Overview Achates Power, Inc. All rights reserved

Overview §  Background §  Opposed-piston (OP) engine fundamentals §  Inherent efficiency benefits §  Performance and emissions results §  Fuel co...
8 downloads 2 Views 2MB Size
Overview §  Background §  Opposed-piston (OP) engine fundamentals §  Inherent efficiency benefits §  Performance and emissions results §  Fuel consumption comparison §  Practical considerations §  Conclusion

©2013  Achates  Power,  Inc.  All  rights  reserved.  

1  

Overview Clean, more efficient, lower cost engines §  §  §  § 

Founded in 2004 Well supported, technically and financially State-of-the-art test facilities and analytical tools Demonstrated and customer-validated results, more than 4,500 dynamometer test hours §  Clean: meets the most stringent standards §  Dramatically more efficient: 20%+ §  Reduced cost, mass and complexity §  Multi-fuel capable

§  Comprehensive, global IP portfolio with more than 1,500 claims in 30 issued and over 60 pending patents §  Highly capable team

©2013  Achates  Power,  Inc.  All  rights  reserved.  

2  

OP Engine Overview “The simplicity and compactness of the OP engine, combined with its potential for brake fuel efficiency in excess of 45%, and low emissions suggest this is a power unit that needs re-evaluation.” “Weight and cost comparisons indicate that the two-stroke OP engine could be approximately 34% lighter than the equivalent performance four-stroke and cost 12% less. Source: JP Pirault, M. Flint, Opposed Piston Engines – Evolution, Use and Future Applications; SAE International 2010

©2013  Achates  Power,  Inc.  All  rights  reserved.  

3  

Engine Architectures with Comparable Friction Four-Stroke (4S) Engine

Opposed-Piston, Two-Stroke (OP2S) Engine

IPC

IPC

IVC

Engine

4S

Engine

OP2S

Cylinders

6

Cylinders

3

Trapped Volume/Cylinder

1.0 L

Trapped Volume/Cylinder

1.6 L

Bore

102.6 mm

Bore

102.6 mm

Total Stroke

112.9 mm

Total Stroke

224.2 mm

Stroke per Piston

112.9 mm

Stroke per Piston

112.9 mm

Stroke/Bore Ratio

1.1

Stroke/Bore Ratio

2.2

Trapped Comp. Ratio

15:1

Trapped Comp. Ratio

15:1

Intake Valve Closure

180 bTDC

Intake Port Closure

120 bTDC

©2013  Achates  Power,  Inc.  All  rights  reserved.  

4  

1. Surface Area/Volume Ratio Four-Stroke (4S) Engine

Opposed-Piston, Two-Stroke (OP2S) Engine

IPC

IPC

IVC

Surface Area (mm2)

4.05*104

Surface Area (mm2)

2.07*104

Volume (TDC) (mm3)

1.43*105

Volume (TDC) (mm3)

1.14*105

Surface Area / Volume(mm-1)

0.28

Surface Area / Volume(mm-1)

0.18

©2013  Achates  Power,  Inc.  All  rights  reserved.  

-49% -20% -36%

5  

Surface Area/Volume vs. Displacement

Surface  to  Volume   Ratio  at  TDC  [1/mm]

0.5

API  OP6  2-­‐stroke  diesel

0.45

4-­‐stroke  diesel

0.4 0.35 0.3 30% lower

0.25 0.2 0.15 0.1 0

2

4

6

8

10

12

14

16

4-­‐Stroke  Engine  Displacement    [L] ©2013  Achates  Power,  Inc.  All  rights  reserved.  

6  

Same Amount of Fuel in a Larger Cylinder Four-Stroke (4S) Engine

Opposed-Piston, Two-Stroke (OP2S) Engine

IPC

IPC

IVC

2. Leaner combustion at same boost level 3. Earlier and faster combustion

©2013  Achates  Power,  Inc.  All  rights  reserved.  

7  

Heat Release Rates 900

0.8

800

0.6

200

Mass  Burnt  Fraction

1

Heat  Release  Rate

1000

100

-­‐0.8

700 600

0.4

Typical  4S  Engine Measured  OP2S  Engine

500

0

400

-­‐0.2

300

0

0.2

-­‐0.4 -­‐0.6

Crank  Angle ©2013  Achates  Power,  Inc.  All  rights  reserved.  

-­‐1

8  

Effective Combustion System Port and Manifold Design §  Port design is optimized to provide optimal blow down, uniflow scavenging, supercharging and swirl characteristics

Fuel Injection System §  Unique and proprietary injector nozzle design and spray pattern provides interdigitated fuel plumes with larger λ=1 isosurfaces §  Dual injectors per cylinder provide multiple injection events, appropriate flow rates and mid-cylinder penetration

Piston Bowl Shape §  Proprietary piston crown designs combine swirl with tumble motion during compression §  Provides excellent mixing, air utilization and charge motion for rapid diffusion and flame propagation §  Ellipsoidal shape of combustion chamber guarantees air entrainment into spray of plumes coming from two sides into center of cylinder §  Minimal flame-wall interaction during combustion Result: Short burn duration, minimal heat transfer losses and excellent brake-specific fuel consumption ©2013  Achates  Power,  Inc.  All  rights  reserved.  

9  

4.9L 3-Cylinder Results (2012) Engine Condition

A25

A75

A100

B50

B75

B100

C25

C75

C100

Engine Speed

rpm

1391

1391

1391

1775

1775

1775

2158

2158

2158

IMEP

bar

3.8

10.8

14.5

6.4

9.8

13.4

3.0

8.1

11.6

BMEP

bar

3.2

9.6

12.8

5.5

8.2

11.0

2.3

6.8

9.0

Indicated Power

kW

42.9

123.6

165.5

93.1

143.3

195.7

52.7

144.4

205.9

Brake Power

kW

36.6

109.7

146.2

80.2

119.6

160.4

40.8

120.5

159.5

Indicated Thermal Efficiency

%fuel

52.3

51.3

51.8

51.1

52.5

51.4

52.1

51.5

51.9

Brake Thermal Efficiency

%fuel

44.9

45.8

46.0

44.3

44.1

42.4

40.6

43.2

40.5

Friction Loss

%fuel

6.1

4.2

3.9

5.6

5.3

4.9

8.9

5.9

5.7

Pumping Loss

%fuel

1.3

1.3

1.8

1.2

3.2

4.1

2.6

2.3

5.7

ISFC (Engine)

g/kW-h

159.5

162.8

161.2

163.4

158.8

162.4

160.1

162.1

160.8

BSFC (Engine)

g/kW-h

187.0

183.4

182.5

189.6

190.3

198.1

206.9

194.3

207.5

BSNOx

g/kWh

1.595

4.015

4.325

2.199

2.421

4.489

2.021

2.732

3.823

BSSOOT

g/kWh

0.006

0.02

0.014

0.019

0.015

0.022

0.016

0.028

0.032

BSCO

g/kWh

0.593

0.225

0.122

0.149

0.097

0.118

0.462

0.156

0.128

BSHC

g/kWh

0.455

0.214

0.186

0.264

0.242

0.223

0.477

0.274

0.278

Peak Cylinder Pressure

bar

79

148

188

111

153

200

79

148

198

50% Mass Burned Fraction

aMV

1.6

2.2

4.0

-0.2

2.8

4.5

-0.7

1.2

3.7

Burn Duration 10-90%

deg

10.1

15.9

16.0

16.3

17.8

19.8

12.2

18.8

18.6

AVL Noise

(dB)

91.9

90.4

89.8

94.0

91.8

89.0

97.1

92.2

90.6

Air/Fuel Ratio

-

29.1

22.6

23.5

22.8

25.5

24.8

31.6

24.7

24.5

External EGR Rate

%

32.6

29.3

28.2

31.7

38.3

29.0

29.5

31.4

33.9

Intake Manifold Pressure

bar

1.264

2.063

2.733

1.678

2.383

3.355

1.399

2.411

3.405

Intake Manifold Temperature

degC

38

51

54

48

54

61

42

56

67

Turbine Outlet Temperature

degC

277

404

389

363

299

339

261

323

308

Fuel Spec. Oil Consumption

%fuel

0.072

0.103

0.123

0.103

0.105

0.128

0.171

0.126

0.14

Brake Spec. Oil Consumption

g/kWh

0.13

0.19

0.22

0.20

0.20

0.25

0.35

0.24

0.29

©2013  Achates  Power,  Inc.  All  rights  reserved.  

10  

Achates Power Development Roadmap Results achieved with: § Small unit displacement § PCPs below 200 bar § CR below 17.5:1 § Max. injection pressure below 2200 bar § Off-the-shelf turbocharger and supercharger § Low engine-out NOx and soot

1.06 L/Cyl. 2.65 S/B

1.6 L/Cyl. 2.2 S/B

©2013  Achates  Power,  Inc.  All  rights  reserved.  

11  

Light-duty Fuel Consumption Comparison 15% drive-cycle average fuel economy advantage

1.8L MB OM651 (MTZ Nov 2011)

205.6 g/kW-hr

235.5 g/kW-hr

©2013  Achates  Power,  Inc.  All  rights  reserved.  

12  

Medium-duty OP2S BSFC Map BSFC Map MD 2016 320 310

1000

300 290

900

280 270

700 600

Best Point 48.5% BTE

Best Point 48.5% BTE

260 250 240 230

500

220 400

BSFC (g/kW-hr)

Torque (n/m)

800

210 200

300

190 200

180 170

100 800

1000 1200 1400 1600 1800 2000 2200 2400 2600

160

Engine Speed (RPM) ©2013  Achates  Power,  Inc.  All  rights  reserved.  

13  

Medium-duty Fuel Consumption Comparison Comparison of optimized OP2S engine vs. conventional, state-of-the-art, medium-duty engine §  15% “best point” advantage §  22% cycle-average advantage (20.8% at equivalent engine-out NOx)

OP2S

Best Point 48.5% BTE

Best Point 40.9% BTE

©2013  Achates  Power,  Inc.  All  rights  reserved.  

14  

Projected Heavy-duty OP2S BSFC Map § 11 Liter, 3-cylinder § 2000-2500 Nm Max Torque § 400-500hp Max Power

Best Point 51.5% BTE

Best Point 51.5% BTE

©2013  Achates  Power,  Inc.  All  rights  reserved.  

15  

Practical Considerations Packaging

Oil Consumption Versus Power Cylinder Durability Fuel specific oil consumption

Cylinder Thermal Mgmt.

Wrist Pin Durability

Piston Thermal Mgmt.

Wristpin  loads  for  typical  4-­‐Stroke  vs  2-­‐Stroke

60000

200000

Tensile

40000

100000

0 0

0

-­‐20000

-­‐100000

Compressive

Force  in  Wristpin  (N)

20000

-­‐40000

4-­‐stroke 2-­‐stroke

-­‐200000

-­‐60000 -­‐80000

-­‐300000

-­‐100000

-­‐400000

-­‐120000 -­‐500000

-­‐140000 -­‐160000

-­‐600000 0

120

240

360

480

600

720

Crank  Angle  (deg)

©2013  Achates  Power,  Inc.  All  rights  reserved.  

16  

Conclusion Perfectly suited for light-, medium- and heavy-duty applications. §  Demonstrated advantages: §  20%+ more efficient §  Clean: NOx of ~2.5g/kWh, very low soot §  Low oil consumption §  High durability potential §  Improved transient operating capabilities §  Low cost and mass

§  Practical considerations addressed §  Wrist pin durability §  Piston and cylinder thermal management §  Oil consumption and cylinder durability

©2013  Achates  Power,  Inc.  All  rights  reserved.  

17  

For More Information Contact: [email protected] +1 858.242.6121

Visit: www.achatespower.com

25 Companies to Watch in Energy Tech