytheon

Main functional properties •

Resistance to erosion.



Low emissivity.



High transmission in NIR-MIR.



Thermal shock resistance.



Refractoriness (>1400 C).

T-PCA (Ceranova)

T-MgAl2O4

Polished hemispheric

Unpolished dome Not commercial yet CVD, =7 cm De Beers

t = 1 mm

(NIR)

HV1 ~22 GPa

M. Parish, M. Pascucci, SPIE vol. 7302, 2009 T>80 % up to ~5 m (MIR)

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected] Rods

Slabs

TCs for LASER Systems

II. LASERS T. Maiman, Nature, August 6 1960

(Gain Media and Q-switches) 1st Cr3+:-Al2O3 s.c. host LASER

KONOSHIMA 1st high  ceramic laser (owing to low host scattering (0.02 cm-1).

1st LASER (VIS) = solid state, but single-crystal

A. Ikesue et. al., J. Amer. Ceram. Soc. 1995

! 1st ceramic laser [Dy2+:CaF2 (HPed)]

1st oxide host [Y2O3 (ThO2)] Nd3+ laser C. Greskowich, J. Cernoch, J. App. Phys. 1973 R. Andeson, US Patent 3,640,887

=2.36 m, pumping threshold = 24.6 J

S. Hatch et. al. (Eastman Kodak), App. Phys. Lett. 1964

K.I. Ueda, Munster LCS 2010

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS

Israel Ceramic and Silicate Institute, Haifa [email protected] A Few Exotic Applications

Temp.=108 K, =20TD of Pb

Solar energy harvesting High-power laser (including ceramic gain-media) based weapons

Fusion ignitors by the aid of high-power solid-state laser. 3072(81464 cm2) phosphate glass plates today. (YAG tomorrow ?) Plasma separation obtained with laser pulses

Laser based spark plug

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected]

SEH

TCs in Solar-Energy Harvesting • •

Solar energy reaching earth = x7500 current world consumption. Photovoltaic (PV) approach is one of those used to harvest solar energy (installations working today ~7 GW). Luminescent solar converters – an efficient PV variant. Broad solar spectrum is converted by luminescent RE+:TC type solar converters to frequencies (0.8-1 m domain) suitable for Si(GaAs, CdS, Ge) based PV cells

e.g. Cr3+-Nd3+-Yb3+:YAG (T) or FOX glass-ceramic proposed by A. Goldstein and L. Esposito 2014 (under development).

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS

Israel Ceramic and Silicate Institute, Haifa [email protected] Progress in Device Design and Operation • Gain-medium system design: Heat capacity laser

Zigzag slab laser

End pump slab laser

• Operation:

Diode laser pumping, CPA (e.g. OP-CPA), Q-switching, mode locking, cryogenic operation, beam combination using SBS-PCMs, OPOs.

CPA

Beam combination Diode-laser pumping

Hong Jin Kong (KAIST)

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected]

II. LASERS ME C1

Progress Regarding Gain-Media and Q-switch (Material Scientists and Engineers Contributions; Past and Future) • • • •

• • • • • • • • • • • • • •

Spatial heterogeneity in [Nd3+] Reduction of absorber impurities concentration ([TM+, RE+] < 50 ppm). (Confocal Raman and fluorescence signal) Understanding of parasitic absorption mechanisms. Reduction of scattering,   0.02 cm-1 (porosity ~1.5 ppm vol). High lasing ion concentration, e.g. for cer-YAG [Nd3+] = 9 at%. (w/o self-quenching and energy migration). Enrichment of emitting ’s portfolios (Nd3+  Er3+, Ho3+). New hosts, e.g. Cd, S, Se (Fe2+, Co2+); future: high-quantum efficiency + robust host. M. Ramires et. al., Opt. Express 2007 Special geometries (opens new application fields): fiber, chip, wave guides. Large size, currently 10102 cm3. • Detection of dopants interaction and Non-cubic hosts: -Al2O3, SFAP, La2O2S at =500 nm with zero birefringence. spatial concentration fluctuation. Disordered hosts: perovskites, YSAG (femto-sec). Enrichment of hosts portfolio: YAG  sesquioxides (Y2O3, Sc2O3, Lu2O3, LuAG), fluorides (CaF2), FAP, FOX glass-ceramic, ZnS, Se. Thermal lensing reduction, e.g. by RE+ concentration profile control (by layered macro-composites). Thermal shock resistance improvement: th, , TRS (low average grain size), surface treatment, thermal management, glazing. Pumping  optimization, e.g. 0.3 at% YAG (10102 cm3) pumped at 809 nm  67 kW. (V. Lupei, Opt. Mater. 2009.) Pumping radiation recirculation. Optimal sensitizer packages. Better Q-switches. Control of grain-boundary segregation.

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS ME C2

Israel Ceramic and Silicate Institute, Haifa [email protected] Processing Improvements

 Powders and green body: monosize spheroidal particles (laser ablation or wet chemistry), injection molding (for complex shape), centrifugal compaction of jet milled powders, high pressure colloidal casting, magnetic torque based strong pressing.  Hosts with GSNd3+ and better solubility in host lattice (less auto quenching). • Lasing ions for eye safe range: Tm3+, Ho3+. • Hosts dedicated to IR region emission: by HP, for =2-5 m: Cr2+, Fe2+:ZnS(Se). • Hosts allowing up-conversion, e.g. FOX glass-ceramics. • Polycrystal  single-crystal.

S. Mirov et. al

Polycrystalline CaF2

T. Basiev, M. Mortier

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected] Parasitic Absorption Reduction by Understanding of Mechanisms a-c: spinel by AS+HIP c

b a

II. LASERS ME C5 S8 powder Yellow Sp

a = sulphur+carbon b,c = carbon d,e = YAG (undoped) after sinter/HIP d = Ce3+ e=Y2+ ICSI: A. Goldstein et. al., J. Amer. Ceram. Soc. 2013

d

e

Carbon in outer layer of polished TPS Carbon coating of poorly sintered spots Ce detection in undoped YAG

EPR of Y2+

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS ME C7

Israel Ceramic and Silicate Institute, Haifa [email protected] Co2+:n-ZA (TGC) and Co2+:polycrystalline Sp as Q-switch Co2+ in n-ZA (TGC)

Co2+ in Td

n-Gahnite in TGC:Co2+

Co2+:TGC (ICSI)

Co2+:Sp (ICSI) El-Op (Israel) + ICSI US Patent no. 7316986B2, 2008 A. Goldstein et. al.

Q-switch characteristics =1.54m

Material

Co2+:TGC (n-Ga) Co2+:Mg-Sp S.C.

gsa [1019 cm2] 3.4 4.5

esu FMWH E es [ns] [mJ] [ns] 0.37 0.46

32 75

Laser damage

4.0 0.6 MW/cm2 (low no. of test pulses) ~3.0 350

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS ME C8

Israel Ceramic and Silicate Institute, Haifa [email protected] T-ZnAl2O4 – A New Transparent Ceramic HT powder

ZnOAl2O3 (gahnite) a spinelid A. Goldstein et. al., J. Amer. Ceram. Soc. 2012

HT – hydrothermal powder system (Sawyer US) S – solid-state reaction

HIPed part

(All peaks = gahnite) t=2 mm; AS 1500 C + HIP 1950 C

As HIPed (chemical etching)

Journée Technique Céramiques Transparentes, 20 January 2015

Israel Ceramic and Silicate Institute, Haifa [email protected]

II. LASERS ME C6

FOX Transparent Glass Ceramics RE+ Hosts TGC: S. Stookey, 1964 US Patent 3,157,522 (Li-Al-Si-O) Glass ceramic as a laser host : Nd:TGC [SiO2-LiAlO2-(Mg,Zn)Al2O4; ZrO2, Ta2O5] G. Muller, N. Neurath, J. Appl. Phys. 1973 FOX TGC: (PbxCd1-xF2) Y. Wang, J. Ohwaki, Appl. Phys. Lett. 1993. Best FOX: LaF3 FOX M. Dejneka, J. Non-Crys. Solids 1998. Applications: e.g. useful for fiber amplifiers (telecom s=1.31, 1.46, 1.54m) upconversion, 3D-displays. 1.54 emission of Er3+ possible in Er3+-Ce3+ FOXes. M. Moritier, Phys. Chem. Glass 2007.

n-LaF3 based TGC

n-LaF3 containing TGC

Gain spectra (fiber amp.)

M. Dejneka, 1995 (Corning)

Journée Technique Céramiques Transparentes, 20 January 2015

II. LASERS ME C4

Israel Ceramic and Silicate Institute, Haifa [email protected] Thermal Shock Resistance Increase

Designs providing better thermal management Sm3+:YAG

• Multi layer macrocomposites for thermal management. • Host strengthening by chemical etching. (R. Feldman, Y. Shimony, Israel) • Polycrystal shown as stronger and tougher than single-crystal. Nd3+:YAG R. Feldman, Y. Shimony, Israel 2009. Raytheon, 2011

a – non-etched b - etched

A. Ikesue, Japan Thermal stress profile

Fractured rods

Journée Technique Céramiques Transparentes, 20 January 2015

III. SSLS

Israel Ceramic and Silicate Institute, Haifa [email protected] Solid-State Lighting Sources Ce:YAG = emitter of yellow • • • •

Compact, long-life span, stable to shock and vibrations. Emission in VIS; low IR (heat); efficient use of input electrical energy. Exotic applications: Plants growth in space (NASA). 30000 h vs. 1000 Edison. 16 W LED  150 W Edison.

Ce:YAG nano crystals

Ce3+ Glass matrix or Ce3+:T-YAG

Pr3+

Pr3+ introduces some orange-red emission

Journée Technique Céramiques Transparentes, 20 January 2015

IV. Lenses

Israel Ceramic and Silicate Institute, Haifa [email protected] T-ZrO2 (Optical lenses)

A. Ikesue et. al., JECS 2009

c-ZrO2 10Y+5 % TiO2 VS+HIP 1750 C

Scattering coeff=f ( TiO2 %)

T-ZrO2

Illustration of c-ZrO2 10Y+5 % TiO2

Journée Technique Céramiques Transparentes, 20 January 2015

V. Ferro

Israel Ceramic and Silicate Institute, Haifa [email protected] Transparent Polycrystalline Ceramic Ferroelectrics (2) (1cm-1 for >400nm, P0