Modul Handbook for Master Programme Commercial Vehicle Technology Modulhandbuch des Studiengangs Commercial Vehicle Technology

Modul Handbook for Master Programme „Commercial Vehicle Technology“ Modulhandbuch des Studiengangs “Commercial Vehicle Technology“ − Mandatory Module...
Author: Lena Kraus
0 downloads 0 Views 562KB Size
Modul Handbook for Master Programme „Commercial Vehicle Technology“ Modulhandbuch des Studiengangs “Commercial Vehicle Technology“

− Mandatory Modules / Pflichtfächer

S. 03 - 14

− Elective Modules / Wahlpflichtfächer S. 15 - 72 − Master Thesis & Project Work / Masterarbeit & Projektarbeit

S. 73 - 75

− Supplementary Modules / Vorkurse

S. 76 - 78

1. Mandatory Modules/ Pflichtfächer

2

ME-M1 (Section Mechanical Engineering) Module name:

Principles of Commercial Vehicle Technology Grundlagen der Nutzfahrzeugtechnik

Abbreviation:

Module No. ME-M1

Semester:

1

Module coordinator:

Prof. Dr.-Ing. Bernd Sauer

Lecturer:

Dipl.-Ing. Florian Schneider. (lecturer)

st

Assistant (tutorial) Language:

English (or German if the students prefer)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

Workload:

Contact study workload: 40 hrs per term

as mandatory subject. 6 double-hour tutorials both during the winter term Self-study workload:

80 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:

Mechanics and machine elements and engineering design or similar

Targeted learning outcomes:

Knowledge on the state-of-the-art and the general requirements on the technology of modern commercial vehicles. Students are able to cope with the most established methods of vehicle evaluation according to power demand, load and payload distribution and steering characteristics. Students are able to describe these in mathematical models. Students have an overview on the general design philosophies of commercial vehicles with special focus on chassis and car body.

Content:



Introduction, state of the art



Classification of Commercial Vehicles



Driving Resistance and Power Requirement



Mechanics and Dynamics of Driving



Concepts of Commercial Vehicles



Running gears of Commercial Vehicles



Structures and Carbodies



Special Commercial Vehicles



Advanced mathematical models

Exam/ Study achievements:

Written examination at the end of each semester

Forms of media:

Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature:

Hoepke (Hrsg.) u.a.: Nutzfahrzeugtechnik, 3. Aufl. (2004), ViewegVerlag, Wiesbaden MAN: Grundlagen der Nutzfahrzeugtechnik, Kirschbaum Verlag, Bonn (2004) Jazar: Vehicle Dynamics: Theory & Application, 1. (2008), Springer,

3

Science & Business Media, New York Fitch, J.W.: Motor Truck Engineering Handbook, 4. Aufl. (1994), Society of Automotive Engineers, Warrendale, USA Society of Automotive Engineers (Hrsg.): Truck Systems Design Handbook, Volume 2, (2002), 4. Aufl. (1994), Society

4

ME-M2 (Section Mechanical Engineering) Module name: Abbreviation:

Dynamical Behaviour of Vehicles Fahrzeugschwingungen Module No. ME-M2

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Bernd Sauer

Lecturer:

Prof. Dr.-Ing. Bernd Sauer

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

13 double-hour lectures, one per week

Workload:

Contact study workload: Self-study workload: Overall workload: 3

Credit points:

nd

as mandatory subject.

26 hrs per term 64 hrs per term 90 hrs per term

Recommended prerequisites:

Technical mechanics (kinetics) or machine dynamics

Targeted learning outcomes:

Knowledge of the basics of main vehicle vibrations caused by road irregularity exitations. Ability to create different simple vibration models representing the vehicle for different problems. Ability to describe road irregularities and to handle there influence in vehicle dynamics. Knowledge about the most important transfer functions. Judgement of the dynamic behaviour of a vehicle. Ability to describe above topics with advanced mathematical models. • Introduction • Single Mass Model • Harmonic exitations • Random exitations, spectral power density • Road irragularities, single obstacles • Characteristic measures to judge vehicle vibration behaviour • Simple multy body vibration systems • Special problems, i.e. loading influence etc. Written examination at the end of each semester (depending on the number of examinees)

Content:

Exam/ Study achievements: Forms of media: Literature:

Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet. Mitschke; Wallentowitz: Dynamik der Kraftfahrzeuge Knothe, Stichel: Schienenfahrzeugdynamik both Springer Verlag, Berlin

5

ME-M3 (Section Mechanical Engineering) Module name:

Drives and Gears Fahrzeuggetriebe

Abbreviation:

Module No. ME-M3

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Bernd Sauer

Lecturer:

Prof. Dr.-Ing. Bernd Sauer

nd

Prof. Dr.-Ing. Eckhard Kirchner Language:

English (or German if the students prefer)

Classification within the curriculum:

It is a mandatory module that supplies fundamentals of gears with focus on commercial vehicles practical application.

Teaching format / class hours per week during the semester:

7 blocked lectures with 4 hours per lecture

Workload:

Contact study workload: 26 hrs per term Self-study workload:

64 hrs per term

Overall workload:

90 hrs per term

Credit points:

3

Recommended prerequisites::

Machine elements or comparable

Targeted learning outcomes:

Knowledge on the state-of-the-art in power train engineering of vehicles. Knowledge on the common use power train design of vehicles with a focus on commercial vehicles.

Content:



Introduction, function of drive systems



Classification of drive systems and gears



Gear types



Standard transmission



Planetary gear



Hydrodynamic / hydrostatic gear



Design of transmission

Exams/ Study achievements:

Written examination at the end of each semester

Forms of media:

Power Point Slides combined with sketches on overhead projector. Slides provided.

Literature:

Lechner, G. , Naunheimer, H.: Fahrzeuggetriebe , 2. Auflage, Springer Verlag 2007. Klement, W.: Fahrzeuggetriebe, Hanser Verlag 2005. Kirchner, E.: Leistungsübertragung in Fahrzeuggetrieben. Springer Verlag Herbst 2007

6

ME-M4a (Section Mechanical Engineering) Module name:

Manufacturing Engineering of Commercial Vehicles

Abbreviation:

Technologie der Fertigung von Nutzfahrzeugen Module No. ME-M4a

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Jan C. Aurich

Lecturer:

Dr.-Ing. Frank H. Lehmann

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Introducing Lecture:

3 hrs.

Two-day event:

5 blocked lectures and live presentation

Full-day field trip:

To DC’s Woerth truck plant

Half-day lean event:

(JiT-Simulation)

Full-day event:

Team work presentation and oral exam

Workload:

nd

Contact Study Workload:

30 hrs.

Self Study Workload:

10 hrs.

Team Work Workload:

20 hrs.

Overall Workload:

60 hrs.

Credit points:

2

Targeted learning outcomes:

Knowledge on the state-of-the-art of commercial vehicle engineering, development and production. Knowledge on an overview on topical processes in global commercial vehicle production networks. Understanding of the requirements and basic conditions of globally active CV manufacturers.

Content:



Commercial Vehicle Markets and Customer Demands



Commercial Vehicle Technology



CV Development Process



CV Prototypes and Production Oriented Design



CV Production and Manufacturing Engineering



Lean Production and Production Systems



Launch and Change Management



Ramp-Up Management



Supplier Management



Networks in CV Production

Exam/ Study achievements:

Team work presentation and oral examination at the end of the term.

Forms of media:



Powerpoint slides (provided as hardcopy)



Additional sketches on the chalkboard, small movies etc

Literature:

rd

Hoepke et al.: Nutzfahrzeugtechnik, 3 Ed., Wiesbaden, 2004 VDA (Ed.): Auto Jahresbericht 2006

7

ME-M4b (Section Mechanical Engineering) Module name:

Automotive Production Automobilproduktion

Abbreviation:

Module No. ME-M4b

Semester:

1st

Module coordinator:

Prof. Dr.-Ing. Jan C. Aurich

Lecturer:

Prof. Dr.-Ing. Jan C. Aurich

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hrs lecture per week + 1 hr excercise

Workload:

Contact study workload: 55 hrs per term

as mandatory subject.

Self-study workload:

65 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:

Fertigungstechnik, machine elements

Targeted learning outcomes:

• Verständnis des spezifischen Ablaufs der Automobilproduktion und ihrer Besonderheiten • Kenntnisse der verwendeten Technologien • Kenntnisse über die organisatorischen und logistischen Aspekte der Automobilproduktion

Content:

Introduction to Automotive Production Body-in-White Powertrain Vehicle Assembly Commercial Vehical Production Supplier Industry Ramp-up Management • E-Mobility Written examination

Exam/ Study achievements:

• • • • • • •

Forms of media:

PowerPoint-Präsentation, Tafel, Filme, Lernplattform OLAT zum Download Skript und zusätzliche Informationen

Literature:

Scriptum

8

CS-M1 (Section Computer Science) Module name:

Foundations of Software Engineering Grundlagen des Software Engineering

Abbreviation:

Module No. CS-M1

Semester:

1

Module coordinator:

Prof. Dr. Peter Liggesmeyer

Lecturer:

Prof. Dr. Peter Liggesmeyer,

st

Prof. Dr. Dieter Rombach Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lecture + 1 h Exercise

Workload:

Contact study workload: 42 hrs per term

as mandatory subject.

Self-study workload:

78 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge about principles, methods, and tools for the development of large software systems for the commercial vehicle domain. Knowledge about important software engineering topics focusing on automotive systems. Ability to develop software under software quality assurance aspects and with automated tools.

Content:

Exam/ Study achievements:

Software engineering principles Empirical laws Basic knowledge (specification, architecture, verification, testing, process modelling, measurement, experimentation) • Component engineering (model-based development, languages and tools, non-functional requirements) • Development of large systems (system specification, design patterns, frameworks, system test) • Application engineering (requirements engineering, perspectivebased inspection) • Projekt management • Software evolution (legacy systems, maintenance) • Hot topics (standards, …) Written exam • • •

Forms of media:

Slides

Literature:

Sommerville: Software Engineering, Pearson Studium, 2001 H. Balzert: Lehrbuch der Software-Technik 1/2. Spektrum Akademischer Verlag, 2000 P. Jalote: An Integrated Approach to Software Engineering, Second Edition, Springer-Verlag, 1997 W. Zuser, T. Grechenig, M. Köhle: Software Engineering mit UML und

9

dem Unified Process, Pearson Studium, 2004. M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML 2 Glasklar; Carl Hanser Verlag; 2003. Peter Liggesmeyer: Software-Qualität; Spektrum Akademischer Verlag, 2002 Jörg Schäuffele und Thomas Zurawka: Automotive Software Engineering; Vieweg, 2006

10

CS-M2 (Section Computer Science) Module name:

Safety and Reliability of Embedded Systems Sicherheit und Zuverlässigkeit eingebetteter Systeme

Abbreviation:

Module No. CS-M2

Semester:

1

Module coordinator:

Prof. Peter Liggesmeyer

Lecturer:

Prof. Peter Liggesmeyer

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Lectures 2 h/week + exercise 1 h/week

Workload:

Contact study workload: 42 hrs per term

st

Self-study workload:

78 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:



Formal Foundations of Programming



Foundations of Software Engineering

Targeted learning outcomes:

Knowledge in handling special formal and stochastic techniques for the safety and reliability analysis of software and systems Knowledge in using relevant methods for analysis

Content:

Safety and reliability are particularly important quality criteria for software applications in the technical sector. In many domains - e.g. rail-mounted vehicles, avionics, automotive engineering, medical technology - a software failure can endanger human lives. Hence, for example, safety has to be proved before the initial start-up of such systems. These proofs must be complete in general or have to prove at least that a tolerable residual risk is not exceeded. The lecture is divided into a basic part and a practical part. In the basic part current techniques for the safety and reliability analysis are presented (Symbolic Model Checking and stochastic reliability analysis). In the practical part representatives of industrial companies, which develop security-critical software-intensive systems, report on the situation in practical use.

Exam/ Study achievements:

Written examination or oral

Forms of media:



Transparencies/beamer/etc.



Transparencies for downloading (as PDF).

Literature:

Lyu M.R., Handbook of Software Reliability Engineering, New York: McGraw-Hill, 1995 Liggesmeyer P., Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum Akademischer Verlag, 2000 Kececioglu D., Reliability Engineering Handbook, Prentice-Hall 1991

11

CS-M3 (Section Computer Science) Module name:

Software Development for Commercial Vehicles

Abbreviation:

Module No. CS-M3

Semester:

2

Module coordinator:

Prof. Peter Liggesmeyer

Lecturer:

Dr.-Ing. Mario Trapp

st

Language: Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Lectures 2 h/week + exercise 1 h/week

Workload:

Contact study workload: ? hrs per term Self-study workload:

? hrs per term

Overall workload:

? hrs per term

Credit points:

4

Recommended prerequisites:

Programming course

Targeted learning outcomes:

Knowledge of model-based design of automotive systems with current technologies. Understanding of the problems of embedded systems in the automotive sector and basic ability to solve these problems with current approaches.

Content:

The lecture describes all phases of the model-based design of automotive systems, from requirements analysis to code generation. It describes solutions to the specific problems of the domain, based on current technologies, industrial practices and research results. With the help of exercises all development steps are practiced.

Exam/ Study achievements:

Oral or written exams

Forms of media:

Slides, Beamer etc.

Literature:

B. P. Douglass: Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns, Addison-Wesley, 1999 Marc Born, Eckhardt Holz, Olaf Kath Softwareentwicklung mit UML 2 Addison-Wesley, 2004 Peter Marwedel Eingebette Systeme Springer, 2007

12

CS-M4

(Section Computer Science)

Module name:

CVT-Programming-Project CVT-Programmier-Projekt

Abbreviation:

Module No. CS-M4

Semester:

1

Module coordinator:

Juniorprof. Dr. Achim Ebert

Lecturer:

Roger Daneker

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

4 hours per semester week

st

Workload: Credit points:

4

Recommended prerequisites:

CVT - Introduction to Programming with C++

Targeted learning outcomes: Content:

The programming project builds on the fundamental programming skills taught in the introductory course. The project aims at learning in-depth programming skills along with designing and organizational skills in a small group environment. Topics presented in depth are, for example: Functions and Classes Variables, Datatypes Structures, Repetitions, Loops Data Structures Data Abstraction and Object-Oriented Design Pointers and Dynamic Data Structures

Exam/ Study achievements: Forms of media: Literature:

Dale, N.: Programming and Problem Solving with C++, 6th edition, Jones & Bartlett Learning, 2013 Friedman, F.L.: Problem Solving, Abstraction, and Design Using C++, 6th edition, Pearson, 2010 Gaddis, T.: Starting Out with C++: Early Objects, 8th edition, Pearson, 2013

13

EE-M1 (Section Electrical Engineering) Module name:

Principles of Electrical and Computer Engineering in CVT Grundlagen der Elektrotechnik und Informationstechnik in Nutzfahrzeugen

Abbreviation:

Module No. EE-M1

Semester:

1

Module coordinator:

Prof. Dr.-Ing. Steven Liu

Lecturer:

Prof. Dr.-Ing. Steven Liu, Prof. Dr.-Ing. Hans D. Schotten, Prof. Dr.Ing. Norbert Wehn, Jun.-Prof. Dr.-Ing. Daniel Görges

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

4 hours lecture

Workload:

Contact study workload: 50 hrs per term

Credit points:

st

as mandatory module

Self-study workload:

110 hrs per term

Overall workload: 5

150 hrs per term

Recommended prerequisites:

None

Targeted learning outcomes:

Knowledge of principles of electrical and computer engineering in commercial vehicle technology with focus on modeling, analysis and control of dynamic systems, …

Content:

Modeling of dynamic systems (introduction, classification, representations, electrical systems, mechanical systems, electromechanical systems, fluid dynamic systems, analogies, linearization); analysis of dynamic systems in state space (introduction, system response, stability analysis); control and observation of dynamic systems in state space (introduction, controllability, observability, state feedback control, state observation) Introduction & Motivation of Vehicular Communications; Taxonomy of Vehicular Applications & Technologies; Communication Techniques; Communication Challenges; Intelligent Transportation Systems (ITS) & Commercial Vehicle Operations (CVO);

Exam/ Study achievements: Forms of media:

Literature:

Evolution of Computer Architectures; Information technology basics (number representations, transistor, Boolean algebra, transistor switch model); Computer architectures (memory, caches, processors, multicore, big.LITTLE, DSP, software); Introduction to safety (ISO26262, Aurix processor); Virtual prototyping (hardware design, modelling, SystemC, Synopsys Platform Architect, interactive demonstrations) Written exam Lecture slides combined with sketches on the board, videos and examples under MATLAB/Simulink, lecture slides and examples available for download Richard C. Dorf and Robert H. Bishop. Modern Control System. Pearson Prentice Hall, Upper Saddle River, NJ, 12th edition, 2011. – EIT 910/084, L EIT 99 Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems. Pearson Prentice Hall, Upper

14

Saddle River, NJ, 5th edition, 2006. – EIT 925/100, L EIT 75 Norman S. Nise. Control Systems Engineering. John Wiley & Sons, New York, NY, 4th edition, 2004. – EIT 925/122, L EIT 23 Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, 1991. – EIT 930/037, L EIT 113 Christoph Sommer and Falko Dressler. Vehicular Networking. Cambridge University Press, Dec 2014

15

2. Elective Modules

16

ME-E1 (Section Mechanical Engineering) Module name:

Schwingfestigkeit Cyclic Deformation Behaviour

Abbreviation:

Module No. ME-E1

Semester:

3

Module coordinator:

Prof. Dr.-Ing. habil. Dietmar Eifler

Lecturer:

Dr.-Ing. Marek Smaga, Prof. Dr. Tillmann Beck

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format

2 Vorlesungen pro Woche

Workload:

Vorlesungen:

28 h pro Semester

Vor- und Nachbereitung:

62 h pro Semester

Insgesamt:

90 h pro Semester

rd

as elective module

Credit points:

3

Recommended prerequisites:

Grundvorlesungen in der Werkstoffkunde

Targeted learning outcomes:

Verständnis der Zusammenhänge zwischen Mikrostruktur, mikrostrukturellen Veränderungen und dem Wechselverformungsverhalten metallischer Werkstoffe bei einstufiger und betriebsnaher Beanspruchung.

Content:

• • • • • • •

Schwingfestigkeit metallischer Werkstoffe Mechanische Werkstoffprüfung, Charakteristische Kenngrößen der Schwingbeanspruchung Einflussgrößen auf das Ermüdungsverhalten Moderne Prüf- und Messverfahren: Hysteresis-, Temperatur-, Widerstands- und GMR-Messungen Betriebsnahe Beanspruchung Beeinflussung der Mikrostruktur durch Materialermüdung, Rissbildung und Rissausbreitung

Exam/ Study achievements:

Lebensdauerberechnung bei ein- stufiger und betriebsnaher Beanspruchung Written or oral examination at the end of each semester (depending on the number of examinees)

Forms of media:

Powerpoint Folien

Literature:

H.-J. Christ: Wechselverformung von Metallen, Springer-Verlag, Berlin



D. Eifler: Schwingfestigkeit von Stählen. In: H.-J. Christ: Ermüdungsverhalten metallischer Werkstoffe, MATINFO, Frankfurt/Main M. Klesnil, P. Lukas: Fatigue of Metallic Materials, Elsevier A. J. Mc Evily: Metal Failures: Mechanisms, Analysis, Prevention, John Wiley and Sons D. Radaj: Ermüdungsfestigkeit, Grundlagen für Leichtbau, Maschinen- und Stahlbau, Springer S. Suresh: Fatigue of Materials, Cambridge University Press

17

ME-E2 (Section Mechanical Engineering) Module name:

Powertrain Engineering of Commercial Vehicles I: Engines of Commercial Vehicles Fahrzeugantriebe

Abbreviation:

Module No. ME-E2

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Michael Günthner

Lecturer:

Prof. Dr.-Ing. Michael Günthner

Language:

German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hrs lecture per week

Workload:

Contact study workload: 26 hrs per term

nd

as elective module

Self-study workload:

64 hrs per term

Overall workload:

90 hrs per term

Credit points:

3

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge on the state-of-the-art in combustion engines engineering.

Content:



Diesel engines with Common Rail,



Torque-, Power Output Emissions,



Fuel Consumption,



Emission Standards worldwide,



Package Restrictions,



Design of Engine Components

Knowledge on the common use in combustion engines design for commercial vehicles.

Exam/ Study achievements:

Oral or written examination

Forms of media:

Power point presentation, scriptum

Literature:

Vieweg Handbuch Kraftfahrzeugtechnik, Hrsg.: Braess, HansHermann / Seiffert, Ulrich, Reihe: ATZ-MTZ Fachbuch, Vieweg Verlag Verbrennungsmotoren, Hrsg. Eduard Köhler, Rudolf Flierl, 4.Auflage, Vieweg Verlag

18

ME-E3 (Section Mechanical Engineering) Module name:

Virtual Product Engineering of Commercial Vehicles Virtuelle Produktentwicklung 1

Abbreviation:

Module No. ME-E3

Semester:

3

Module coordinator:

Prof. Dr.-Ing. Martin Eigner

Lecturer:

Prof. Dr.-Ing. Martin Eigner

rd

Research Assistant Language:

German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

Workload:

Contact study workload

28 hrs per term

Self-study workload

62 hrs per term

Overall workload

90 hrs per term

as elective module

Credit points:

3

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge of application of IT solutions in engineering processes. Knowledge about concepts, methods and IT-tools that are state-of-the art in the research field of Virtual Product Engineering (VPE). Ability to cope with these essential tools that support the work of engineers.

Content:

This lecture deals with the application of IT solutions in engineering processes: • • • •

Product Engineering Processes Virtual Product Engineering Processes Computer Aided Design (mechanical) - CAD Computer Aided Manufacturing – CAD/CAM

Visualisation and Digital Mockup - VR/AR, DMU Written examination at the end of each semester.

• Exam/ Study achievements: Forms of media:

Power Point Slides.

Literature:

Technical Literature and References will be announced during the lecture.

19

ME-E4 (Section Mechanical Engineering) Module name:

Virtual Product Engineering II Virtuelle Produktentwicklung 2

Abbreviation:

Module No. ME-E4

Semester:

2nd

Module coordinator:

Prof. Dr.-Ing. Martin Eigner

Lecturer:

Prof. Dr.-Ing. Martin Eigner Research Assistant

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

Workload:

Contact study workload

30 hrs per term

Self-study workload

60 hrs per term

Overall workload

90 hrs per term

as elective module

Credit points:

3

Recommended prerequisites:

Virtuelle Produktentwicklung 1, Labor 3D CAD

Targeted learning outcomes:

Die Vorlesung schafft die Voraussetzungen, IT-Lösungen für die Virtuelle Produktentwicklung als wesentliches Hilfsmittel für Ingenieure anwenden zu können. Die Studenten erwerben Wissen über Methoden, IT-Werkzeuge und Prozessabläufe, die zum Stand der Technik im Themenbereich rechnergestützte Entwicklung technischer Produkte gehören. Dadurch werden sie in die Lage versetzt, diese als wesentliche Hilfsmittel des Ingenieurs zur Arbeitsunterstützung zu begreifen. Sie lernen, je nach Problemstellung die geeigneten IT-Werkzeuge eigenständig auszuwählen und anzuwenden. Ein Ausblick auf den Stand der Forschung wird fernerhin gegeben.

Content:

Eine Einführung in die mechatronische Produktentwicklung sowie ein Überblick über die Rechnerunterstützung bei der MechanikKonstruktion werden zu Beginn gegeben. Im Mittelpunkt der Veranstaltung stehen dann die weiteren Ingenieurs-Disziplinen, die bei der mechatronischen Produktentwicklung zusammenwirken. Im Einzelnen werden die folgenden Themengebiete behandelt: • Computer Aided Design in der Elektrokonstruktion (E-CAD) • Computer Aided Software Engineering (CASE) • Computer Aided Engineering (CAE) • Product Data Management (PDM) und Product Lifecycle Management (PLM) • PLM und CAD im Anlagenbau • Datenaustausch • Datenmodellierung Written examination at the end of each semester.

Exam/ Study achievements: Forms of media:

Power Point Slides.

Literature:

Die notwendigen Materialien werden zum Download bereit gestellt. Weiterführende Literatur und Referenzen sind angegeben. Dazu gehören:

20

• Eigner, M., Stelzer, R., Produktdatenmanagement Systeme, Springer, Berlin: September 2008 • Arnold, V., u.a., Product Lifecycle Management beherrschen, Springer, Berlin: 2005 • Kohlhoff, S., Produktentwicklung mit SAP in der Automobilindustrie, Galileo Press, Bonn: 2005 Anderl, R., Trippner, D., STEP – Standard for the Exchange of Product Model Data, B. G. Teubner, Stuttgart: 2000

21

ME-E5 (Section Mechanical Engineering) Module name:

Fügetechnik in der Fahrzeugtechnik Joining Technologies in Vehicle Technology

Abbreviation:

Module No. ME-E5

Semester:

3rd

Module coordinator:

Prof. Dr.-Ing. Paul Ludwig Geiß

Lecturer:

Prof. Dr.-Ing. Paul Ludwig Geiß

Language:

German (or English)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

Two hours lecture per week

Workload:

Contact study workload

26 hrs per term

Self-study workload

64 hrs per term

Overall workload

90 hrs per term

as elective module

Credit points:

3

Recommended prerequisites:

Basics in mechanical engineering

Targeted learning outcomes:

Ability to select and to use material-specific lightweight joining technologies for different applications in vehicle construction.

Content:

Requirements for joining technologies in vehicle construction, introduction into the systematic structure of joining technologies, mechanical joining, welding, adhesive bonding, ich joining, joining of plastics and FRP-lightweight-materials, fatique properties of different joining technologies, crash performance of different joining technologies, durability of bonded joints, joining in repair and disassembling for recycling. Oral exam

Exam/ Study achievements: Forms of media:

Blackboard, transparencies and paper-handout

Literature:

J. Epker: „Nutzfahrzeuge und Technik“, sv corporate media, München (2006) Koewius, G. Gross, G. Angehm: „Aluminium-Konstruktionen des Nutzfahrzeugbaus”, Aluminium-Verlag, Düsseldorf (1990) G. Buchfink: „Faszination Blech“, Vogel, Würzburg

22

ME-E6 (Section Mechanical Engineering) Module name:

Polymers in Vehicle Technology Kunststoffe in der Fahrzeugtechnik

Abbreviation:

Module No. ME-E6

Semester:

3rd

Module coordinator:

Prof. Dr.-Ing. Alois K. Schlarb

Lecturer:

Prof. Dr.-Ing. Alois K. Schlarb

Language:

German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

as elective module 2

Workload: Credit points:

3

Recommended prerequisites:

Einführung in die Kunststofftechnik, Einführung in die Verbundwerkstoffe

Targeted learning outcomes: Content:

Exam/ Study achievements: Forms of media: Literature:

Hintergründe, Definitionen und Trends Kunststoffe im Fahrzeug Anwendungen (Kunststoffe, Konstruktionen und Fertigung): Kunststoffe im Innenraum (Interieur) Außenanwendungen (Exterieur) Unter der Haube (Under the Hood) Elektronik und Licht • Strukturanwendungen Written or oral exam at the end of each semester • • • • • • •

• Slides, short movies, sketches at the chalkboard, • OLAT internet learning platform Stauber, R.; Vollrath, L. (Eds): Plastics in Automotive Engineering, 2007

23

ME-E7 (Section Mechanical Engineering)

Module name:

Land- und Baumaschinen Agricultural and Construction Vehicles

Abbreviation:

Module No. ME-E7

Semester:

2

Module coordinator:

Dr.-Ing. Nicole Stephan, Prof. Dr. – Ing. Peter Pickel, Dr. – Ing. Klaus

nd

Meissner Lecturer:

Mr. Meissner (Fa. Terex-Demag), Mr. Pickel (John Deere)

Language:

German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 field trips to Terex & Daimler

Workload:

Credit points:

Contact Study Workload: Self Study Workload: Field Trip: Overall Workload: 3

Recommended prerequisites:

Content of Mandatory 1: “Principles of Commercial Vehicle Technology”

Targeted learning outcomes:

Students are able to cope with the most established methods of vehicle evaluation according to power demand, load and payload distribution and steering characteristics.

as elective module 14 2-hour lectures (weekly) 28 hrs. 46 hrs. 16 hrs 90 hrs.

Students have an overview on construction and laying of selected Agricultural and Construction Vehicles, e.g. Classifications, operating principles, requirements on power train and combustion engines, Communication Architecture for process automation. Content:

Basic techniques of selected Agricultural & Construction Vehicles (Construction types of tractors, chassis and gear systems, Aftertreatment of exhaust gases, Communication architectures, telematics, remote diagnosis, ISO 11783, Precision Farming Systems

Exam/ Study achievements:

Written or oral examination at the end of the term

Forms of media:

Power Point Slides combined with sketches on the chalkboard.

Literature:

Mitschke, Manfred, Wallentowitz, Henning: Dynamik der Kraftfahrzeuge. Reihe: VDI-Buch .4. neu bearb. Aufl., 2004,., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1997 Eichhorn, H.: Landtechnik. Landwirtschaftliches Lehrbuch. 7. Aufl., Verlag Eugen Ulmer, Stuttgart, 1999. Schön, H., u.a.: Die Landwirtschaft: Lehrbuch für Landwirtschaftsschulen. Bd. 3. Landtechnik, Bauwesen: Verfahrenstechnik - Arbeit Gebäude - Umwelt. 9. Aufl., BLV Verlagsges., München, Wien, Zürich, 1998.

24

ME-E8 (Section Mechanical Engineering) Module name:

Durability load data analysis Lastdaten Analyse, Bemessung und Simulation

Abbreviation:

Module No. ME-E8

Semester:

2nd

Module coordinator:

Dr. Klaus Dressler

Lecturer:

Dr. Klaus Dressler

Language:

English (or German if the students prefer)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week/ semester

14 double-hour lectures, one per week

Workload:

Contact study workload: 28 hrs per term

as elective subject.

Self-study workload:

52 hrs per term

Overall workload:

80 hrs per term

Credit points:

3

Recommended prerequisites:

Mechanics and machine elements and engineering design or similar

Targeted learning outcomes:

Understanding of the process and basic methodology for system level durability engineering, i.p.: How to handle usage variability and product variability? How to derive appropriate design loading targets for commercial vehicles? • How to derive loading targets for subsystems and components? • Concepts of durability testing and durability simulation. • Load data reduction and analysis methods § Load data analysis for mechanical systems § Load data and durability o Stress-strain paths, hystereses, local strain approach and multiaxiality § Loading statistics and design targets o Durability = loading + strength o Modelling usage variability § Amplitude based data reduction methods o Sampling rates, drift / offset / spikes o Rainflow and related counting methods § Frequency based data reduction § Derivation of design load targets § Load data analysis and system simulation o Load cascading: MBS system simulation o Invariant loading: how to simulate a new design when only measurements (inner forces) from the `old´ design are known? § From component loads to local stress-strain paths § FE- based fatigue analysis Written or oral examination at the end of each semester (depending on the number of examinees) • •

Content:

Exam/ Study achievements: Forms of media:

Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature

Guide to Load Analysis for Durability in Vehicle Engineering (Automotive Series) von P. Johannesson und M. Speckert ISBN 978-1-118-64831-5

25

ME-E9 (Section Mechanical Engineering) Module name:

Alternative Antriebskonzepte Alternative Drive Concepts

Abbreviation: Semester: Module coordinator: Lecturer: Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload:

Module No. ME-E9 3rd Dr.-Ing. Peter Kosack Dr.-Ing. Peter Kosack German For Master Degree “Commercial Vehicle Technology” as elective subject. 14 double-hour lectures, mostly one per week, some hours additionally as exercise block

Credit points: Recommended prerequisites: Targeted learning outcomes:

Content:

Exam/ Study achievements: Forms of media: Literature:

Contact study workload: 28 hrs per term Self-study workload: 52 hrs per term Overall workload: 80 hrs per term 3 Basics in Powertrain Engineering Understanding of the structure of energy generating systems and efficient use of energy in suitable powertrains, i.p.: • Knowledge of energy supply structures and their quality criteria • How to design a net model of energy converter systems for powertrains • How to design a control loop model for vehicles • How to handle requirement profiles • How to judge different drives • Sources of energy and forms of energy • Energy supply structures • Sustainability and ecological footprint • Energetic product life cicle • Advanced mathematical methods for analysis of availability of energy sources • Mathematical net model of energy converter systems • Energy efficiency and energy management in vehicles • Energy storage • Control loop model and functionality of Commercial Vehicles • Requirement profiles for drives • Examples for alternative drives Written or oral examination at the end of each semester (depending on the number of examinees) Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet. Given in the lecture

26

ME-E10 (Section Mechanical Engineering) Module name:

Product Lifecycle Management

Abbreviation: Semester: Module coordinator: Lecturer:

Module No. ME-E10 2nd + 4th Prof. Dr.-Ing. Martin Eigner Dipl.-Kfm.-techn.Patrick D. Schäfer

Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites: Targeted learning outcomes: Content:

English For Master Degree “Commercial Vehicle Technology” as elective subject. 2 + 1 exercise

Exam/ Study achievements: Forms of media: Literature:

4

We offer the course Product Lifecycle Management (PLM) at the example of PTC Windchill as a lecture with practical exercises . This course is being conducted together with several partner companies from the industry. PLM is the management of product data and technical processes throughout the product lifecycle. In the lecture we introduce the general structure and application functions of PLM solutions. Special topics are economic benefits of PLM, process management and introduction to PLM in an company environment. In the practical exercises the participants will apply the theoretical knowledge using a PLM solution. The participants will use PTC Windchill, PTC Creo and ARAS Innovator. Written or oral examination at the end of each semester (depending on the number of examinees) Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet. Eigner, M., Stelzer, R.: "Product Lifecycle Management: Ein Leitfaden für Product Development und Lifecycle Management", 2. Aufl., Springer Verlag, Berlin, Heidelberg, 2009

27

ME-E11 (Section Mechanical Engineering) Module name: Abbreviation: Semester: Module coordinator: Lecturer: Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites: Targeted learning outcomes: Content:

Exam/ Study achievements: Forms of media: Literature:

Manufacturing Systems Engineering I Systeme der Produktion I Module No. ME-E11 Prof. Dr.-Ing. Jan Aurich Dipl.-Ing. Christoph Felix Herder German For Master Degree “Commercial Vehicle Technology” as elective subject. 2

3

• • • • • • •

Einführung in Systeme der Produktion Produktionsstrukturen Arbeitsplanung Produktionsplanung und -steuerung Integrierte Gestaltung von Produkt und Prozess Planung von Produktionssystemen Energieeffizienz in der Produktion

W. Eversheim, Organisation in der Produktionstechnik, Bd. 1 -4, Springer VDI-Verlag; W. Eversheim, G. Schuh, Gestaltung von Produktionssystemen, Springer VDI-Verlag; B. Aggteleky, Fabrikplanung, Bd. 1 -3, Hanser Verlag.

28

ME-E12 (Section Mechanical Engineering) Module name: Abbreviation: Semester: Module coordinator: Lecturer: Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites: Targeted learning outcomes: Content:

Exam/ Study achievements: Forms of media: Literature:

Manufacturing Systems Engineering II Systeme der Produktion II Module No. ME-E12 Prof. Dr.-Ing. Jan Aurich German For Master Degree “Commercial Vehicle Technology” as elective subject. 2

3

• Grundlagen des ganzheitlichen Produktionssystems • Kontinuierliche Verbesserung • Mitarbeiterorientierung • Arbeitsplatz und Arbeitsmethoden • Produktionsorganisation und Steuerungsstrategien • Problemerkennung und beseitigung • Blockveranstaltung KVPWorkshop Written examination PowerPoint-Präsentation, Tafel, Filme, Exkursion, Lernplattform OLAT zum Download Skript und zusätzliche Informationen H. Takeda, Das synchrone Produktionssystem, Verlag Moderne Industrie; M. Imai, Gemba-Kaizen, Verlag Langen / Müller; G. Geiger, Kanban, Hanser Verlag; VDI-Richtlinie 2860, Ganzheitliche Produktionssysteme, Grundlagen, Einführung und Bewertung, Beuth Verlag M. Rother, Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut

29

ME-E13 (Section Mechanical Engineering) Module name: Abbreviation: Semester: Module coordinator: Lecturer: Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites: Targeted learning outcomes: Content:

Exam/ Study achievements: Forms of media: Literature:

Quality Management I Qualitätsmanagement I Module No. ME-E13 Prof. Dr.-Ing. Jan Aurich Dr.-Ing. Christian Bohr German For Master Degree “Commercial Vehicle Technology” as elective subject. 2

3

• Qualitätsmanagementsysteme • Qualitätsaudits • WerkzeugedesQualitätsmanagements • QualityFunctionDeployment(QFD) • Risikoanalysen(FMEA,FTA) • AdvancedProductQualityPlanning(APQP) • DesignofExperiments(DoE) Written examination at the end of each semester Folien, Beamer, Tafel/Overhead, Hilfsblätter T. Pfeifer; R. Schmitt: Masing Handbuch Qualitätsmanagement. 6. Auflage. München: Carl Hanser, 2014.

30

ME-E14 (Section Mechanical Engineering) Module name: Abbreviation: Semester: Module coordinator: Lecturer: Language: Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites: Targeted learning outcomes: Content:

Exam/ Study achievements: Forms of media: Literature:

Quality Management II Qualitätsmanagement II Module No. ME-E14 Prof. Dr.-Ing. Jan Aurich German For Master Degree “Commercial Vehicle Technology” as elective subject. 2

3

• Fähigkeitsuntersuchungen • Statistische Prozessregelung (SPC) • Qualitätsmanagement im Beschaffungsprozess • Reklamationsmanagement • Kostenrechnung im Qualitätsmanagement • Computergestütztes Qualitätsmanagement (CAQ) • Qualitätsmanagement für Dienstleistungen Written examination at the end of each semester Folien, Beamer, Tafel/Overhead, Hilfsblätter T. Pfeifer; R. Schmitt: Masing Handbuch Qualitätsmanagement. 6. Auflage. München: Carl Hanser, 2014.

31

CS-E1 (Section Computer Science) Module name:

Autonome Mobile Roboter I & II(AMRI & II) Autonome Mobile Roboter I & II(AMRI & II)

Abbreviation:

Module No. CS-E1

Semester:

2

Module coordinator:

Prof. Dr. rer. nat. Karsten Berns

Lecturer:

Prof. Dr. rer. nat. Karsten Berns

Language:

German/English as required

Classification within the curriculum:

Elective subject for Master course “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

4 h Lecture + 2 h Exercise

Workload:

Contact study workload

84 hrs per term

Self-study workload

156 hrs per term

Overall workload

240 hrs per term

nd

Credit points:

8

Recommended prerequisites:

Basics in Computer Systems and Robotics

Targeted learning outcomes:

Basic knowledge in the field of autonomous mobile robots. The following aims should be achieved: • • • • • • •

Content:

Exam/ Study achievements: Forms of media: Literature:

Kinematics of autonomous mobile robots Lokalisation and mapping Concepts fort he development of complex control systems Dynamics of autonomous mobile robots Lokalisation and mapping Advanced sensor systems Application of vison

• Kinematics of wheel-driven robots • System components • Navigation • Collision avoidance • Lokalisation and mapping • Dynamics of wheeled-driven robots • SLAM (Simultaneous Localisation and Mapping) • Algorithms for the estimation of positions • Vison in mobile robotics Oral exam • Transparencies/beamer/etc. • Transparencies for downloading (as PDF) R- Siegwart and I.R. Nourbakhsh (2004). Introduction to Autonomous Mobile Robots. The MIT Press S. Iyengar and A. Elfes (1991). Autonomous Mobile Robots Perception, Mapping and Navigation, volume 1. Institute of Electrical and Electronic Engineers Jones, J. L. (1993). Mobile Robots-From Inspiration to

32

Implementation. Addison Wesley. Concrete literature will be announced in the lecture.

33

CS-E2 (Section Computer Science) Module name:

Hardware-Software-Systems Hardware-Software-Systeme: Synthese

Abbreviation:

Module No. CS-E2

Semester:

3

Module coordinator:

Prof. Klaus Schneider

Lecturer:

Prof. Klaus Schneider

Language:

German and English (alternating)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as elective subject.

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

Workload:

Contact study workload: 42 hrs per term

st

Self-study workload:

78 hrs per term

Overall workload:

120 hrs per term

Credit points:

8

Recommended prerequisites:

-

Targeted learning outcomes:

Ability in modelling and programming of parallel and hybrid systems

Content:



HW/SW-Synthesis of conditional actions



causality analysis



interfaces and codesign



operation scheduling



resource allocation



resource binding



design space exploration

Skills in Compilation/Synthesis of System Descriptions

Exam/ Study achievements:

Written or oral examination

Forms of media:



Blackboard/flipchart/etc.



Transparencies/beamer/etc.



Transparencies for downloading (as PDF)

Literature:

G. Berry, The Esterel Language Primer, 2000 G. Berry, The Constructive Semantics of Esterel, 1999 N. Halbwachs, Synchronous programming of reactive systems, Kluwer, 1993 Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone, The Synchronous Languages Twelve Years Later, Proceedings of the IEEE, 91(1):64-83, 2003 D. Harel and A. Naamad, The STATEMATE Semantics of Statecharts, ACM Transactions on Software Engenieering Methods, 5(3):293-333, 1996 N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The Synchronous Dataflow Programming Language LUSTRE, IEEE Proceedings, 79(9):1305-1320, 1991 S. Palnitkar, Verilog HDL, Prentice Hall, 2003

34

G. Lehmann, B. Wunder, and M. Selz, Schaltungsdesign mit VHDL: Synthese, Simulation und Dokumentation digitaler Schaltungen, Franzis Verlag, 1994 P.J. Ashenden, VHDL Cookbook, im Internet verfügbar, Stand 1990 Modelica: A Unified Object-Oriented Language for Physical Systems Modeling, Tutorial Version 1.4 Internet sources: www.modelica.org www.systemverilog.org www.synalp.org

35

CS-E3 (Section Computer Science) Module name:

Process Modeling Prozessmodellierung

Abbreviation:

Module No. CS-E3

Semester:

2

Module coordinator:

Prof. Dr. Dieter Rombach

Lecturer:

Dr. Jens Heidrich

Language:

German and English (on request)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2h Lecture + 1 h Exercise

Workload:

Contact study workload

45 hrs per term

Self-study workload

81 hrs per term

Overall workload

120 hrs per term

nd

as elective module

Credit points:

4

Recommended prerequisites:

Foundations of Software Engineering

Targeted learning outcomes:

Gaining knowledge and capabilities for designing, creating, analyzing, and applying software development processes

Content:

• • • • •

• • • • • • • • • • •

Becoming acquainted with industrial software development processes Independent modeling of software development processes Advantages and disadvantages of process modeling techniques Applying process models effectively for different purposes Process Modeling is a specialization field that is practically oriented.The development and maintenance of commercial vehicles requires integrated processes for different disciplines (e.g., mechanics, software). This class focuses on software development processes and demonstrates their integration with processes of different type in the overall system development and maintenance process. Topics: Introduction and classification (objectives, research and application areas) Terminology (process model, role, 4-domain-principle) Prescriptive process modeling (life cycle models, standards, examples, assessment criteria, process gates) Descriptive process modeling (possible usages, procedure, process elicitation) Process modeling notations (Appl/A, Funsoft Nets, Marvel, Statemate, MVP-L, IDEF0, ETVX) Process modeling tools (ECMA/NIST reference model, modeling tools, PSSEs, examples) Software project planning (effort estimation, schedule planning, personnel planning, sequence planning) Project monitoring and management (data collection, visualization of metrics) Other usages (SPI, QIP, ISO 15504, ISO 9000, CMMI, process simulation) Future developments (agile process documentation, process machines,

36

Exam/ Study achievements: Forms of media: Literature:

process patterns) Oral or written exam • transparencies/beamer/etc. • transparencies for downloading (as PDF) Jean-Claude Derniame, Badara Ali Kaba, David Wastell (Eds.): Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science 1500, Springer, 1999. Finkelstein, A., Kramer, J., Nuseibeh, B. (eds): Software Process Modelling and Technology. Taunton: Research Studies Press, 1994. Christian Bunse und Antje von Knethen. Vorgehensmodelle kompakt. Spektrum Akademischer Verlag, Heidelberg, 2002.

37

CS-E4 (Section Computer Science) Module name:

Product Line Engineering Product Line Engineering

Abbreviation:

Module No. CS-E4

Semester:

3

Module coordinator:

Prof. Dr. Dieter Rombach

Lecturer:

Dr.-Ing. Martin Becker

Language:

German and English (alternating)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lecture + 1 h Exercise

Workload:

Contact study workload

42 hrs per term

Self-study workload

78 hrs per term

Overall workload

120 hrs per term

rd

as elective module

Credit points:

4

Recommended prerequisites:

Foundations of Software Engineering

Targeted learning outcomes:

Transfer of knowledge and education in activities required for a systematic planning and realization of product lines (PL), or respectively software reuse in general. Organizational issues (reuse life cycle, migration) Definition, development and assessment of product line architectures • Modelling and implementation of generic components • Analysis of product variants • Support of software development by reverse engineering • Basic concepts of product lines (commonality, variability, decisions) • Role and concepts of architectures (styles, patterns, and scenarios) • Implementation technologies (MDA, Preprocessors, aspectorientend development) • Technology transfer (Adaptation and adoption of technologies, migration strategies) • Reverse-Engineering (basic and detailed analyses, reconstruction of architectural views and structures) • Domain analysis (product map, management of varying requirements and system characteristics) Oral or written exam • •

Content:

Exam/ Study achievements: Forms of media: Literature:



transparencies/beamer/etc.



transparencies for downloading (as PDF)

Atkinson et. al., Component-based Product Line Engineering with UML. Addison-Wesley 2001 Weiss, Lai: Software Product-Line Engineering. A Family-Based Software Development Process Addison-Wesley, 1999 Clements: Software Product Lines. Practices and Patterns. Northrop,

38

2002

39

CS-E5 (Section Computer Science) Module name:

Requirements Engineering Anforderungstechnik

Abbreviation:

Module No. CS-E5

Semester:

3

Module coordinator:

Prof. Dr. h.c. Dieter Rombach

Lecturer:

Prof. Dr. h.c. Dieter Rombach

Language:

German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 Lectures, 1 Exercise

rd

as elective module

Workload Credit points:

4

Recommended prerequisites: Targeted learning outcomes:

Erwerb von Kenntnissen und Fähigkeiten zur ingenieurmäßigen Durchführung des Anforderungsprozesses • Methoden zur Erfassung von Anforderungen • Techniken und Vorgehensweise zur Modellierung /Spezifikation von Anforderungen • Techniken zum Anforderungsmanagement •

Content

Besonderheiten der Anforderungsspezifikation im Kontext der Produktlinienentwicklung Techniken zur Erhebung von Benutzeranforderungen Ansätze zur Modellierung von Benutzeranforderungen (Beschreibungstechniken, Prozesse) Transformation zu Entwickleranforderungen (funktionale, nichtfunktionale Anforderungen) Anforderungsverhandlung (Negotiation, Priorisierung) Anforderungen für Produktlinien Validierung von Anforderungen

Exam/ Study achievements:

mündliche oder schriftliche Abschlussprüfung

Forms of media:

Folien/Beamer/etc. Folien zum Download (als PDF)

Literature:

Cockburn. Writing Effective Use Cases, Addison-Wesley, 2001. S. Robertson, J. Robertson, Mastering the Requirements Process, Addison-Wesley, 2002. S. Lauesen: Software Requirements, Addison-Wesley, 2002

40

CS-E6 (Section Computer Science) Module name:

Prozessorarchitektur

Abbreviation:

Module No. CS-E6

Semester:

1 +3

Module coordinator:

Prof. Dr. rer. nat. Klaus Schneider

Lecturer:

Dr. Jörg Dörr

Language:

German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 Lectures, 1 Exercise

st

rd

as elective module

Workload Credit points:

4

Recommended prerequisites: Targeted learning outcomes: Content

• processors with dynamic scheduling (most superscalar processors) • prozessors with static scheduling (most VLIW/DSP processors) • vector processors and multi-media instructions multi-processor computers and multi-core architectures

Exam/ Study achievements:

exam written

Forms of media: Literature:

41

CS-E7 (Section Computer Science) Module name:

Bussystems

Abbreviation:

Module No. CS-E7

Semester:

1st +3rd

Module coordinator:

Dr. habil. Bernd Schürmann

Lecturer:

Prof. Dr.-Ing. Reinhard Gotzheim Dr. Thomas Kuhn

Language:

German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as elective module

Teaching format / class hours per week during the semester: Workload: Credit points:

4

Recommended prerequisites:

Rechnersysteme 1

Targeted learning outcomes: Content:

• • • • • • •

• • • •

• •

Foundations of safety relevant communication systems (Real-Time Properties, Faults, Failures, Hazards) Network topologies, ISO/OSI Layered Architecture Physical foundations of communication systems (Signals, Sampling, Modulation) Bus systems for automotive applications (e.g. CAN, CanOpen, FlexRay, LIN, MOST, Real-Time Ethernet, Worst Case Analysis, Automotive Communication and Scheduling, Holistic Analysis of Communication Times and Delay) Bus Systems for Commercial Vehicle Networks (e.g. ISOBUS) Wireless Networking for Commercial Vehicles and Automotive Systems (Open Systems, Foundations of Wireless Communication, Challenges in Automotive and Commercial Vehicle Domains, Standard extensions, Scalability, Reliability, Security) Avionic Networks (Real-Time Ethernet Extensions, AFDX)

Exam/ Study achievements:

Oral examination

Forms of media:



Literature:

42

CS-E8 (Section Computer Science) Module name:

Power-Aware Embedded Systems

Abbreviation:

Module No. CS-E8

Semester:

1st + 3rd

Module coordinator:

Prof. Dr. Christoph Grimm

Lecturer:

Prof. Dr. Christoph Grimm

Language:

German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format

2 h Lectures, 1 h Exercise

as elective module

Workload: Credit points:

4

Recommended prerequisites:

Rechnersysteme 1+2, Kenntnisse in C/C++

Targeted learning outcomes: Content:

Exam/ Study achievements:

Energy- and power aware systems, self-sufficient and autonomous systems • Technological reasons and limits for power consumption • Low power data path design • Architectural clock- and power gating • Power management: RTFS, DFS, DVFS, AVS, etc. • Power/energy awareness in OS and applications, power aware compilers • Virtual prototyping, estimation, power profiling, development of low-power software • Power supply, battery and harvester models • Power converters, Low-Power Standby • Low-Power Processors, RT/TX (WUR, ZigBee, W6LoPan, Bluethooth, etc.) Embedded Systems for Energy Management Written examination •

Forms of media: Literature:

43

CS-E9 (Section Computer Science) Module name:

Virtual Prototyping und HW/SW Co-‘Design

Abbreviation:

Module No. CS-E9

Semester:

2

Module coordinator:

Prof. Christoph Grimm

Lecturer:

Prof. Christoph Grimm

Language:

German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

nd

+4

th

as elective module

Teaching format Workload:

2 hours lecture / 3 hours exercise

Credit points:

6

Recommended prerequisites:

• •

Rechnersysteme 1+2 Kenntnisse in C/C++

• •

Entwurfsmethodik Ausführbare Spezifikation, Architekturevaluation, Systemintegration, Verifikation Models of Computation: Kahn-Prozess Netzwerke, Synchroner Datenfluss, Zeitbehafteter Datenfluss, StateCharts Simulation Transaction Level Modelling von Multi-Prozessor-Systemen Synthese von HW/SW Systemen SystemC (AMS, TLM)

Targeted learning outcomes: Content:



• • • • Exam/ Study achievements: Forms of media: Literature:

Written examination • • • •

Tafel/Flipchart/etc. Folien/Beamer/etc. Vorlesungsfolien D. Gajski, Design of Embedded Systems

44

CS-E10 (Section Computer Science) Module name:

Seminar: Visualisierung und HCI

Abbreviation:

Module No. CS-E10

Semester:

2nd +4th

Module coordinator:

apl. Prof. Achim Ebert

Lecturer:

apl. Prof. Achim Ebert

Language:

German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format

2 h per week

as elective module

Workload: Credit points:

8

Recommended prerequisites:

Scientific Visualization

Targeted learning outcomes:

Kompetenz zur Einarbeitung in ein spezielles Thema aus dem Bereich der Visualisierung • Kompetenz zur verständlichen Präsentation eines abgegrenzten Fachthemas unter Einsatz elektronischer Medien • Kompetenz zur fachlichen Diskussion • Ausgewählte Themen aus dem Visualisierung, z. B.: VR/AR • Information Visualization • Scientific Visualization • Adaptive/mobile Visualization • Visualization of medical and biological data Präsentation und schriftliche Ausarbeitung

Content:

Exam/ Study achievements:



Forms of media:

Folien, Beamer, etc.

Literature:

themenabhängige Literatur

45

CS-E11 (Section Computer Science) Module name:

3D Computer Vision

Abbreviation:

Module No. CS-E11

Semester:

2nd + 4th

Module coordinator:

Prof. Dr. Didier Stricker

Lecturer:

Prof. Dr. Didier Stricker

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format

2 h Lectures

as elective module

Workload: Credit points:

4

Recommended prerequisites: Targeted learning outcomes:

• • •

Content:

• • • • •

Fähigkeit zur Einarbeitung in ein spezielles Thema aus dem Bereich 3D Computer Vision & Augmented Reality Fähigkeit zur verständlichen Präsentation eines abgegrenzten Fachthemas unter Einsatz elektronischer Medien Fähigkeit zur fachlichen Diskussion Ausgewählte Themen aus dem Bereich 3D Computer Vision & Augmented Reality, z.B.: Algorithmen/Verfahren zur Kameraverfolgung, Poseschätzung, Objekterkennung, 3D Rekonstruktion, etc. Augmented Reality Applikationen und aktuelle Trends Computer Vision und Augmented Reality auf ConsumerEndgeräten Realistisches Rendering

Exam/ Study achievements:

Präsentation und schriftliche Ausarbeitung

Forms of media:

Folien/Beamer/etc.

Literature:

Abhängig vom Seminarthema.

46

CS-E12 (Section Computer Science) Module name:

Applications of Artificial Intelligence Anwendungen der künstlichen Intelligenz

Abbreviation:

Module No. CS-E12

Semester:

2

Module coordinator:

Prof. Andreas Dengel

Lecturer:

Dr. Marcus Liwicki

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

nd

+4

th

as elective module

Workload: Credit points:

4

Recommended prerequisites:

Kenntnisse in der künstlichen Intelligenz.

Targeted learning outcomes:

Die Studierenden besitzen

Content:

• Grundlagen: Anfänge der KI, erste Anwendugnen in der Praxis, anwendungsbezogene Entwicklung der KI • Allgemeiner Überblick über erfolgreiche Praxisanwendungen • Vorstellung und Erläuterung zum Einsatz und der Anwendung von KI-Verfahren und -Modellen bei realen Problemstellungen, unter anderem: Robocup, Handschrifterkennung, Spracherkennung, KI in Computerspielen, Unterstützung von Wissensarbeitern im Büro , KI im Argrarbereich • Zukunft der KI

Exam/ Study achievements:

mündliche oder schriftliche Abschlussprüfung

Forms of media:

Tafel/Flipchart/etc.

• Kenntnis von erfolgreichen Anwendungen der Künstlichen Intelligenz in der realen Welt. • Erfahrungen mit der Anwendung von KI-Verfahren und -Modellen in praxisorientierten realweltlichen Umgebungen.

Folien/Beamer/etc. Folien zum Download (als PDF) Literature:

Nilsson, N.: Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publ., 1998 Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, 2010 Innovative Applications of AI (jährliche Konferenz), http://www.aaai.org/Conferences/IAAI/iaai.php

47

CS-E13 (Section Computer Science) Module name:

Embedded Intelligence Eingebettete Intelligenz

Abbreviation:

Module No. CS-E13

Semester:

2

Module coordinator:

Prof. Dr. Paul Lukowicz

Lecturer:

Prof. Dr. Paul Lukowicz +Dr. Jingyuan Cheng

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

nd

+4

th

as elective module

Workload: Credit points:

4

Recommended prerequisites:

Kenntnisse in Signalverarbeitung und Machine Learning, mindestens eine Programmiersprache (C/C++, Java, MATLAB/Python).

Targeted learning outcomes:

Die Studierenden verstehen die Basiskonzepte EingebetteterIntelligenz. Sie besitzen die Fähigkeit, eine einfache konkrete Aktivitätserkennungsaufgabe zu lösen (z. B. Aktivitätserkennung mit Beschleunigungssensor, Indoor-Lokalisation durch WiFi-Signal).

Content:

Die Vorlesung beschäftigt sich mit den grundlegenden Techniken mit den eingebettete Systeme die Umwelt und menschliche Aktivitäten erfassen und modellieren können und den darauf aufbauenden Anwendungen. • • • • • •



Klassen und Beispiele der Problemstellung an Hand konkreter Anwendungen Eigenschaften und Nutzungsmöglichkeiten verschiedener Sensoren im Hinblick auf unterschiedliche Problemstellungen Eignung verschiedener Methoden der Signalverarbeitung und des Machine Learning für verschiedene Erkennungsaufgaben Beispiele für vollständige Erkennungsarchitekturen aus konkreten Anwendungen Berücksichtigung der Ressourcenanforderungen in den Erkennungsarchitekturen Umgang mit dynamischen Sensorkonfigurationen Leistungsbewertung

Exam/ Study achievements:

mündliche Abschlussprüfung

Forms of media:

Folien/Beamer/etc. Folien zum Download (als PDF)

Literature:

Wird in der Vorlesung bekannt gegeben.

48

CS-E14 (Section Computer Science) Module name:

Automotive Software: Techniken und Anwendungen Software Engineering im Fahrzeugbau

Abbreviation:

Module No. CS-E14

Semester:

1

Module coordinator:

Prof. Klaus Schneider

Lecturer:

Prof. Klaus Schneider

Language:

German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

nd

+3

rd

as elective module

Workload: Credit points:

4

Recommended prerequisites:

Grundlagen eingebetter Systeme

Targeted learning outcomes:

• Kenntnisse der Systemarchitektur aktueller Softwaresysteme aus dem Automobilbereich • Kenntnisse aktueller Techniken zum Entwurf von Automobilsoftware • Verständnis für die speziellen Anforderungen und Probleme im Bereich Automobilsoftware

Content:

Die Veranstaltung führt zunächst die grundlegende Struktur von Softwaresystemen aus dem Automobilbereich ein. Die wesentlichen Komponenten und grundlegenden Probleme werden hierbei behandelt. Die wichtigsten Techniken und Methodiken des Anwendungsgebietes werden vorstellen und mit Hilfe von ausgewählten Problemen illustriert. Studenten nutzen das erworbene Wissen in den Übungen zur Entwicklung kleinerer aber realitätsnaher Beispiele.

Exam/ Study achievements:

Written or oral examination

Forms of media:

• Tafel/Flipchart/etc. • Folien/Beamer/etc.

Literature:

• Jörg Schäuffele, Thomas Zurawka: Automotive Software Engineering. Springer-Verlag. 2014. • Henning Wallentowitz: Handbuch Kraftfahrzeugelektronik. SpringerVerlag. 2011. • Weitere Literatur wird in der Vorlesung bekannt gegeben.

49

CS-E15 (Section Computer Science) Module name:

Power-Aware Embedded Systems

Abbreviation:

Module No. CS-E15

Semester: Module coordinator:

Prof. Dr. Christoph Grimm

Lecturer:

Prof. Dr. Christoph Grimm

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

as elective module

Workload: Credit points:

4

Recommended prerequisites:

• Rechnersysteme 1+2 oder Äquivalente Kenntnisse aus anderem Studiengang • Kenntnisse in Grundlagen des Schaltungsentwurfs (CMOS Transistor, ...) • Kenntnisse in C/C++

Targeted learning outcomes: Content:

• Energy- and power aware systems, self-sufficient and autonomous systems • Technological reasons and limits for power consumption • Low power data path design • Architectural clock- and power gating • Power management: RTFS, DFS, DVFS, AVS, Closed-Loop DVFS, etc. • Power converters for Voltage Scaling and Low-Power Standby • Power/energy awareness in OS and applications, power aware compilers • Virtual prototyping, estimation, power profiling, development of lowpower software • Power supply, battery and harvester models • Low-Power Processors, RT/TX (WUR, ZigBee, W6LoPan, Bluethooth, etc.) • Embedded Systems for Energy Management

Exam/ Study achievements:

• Excercises in OLAT • Written examination

Forms of media: Literature:

• Low Power Design Essentials (Jan Rabaey, Springer Verlag 2009) • Protocols and Architectures for Wireless Sensor Networks (Karl, Willig; Wiley 2006) • Vorlesungsunterlagen via OLAT

50

CS-E16 (Section Computer Science) Module name:

Virtual Prototyping and HW/SW Co-Design

Abbreviation:

Module No. CS-E16

Semester: Module coordinator:

Prof. Dr. Christoph Grimm

Lecturer:

Prof. Dr. Christoph Grimm

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hours lecture, 3 hours exercise

as elective module

Workload: Credit points:

6

Recommended prerequisites:

It is really required to have good, practical C++ programming experiences. It is not sufficient to have read a book on C++. If so, I would recommend to plan some more time for the lab exercises (this time is a good investment anyhow as you will need C++ earlier or later anyhow).

Targeted learning outcomes: Content:

1 Introduction 1.1 From Embedded to Cyber-Physical Systems 1.2 Models in the development processes 1.2.1 Models in the development process 1.2.2 Model based development 1.2.3 Virtual prototyping 2 Foundations of Modeling 2.1 Structure and behavior 2.1.1 Time, signals and behavior 2.1.2 Structure and hierarchy, compositionality 2.2 Data flow models (multiplicative semantics) 2.2.1 Process networks 2.2.2 Static data flow 2.2.3 Timed data flow 2.3 Control flow and automata (additive semantics) 2.3.1 Hierarchy, concurrency 2.3.2 Timed automata 2.4 Signal Processing Systems (frequency domain) 2.4.1 Linear and Time-Invariant Systems 2.4.2 Impulse response and convolution 2.4.3 Transfer functions 3 Modeling Approaches and Languages (with LAB exercises!) 3.1 Systems modeling

51

3.1.1 Model Based Systems Engineering 3.1.2 SysML 3.2 HW/SW Systems 3.2.1 HW/SW Development 3.2.2 HW/SW Interface 3.2.3 SystemC 3.3 Physical systems 3.3.1 Block Diagrams 3.3.2 SystemC AMS 4 Analysis and architecture exploration 4.2 Profiling 4.2.1 Hot spots 4.3 Estimation 4.3.1 Throughput and performance 4.3.2 Worst-case execution time 4.3.3 Power estimation 5 Verification and validation 5.1 Tracking of requirements 5.2 Verification planning 5.3 Coverage and test strategies 5.3.1 Coverage metrics 5.3.2 Random pattern generation 5.3.3 Application fitness and validation Exam/ Study achievements:

• Written examination • Lab part is mandatory

Forms of media: Literature:

• The lecture is well documented and there are Laguage Reference manuals and User's Guides from SystemC available.

52

EE-E1 (Section Electrical Engineering) Module name:

Synthesis and Optimization of Microelectronic Systems Synthese und Optimierung mikroelektronischer Systeme

Abbreviation:

Module No. EE-E1

Semester:

1st

Module coordinator:

Prof. Dr.-Ing. Norbert Wehn

Lecturer:

Prof. Dr.-Ing. Norbert Wehn

Language:

English/German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hours lecture, 1 hour exercise

as elective module

Workload: Credit points:

4

Requirements under the examination regulations: Recommended prerequisites:

Vordiplom

Targeted learning outcomes: Content:

Hardware/Software-Codesign, Verfahren der High-Level Synthese (Scheduling, Allocation, Binding), Verfahren zur RegisterTransfersynthese.

Exam/ Study achievements:

Oral exam

Forms of media: Literature:

G. DeMicheli: Synthesis and Optimization of Digital Circuits, Qaddison Wesley; D. Gajski, Introduction to High-Level Synthesis, Kluwer Academic Publisher

53

EE-E2 (Section Electrical Engineering) Module name:

Mikroelektronik für Nichtvertiefer

Abbreviation:

Module No. EE-E2

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Norbert Wehn

Lecturer:

Prof. Dr.-Ing. Norbert Wehn

Language:

English/German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture,

rd

Workload: Credit points:

4

Requirements under the examination regulations: Recommended prerequisites:

EE-M1, Vordiplom

Targeted learning outcomes: Content:

Einführung in den Entwurfszyklus integrierter Schaltungen, Technologische Grundlagen, Implementierungsstile, schaltungstechnische Grundlagen, Entwurfsmethodiken.

Exam/ Study achievements:

Oral exam

Forms of media: Literature:

M. J. S. Smith: Application-Specific Integrated Circuits, Addison Wesley; J. M. Rabaey: Digital Integrated Circuits - A Design Perspective, Prentice Hall.

54

EE-E3 (Section Electrical Engineering) Module name:

Architecture of Digitial Systems I Architektur digitaler Systeme I

Abbreviation:

Module No. EE-E3

Semester:

1st + 3rd

Module coordinator:

Prof. Dr.-Ing. habil. Wolfgang Kunz

Lecturer:

Priv. Doz. Dr.–Ing.habil. Dominik Stoffel

Language:

English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture + 1 hour exercise (per week)

Workload:

Contact-study workload:

39 h per semester

Self-study workload:

81 h per semester

Overall workload:

120 per semester

Credit points:

4

Recommended prerequisites:

Basic knowledge in Logic Design

Targeted learning outcomes: Content:

Exam/ Study achievements:

This course addresses the fundamentals of computer architecture while focus on RISC processors. We will discuss • Data representation • Signed and unsigned fixed point numbers • Floating point numbers, IEEE 754 standard • Computer arithmetic • Algorithms • Sequential and parallel hardware implementations • Instruction set and machine language • Instruction set categories • Addressing modes • Assembler programming • Datapath and control • Hardware implementation of a processor • Control unit design, microprogramming • Exceptions • Instruction set parallelism • Pipelining • Superscalar and VLIW processors • Dynamic scheduling • Memory hierarchy • Caches • Virtual memory, page tables, TLB Oral exam

Forms of media:

Website, slides

Literature:



Patterson/Hennessy: Computer Organization and Design - The Hardware/Software-Interface, Morgan Kaufmann, 2008, EIT

55



860/103 Hennessy/Patterson: Computer Architecture - A Quantitative Approach, Morgan Kaufmann, 2006, EIT 860/104

56

EE-E4 (Section Electrical Engineering) Module name:

Architecture of Digitial Systems II Architektur digitaler Systeme II

Abbreviation:

Module No. EE-E4

Semester:

1st or 3rd

Module coordinator:

Prof. Dr.-Ing. habil. Wolfgang Kunz

Lecturer:

Priv. Doz. Dr.–Ing.habil. Dominik Stoffel

Language:

English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture + 1 hour exercise (per week)

Workload:

Contact-study workload:

39 h per semester

Self-study workload:

81 h per semester

Overall workload:

120 per semester

Credit points:

4

Recommended prerequisites:

Basic knowledge in assembler programming and processor architecture

Targeted learning outcomes:



Content:

Exam/ Study achievements:

understand the fundamental design principles, models and architectures of embedded computing systems • be able to read advanced literature on the subject be able to get engaged in research and development projects in this area • This lecture discusses basic architectures of microprocessorbased digital systems as they are employed in embedded systems and systems-on-chip today. The chapters and their topics: • Introduction. Challenges of Embedded System design, the design flow and design methodology. • Microprocessor Instruction sets. Comparison of a generalpurpose CPU with a digital signal processing CPU. • Microprocessor Interfaces. Mechanisms and infrastructures for communication within embedded systems. Interrupts, bus systems, bus hierarchies. • Processes and Operating Systems. Fundamentals of multitasking in embedded systems. • Multiprocessors. Basic multi-processing architectures and communication schemes. Cache coherence. • Networks and Distributed Systems. Mechanisms and infrastructures for communication between embedded systems. Examples of network protocols. Oral exam

Forms of media:

Website, slides

Literature:

W. Wolf: “Computers as Components”, Morgan Kaufman Publishers, ISBN 1-55860-693-9

57

EE-E5 (Section Electrical Engineering) Module name:

Operating Systems Betriebssysteme

Abbreviation:

Module No. EE-E5

Semester:

1 +4

Module coordinator:

Prof. Dr. techn. Gerhard Fohler

Lecturer:

Prof. Dr. techn. Gerhard Fohler

Language:

English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload:

Contact study workload: 42 hrs per term

st

th

Self-study workload:

78 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:

Basic knowledge of programming and algorithms

Targeted learning outcomes:

Knowledge on and ability to use basic concepts and services of operating systems. Understanding of topics like processes and threads, synchronization and mutual exclusion, deadlock, input/output.

Content:

An operating system is software, which allows the operation of a computer. It provides the use of hardware to application software without detailed interaction with hardware. It manages resources such as memory, input/output, and the execution of programs. The course is accompanied by a lab. Areas include:

Exam/ Study achievements:

• processes and threads • mutual exclusion • synchronization • input/output • memory management • scheduling Written exam

Forms of media:

Computer Presentations, Handouts, Webpages

Literature:

W. Stallings, Operating Systems: Internals and Design Principles (German issue: Betriebssyteme. Funktion und Design)

58

EE-E6 (Section Electrical Engineering) Module name:

Fundamentals of Power Systems Grundlagen von Energiesystemen

Abbreviation:

Module No. EE-E6

Semester:

2

Module coordinator:

Priv. Doz. Dr.-Ing. habil. Christian Tuttas

Lecturer:

Priv. Doz. Dr.-Ing. habil. Christian Tuttas

Language:

English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

nd

Workload: Credit points:

5

Recommended prerequisites:

EE-M1

Targeted learning outcomes:

New text pending

Content:

• • • •

• • • • •

Exam/ Study achievements:

Energy conversion, electrical machines, power electronics Three-phase systems Single-phase a.c. circuits, balanced three-phase a.c. circuits Magnetic circuits Linear magnetic circuits, real magnetic circuits (saturation, hysteresis, eddy currents) Transformers Ideal transformer, technical transformer, transformer tests, per-unit system, three-phase transformers, autotransformer D.C. Machine Structure, machine model Three-phase windings Characteristics, air-gap field, space vectors Induction machine Description and modelling, operating characteristics, number of poles Synchronous machine Design, operation at constant voltage and frequency, operation at variable voltage and frequency Introduction to power electronics Electrical power conversion, semiconductor switching devices, power electronic circuits (three-phase diode bridge rectifier, three-phase thyristor bridge converter, voltage source inverter, application examples)

exam written

Forms of media: Literature:

59

EE-E7 (Section Electrical Engineering) Module name:

Assemblerprogramming Assemblerprogrammierung

Abbreviation:

Module No. EE-E7

Semester:

2

Module coordinator:

Prof. Dr.-Ing. Gerhard Fohler

Lecturer:

Prof. Dr.-Ing. Gerhard Fohler

nd

Dr.-Ing. Peter Kosack Language:

German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

Workload: Credit points:

4

Recommended prerequisites:

EE-M1

Targeted learning outcomes:

Ability to develop and test small and medium assembler programs using a development system. Ability to decide if high level language or assembler language is useful for a given application. • Basic concepts of computers

Content:

• Von Neumann architecture • Components of computers • Components of processors using the example • Algorithms • Fundamentals of Program Development • Command Set • Assembler programming • Development System • Subroutines • Interrupts • Real-time aspects • Aspects of modern architectures Exam/ Study achievements:

exam written

Forms of media:

Slides, Lab

Literature:

Given during lecture

60

EE-E8 (Section Electrical Engineering) Module name:

Fundamentals of Electric Power Engineering

Abbreviation:

Module No. EE-E8

Semester:

1

Module coordinator:

Prof. Dr. G. Huth

Lecturer:

Prof. Dr. G. Huth

st / 4 th

Prof. Dr.-Ing. Wolfram Wellßow Language:

German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format

2 h Lectures, 2 h Exercise

Workload: Credit points:

4

Recommended prerequisites:

EE-M1

Targeted learning outcomes: Content:

Grundlagen der Elektrotechnik aus energietechnischer Sicht, Grundlagen der Energieerzeugung und Übertragung, Grundlagen der Elektromagnetischen Energiewandlung und Antriebstechnik.

Exam/ Study achievements:

exam written

Forms of media: Literature:

D. Nelles; C. Tuttas: Elektrische Energietechnik, Teubner Verlag (ELT 215/064); H. O. Seinsch: Grundlagen elektr. Maschinen und Antriebe, Teubner Studienskript; H. Eckhardt: Grundzüge der Elektr. Maschinen, Teubner Studienbuch; Späth: Elektrische Maschinen und Stromrichter, G. Braun, Karlsruhe; Simon, Fransua u. a.: Elektrische Maschinen und Antriebssysteme, Vieweg

61

EE-E9 (Section Electrical Engineering) Module name:

Elektrische Antriebstechnik I Electrical Drive Technology I

Abbreviation:

Module No. EE-E9

Semester:

1st + 3rd

Module coordinator:

Prof. Dr. G. Huth

Lecturer:

Prof. Dr. G. Huth

Language:

Deutsch (oder Englisch)

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

Workload: Credit points:

5

Recommended prerequisites:

EE-M1

Targeted learning outcomes: Content:

Grundbegriffe der Antriebstechnik, Komponenten elektrischer Antriebssysteme, Transformatoren, konventionelle - und Stromrichterantriebe mit Gleichstrommaschinen, konventionelle und Stromrichterantriebe mit Drehstrom-Asynchronmaschinen.

Exam/ Study achievements:

Oral exam

Forms of media:

Slides

Literature:

H. O. Seinsch: Grundlagen elektr. Maschinen und Antriebe, Teubner Studienskript; Schröder: Elektrische Antriebe - Grundlagen, Springer; Riefenstahl: Elektrische Antriebstechnik, Teubner

62

EE-E10 (Section Electrical Engineering) Module name:

Linear Control Systems (Control Engineering I) Lineare Regelungen (Regelungstechnik I)

Abbreviation:

Module EE-E10

Semester:

1

Module coordinator:

Prof. Dr. S. Liu

Lecturer:

Prof. Dr. S. Liu

Language:

German / English as required

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

st

/3

rd

Workload: Credit points:

5

Recommended prerequisites:

EE-M1

Targeted learning outcomes:

New text pending

Content:

Principle and structure of linear control systems, modelling, properties of linear time-invariant systems, transfer function, time and frequency response, state transformation, block diagram, open-loop and closedloop systems, stability, dynamic compensation, Bode diagram design, root locus design, application examples

Exam/ Study achievements:

Exam written

Forms of media:

Slides

Literature:

R. Dorf/R. Bishop: Moderne Regelungstechnik, Pearson Studium, 2005; O. Föllinger: Regelungstechnik, Hüthing Verlag, 1992 (L elt 264); J. Lunze: Regelungstechnik 1 und 2, Springer Verlag, 1997. L. Litz: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004

63

EE-E11 (Section Electrical Engineering) Module name:

Electronics II Elektronik II

Abbreviation:

Module EE-E11

Semester:

1

Module coordinator:

Prof. Dr.-Ing. Andreas König

Lecturer:

Prof. Dr.-Ing. Andreas König

Language:

German

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

st

/3

rd

Workload: Credit points:

4

Recommended prerequisites:

Elektronik I, Messtechnik I.

Targeted learning outcomes:

• •

• • •

• Content:

• •



• • • • • • Exam/ Study achievements: Literature:

Kenntnis von gleichspannungsgekoppelten, mehrstufigen Schaltungen mit Transistorlasten Beherrschung der erweiterten Analyse von Mehrtransistorschaltungen anhand einfacher Modelle der Bauelemente (Arbeitspunktbestimmung, Kleinsignalanalyse) mit inhärenten Kapazitäten Fähigkeit die Stabilität einer vorliegenden Verstärkeranordnung zu prüfen bzw. sicherzustellen Kenntnis der relevanten Kenngrößen und Eigenschaften realer Operationsverstärker Beherrschung des Einsatzes von Operationsverstärkern in Schaltungen mit frequenzabhängiger Beschaltung und zeitdiskreter Signalverarbeitung Kenntnis des Schaltungssimulators (PSPICE) zur Ergebnisprüfung und korrektur Grundlagen von Schaltungen für und mit Operationsverstärkern Erweiterung der Schaltungsgrundlagen aus Elektronik I auf gleichspannungsgekoppelte Schaltungen, frequenzabhängige Betrachtung, Transistorlasten Erweiterte und vergleichende Betrachtung von Stromquellen und spiegeln, Differenzverstärkern, Inverterstufen, Kaskodestufen, Folger- und Gegentakt-ausgangsstufen mit Bipolar- und MOS-Transistoren Grundbausteine von Operationsverstärkern und deren Zusammenschaltung Stabilität und Kompensation von OPVs Eigenschaften und Kenngrößen realer OPVs Kontinuierliche und zeitdiskrete Filter (SC-Filter) Analogschalter und Abtasthalteglieder Digital-Analog- und Analog-Digital-Umsetzer Oszillatoren und Generatoren.

Exam written • R.C. Jager, T.N. Blalock: Microelectronic Circuit Design. McGrawHill, 2003, ISBN • Ch. Tietze, U. Schenk: Halbleiter-Schaltungstechnik, Springer, 2003, ISBN 3-540-63443-6

64

EE-E12 (Section Electrical Engineering) Module name:

CAE in control engineering CAE in der Regelungstechnik

Abbreviation:

Module No. EE-E12

Semester:

3 + 4th

Module coordinator:

Dr.-Ing. C. Tuttas

Lecturer:

Prof. Dr.-Ing. S. Liu und Dr.-Ing. C. Tuttas

Language:

German or English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

Workload:

Contact study workload: 42 hrs per term

rd

Self-study workload:

78 hrs per term

Overall workload:

120 hrs per term

Credit points:

4

Recommended prerequisites:

Basics in automation

Targeted learning outcomes:



Content:

Exam/ Study achievements:

Ability to describe dynamic time continuous and time discrete systems simulation ready • Knowledge about attributs of numerical integration methods • Ability to use simulation program MATLAB/SIMULINK • Evaluation of simulation results • Mastery in computer aided control design • Mastery in computer aided control analysis • Modelling of dynamic systems • Attributs of numerical integration methods • Use of simulation program MATLAB/SIMULINK • Computer aided control analysis using MATLAB/SIMULINK • Computer aided design in wellknown methods (Bode diagram, root locus) in state design Oral or written exam

Forms of media:

Overhead beamer or powerpoint slides

Literature:

Weinmann: Computerunterstützung für Regelungsaufgaben, Springer Verlag, 1999

65

EE-E13 (Section Electrical Engineering) Module name:

Real-Time Systems and Applications I (RT I) Echtzeitsysteme und Anwendung I

Abbreviation:

Module No. EE-E13

Semester:

2

Module coordinator:

Prof. Dr. techn. Gerhard Fohler

Lecturer:

Prof. Dr. techn. Gerhard Fohler

nd

& international experts/ guest lecturers Language:

English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload:

Contact-study workload:

39 h per term

Self-study workload:

81 h per term

Overall workload:

120 h per term

Credit points:

4

Recommended prerequisites:

Programming, algorithms, operating systems, networks, computer architecure

Targeted learning outcomes:

Understanding of nature of real-time systems; why and how they differ from standard computing systems. Knowledge of the major types of resource allocation schemes and addresses issues in QoS management.

Content:

The course will provide understanding in the nature of real-time systems and why and how they differ from standard computing systems. It gives an overview of the major types of resource allocation schemes, including offline and online, and addresses issues in QoS management. It is accompanied by a lab.

Exam/ Study achievements:

• Real-time, real-time systems and models, applications • Types and properties of real-time systems • Scheduling of single and multiprocessor systems • Online scheduling of periodic and non periodic activities • QoS Management, mediaprocessing Oral exam

Forms of media:

Computer presentation, handouts, webpage

Literature:

Paper handouts during lecture.

66

EE-E14 (Section Electrical Engineering) Module name:

Real-Time Systems and Applications II (RT II) Echtzeitsysteme und Anwendung II

Abbreviation:

Module No. EE-E14

Semester:

3

Module coordinator:

Prof. Dr. techn. Gerhard Fohler

Lecturer:

Prof. Dr. techn. Gerhard Fohler

rd

& international experts/ guest lecturers Language:

English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload:

Contact-study workload:

42 h per term

Self-study workload:

78 h per term

Overall workload:

120 h per term

Credit points:

4

Recommended prerequisites: Targeted learning outcomes:

Deeper understanding of real-time systems issues, especially in applications ranging from safety critical systems, such as airplanes and cars.

Content:

This course will deepen the understanding of real-time systems issues of the course Real-time Systems I. It will cover additional topics, provide relations and deeper understanding between basic issues. It is accompanied by a lab. Areas include: Off-line scheduling Scheduling of multiprocessor systems Real-time Networks QoS Management Real-time mediastreaming The international research community, conferences, in addition to the scientific contents Brief information about related projects going on at the department. • • • • • •

Forms of media:

Computer presentation, handouts, webpage

Literature:

Giorgio Buttazzo, "Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications".

Content:

• • • • • • • •

Structures of AT-network systems (NAS) ISO/OSI-Model and TCP/IP-Model Overview in industrial used bus systems and networks Ethernet with extensions for industrial systems Automotive Networks (CAN, LIN, FlexRay) Problems of delay, information loss, ressource-sharing and synchronisation Reliability of AT-systems Influences of networking on reliability

67

Exam/ Study achievements:

Oral exam

Forms of media:

Website, slides

Literature:

Selected papers on actual solutions and overview papers on standard methods are presented on the website

68

EE-E15 (Section Electrical Engineering) Module name:

Model-based diagnosis in CVT Modellbasierte Diagnose bei Nutzfahrzeugen

Abbreviation:

Module No. EE-E15

Semester:

3

Module coordinator:

Prof. Dr.-Ing. Steven Liu

Lecturer:

Prof. Dr.-Ing. Steven Liu

Language:

English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

Seminar, 2 hours per week, winter semester only

Workload:

Contact-study workload:

28 h per term

Self-study study workload:

62 per term

Overall workload:

90 per term

Credit points:

rd

3

Requirements under the examination regulations: Recommended prerequisites:

Linear control systems

Targeted learning outcomes:

The module is especially designed for Commercial vehicles and offers practical and theoretical knowledge. First Step to independent research works in the field of model based diagnosis in commercial vehicles

Content: Exam/ Study achievements:

Seminar work, oral presentation

Forms of media:

Website, slides

Literature:

Will be announced at the beginning

EE-E16a (Section Electrical Engineering) Module name:

Sensorelektronik: Technologie und Entwurf integrierter gemischt analog-digitaler Schaltungen & Systeme (TESYS) Technology and Concept of Integrated and Mixed Analog – digital Circuitry and Systems (TESYS)

Abbreviation:

Module No. EE-E16a

Semester:

2

Module coordinator:

Prof. Dr. A. König

Lecturer:

Prof. Dr. A. König

Language:

German or English

Classification within the curriculum:

Elective; advanced topic of sensor circuit design for industrial and automotive systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload:

Contact-study workload:

52 h pro Semester

Self-study workload:

98 h pro Semester

nd

+ 4th

Overall workload:

150 h pro Semester

Credit points:

5

Recommended prerequisites:

Basics of semiconductor devices and electronic circuits, Electronics II

Targeted learning outcomes:







• Content:

• • • •

• • •

Knowledge of the required processes, methods, description approaches and tools for the computer-aided modelling, simulation and manufacturing of integrated analog and mixedsignal circuits Mastery of the Cadence DFW II IC design system and a common manufacturing technology (CMOS, BiCMOS) and design-kit (mixed-mode, mixed-signal) Overview of common analog and mixed-signal-circuits and building blocks, their properties, and their integration (layout design) Ability of independent realisation of a design project or a subproject in the context of a larger group design (MPC) Manufacturing technologies and -methods for integrated circuits (CMOS (bulk, SOI), BiCMOS) Device spectrum, process variations, yield, tolerances and softfaults Principles of layout-design for analog and mixed-signal circuits (matched-layout) Design methodology and tools of computer-aided design for integrated mixed-signal electronics (Hierarchical design, mixedmode, mixed-signal, AHDLs) Advanced device models (e.g., BSIM-models) Enhancement of circuits & building blocks (References etc.) Design techniques for applications-specific cells and blocks: selection, sizing, simulation, layout,extraction, post-layout simulation for application-specific operational amplifiers (OpAmp/OTA), Filters, AD/DA-converters, VCO etc.

70

• •

Exam/ Study achievements:

Modelling, design and layout realisation of digital circuits as components in integrated mixed-signal electronics Advanced issues : Noise, analog synthesis, testing, rekonfiguration, eigen- or self calibration, self-monitoring/-repair, adaptation

• Oral examination based on semester project.

Forms of media:

Course-specific web page with slides (ppt/pdf)

Literature:

Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2nd ed., 2002 R.C. Jaeger, T.N. Blalock: Microelectronic Circuit Design. McGrawHill, 2003, ISBN 007-232099-0 Kenneth R. Laker, Willy M.C. Sansen, Design of Analog Integrated Circuits and Systems, MacGrawHill, 1994. R. Jacob Baker, Harry W. Li, David E. Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press, 1998. Hastings, The Art of Analog Layout, Prentice Hall, 2001 Jaeger, Introduction to Microelectronic Fabrication, Prentice Hall 2002 Geiger/Allen/Strader, VLSI Design Techniques for Analog and Digital Circuits Grey/Meyer, Analysis and Design of Analog Integrated Circuits

71

EE-E16b (Section Electrical Engineering) Module name:

Sensorelektronik: Herstellungsverfahren und Entwurf integrierter Sensorsysteme (HEIS) Production Process and Concept of Integrated Sensor Systems (HEIS)

Abbreviation:

Module No. EE-E16b

Semester:

3

Module coordinator:

Prof. Dr. A. König

Lecturer:

Prof. Dr. A. König

Language:

German or English

Classification within the curriculum:

Elective; advanced topic of sensor circuit design for industrial and automotive systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload:

Contact-study workload:

52 h pro Semester

Self-study workload:

118 h pro Semester

Overall workload:

170 h pro Semester

nd

Credit points:

5

Recommended prerequisites:

Basics of semiconductor devices and electronic circuits, Electronics II

Targeted learning outcomes:









Content:

• • • • • • • • •

Understanding of the required microtechnological processes, methods, descriptions and tools for computer-aided modelling, simulation and manufacturing of integrated sensor systems Overview of typical integrated sensor concepts and building blocks, their corresponding properties and their integration with electronics Conceptual understanding and mastery of a design system (SoftMEMS/Cadence DFW II in conjunction with common manufacturing technologies (EUROPRACTICE)) Ability of the independent realization of an individual design project or a subproject in the context of a larger group project (MPC/MUMPS) Structure and design principles of standard CMOS-compatible sensors (2D/3D-image sensors, color- and NIR-sensors etc.) Sensor architectures and compensation of deviations and crosssensitivities Extension of standard technologies by additional processing steps, e.g., to achieve pressure- or fingerprint sensors Manufacturing technologies and -procedures of siliconmicromaching (Surface- and bulk-micromachining) Overview of further common procedures of MEMS/electronics for manufacturing, packaging and system integration Scaling - and process issues (yield/tolerances) Overview of common integrated sensor cells Inspiration from Bionics Design methodology and tools of computer-aided design for microsensors/MEMS

72

Modelling and simulation techniques (e.g., different energy domains, FEM-concept) • Design concepts for application-specific sensor cells and their integration with elektronics: Selection, sizing, simulation, layout, extraction, post-layout • Feedback architectures for sensor systems • Overview of mikroactuators in the context of microsensors • Energy consumption & supply/self-sufficientMEMS • (Eigen- or self-)calibration, rekonfiguration, self-monitoring/-repair in integrated sensor system, adaptation, Oral examination based on semester project. •

Exam/ Study achievements: Forms of media:

Course-specific web page with slides (ppt/pdf)

Literature:

Marc J. Madou, Fundamentals of Microfabrication – The Science of Miniaturization, 2nd ed., CRC Press, 2002. Mohammed Gad-el-Hak, The MEMS-Handbook, CRC Press, 2002. Barth, Humphrey, Secomb (eds.), Sensors and Sensing in Biology and Engineering, Springer, 2003. M. Kasper, Mikrosystementwurf – Entwurf und Simulation von Mikrosystemen, Springer 2000. T. Elbel, Mikrosensorik - Eine Einführung in Technologie und physikalische Wirkungsprinzipien von Mikrosensoren, Vieweg, 1996. W. Nachtigall, Kurt G. Blüchel, Bionik – Neue Technologien nach dem Vorbild der Natur, DVA, 2000.

73

EE-E17 (Section Electrical Engineering) Module name:

Sensor Signals Processing Sensorsignalverarbeitung (SENSIG)

Abbreviation:

Module No. EE-E17

Semester:

3

Module coordinator:

Prof. Dr. A. König

Lecturer:

Prof. Dr. A. König

Language:

German or English

Classification within the curriculum:

Elective; advanced topic of sensor information processing for industrial and automotive systems, e.g., assistance systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload:

Contact-study workload:

56 hrs per term

Self-study workload:

94 hrs per term

Overall workload:

150 hrs per term

rd

Credit points:

5

Recommended prerequisites:

Basics of information and signal processing, measurement and instrumentation.

Targeted learning outcomes:

Content:



Understanding of relevant principals and methods from the field of Computational Intelligence, in particular for the field of sensor technology



Mastery of application of selected relevant methods and their configuration in a common design environment (Matlab)



Ability to design, validate, and optimize complete applicationspecific system system



Develop ability to adapt and extend the achieved implementation to changing needs



Understanding of interdependence of system solution with available, potentially restricted implementation platforms (Sensors/Hardware)



Basic methods of signal analysis and the computation of characteristic and invariant descriptors (features) Processing of signals from single sensors und homogeneous or heterogeneous Sensor-Arrays Dimensionality reduction of high-dimensional sensor data by linear and non-linear methods, e.g. by explicit selection of features Methods of cluster analysis Methods for multi-dimensional sensor data analysis: projection and visualisation, fusion Methods for classification of sensor data: statistical pattern recognition, artificial neural networks, Methods of rule-based and fuzzy classification Advanced optimization methods for parameter- or structure optimization of sensor systems Relations, dependencies, and optimization potential between

• •

• • •



74

Exam/ Study achievements:

sensor realization, electronics, and algorithmics. • New aspects of reliable sensor systems (self-x properties) Oral examination based on semester project

Forms of media:

Course-specific

Literature:

(Matlab/QuickCog) R. Hoffmann, Signalanalyse und Erkennung, Springer 1998, ISBN 3540-63443-6

webpage

with

slides

(ppt/pdf)

and

examples

S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice Hall, 1998, ISBN 0132733501 K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990, ISBN 0122698517 R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, 2000, ISBN 0471056693

75

EE-E18 (Section Electrical Engineering) Module name:

Seminar Electromobility

Abbreviation:

Module No. EE-E18

Semester:

1 +2

Module coordinator:

Jun. Prof. Dr.-Ing. Daniel Görges

Lecturer:

Jun. Prof. Dr.-Ing. Daniel Görges

Language:

German or English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hours per week

st

rd

as elective module

Workload: Credit points:

3

Recommended prerequisites: Targeted learning outcomes: Content:

Im Seminar sollen Methoden zur Ausarbeitung und Präsentation einer wissenschaftlichen Themenstellung erlernt werden. Hierzu gehören die Literatur- und Internetrecherche sowie das Lesen und Aufbereiten meist englischsprachiger Fachartikel. Hinzu kommen gegebenenfalls kleinere simulative und praktische Untersuchungen. Neben der wissenschaftlichen Arbeit werden insbesondere auch die Teamarbeit und Präsentationstechniken als wichtige Soft Skills trainiert.

Exam/ Study achievements:

Oral examination based on semester project

Forms of media: Literature:

76

EE-E19 (Section Electrical Engineering) Module name:

Electric and Hybrid Vehicles Elektro- und Hybridfahrzeuge

Abbreviation:

Module No. EE-E19

Semester:

2

Module coordinator:

Jun. Prof. Dr.-Ing. Daniel Görges

Lecturer:

Jun. Prof. Dr.-Ing. Daniel Görges

Language:

German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2 hours per week

rd

as elective module

Workload: Credit points:

3

Recommended prerequisites:

Lineare Regelungen, Optimal Control, CAE in der Regelungstechnik und Model Predictive Control

Targeted learning outcomes: Content:

Elektro- und Hybridfahrzeuge sind eine Schlüsseltechnologie für eine ressourcen- und klimaschonende Mobilität. Die Forschung und Entwicklung auf diesem Gebiet wird daher seit einigen Jahren sowohl im industriellen als auch im akademischen Bereich stark vorangetrieben. Entsprechend hoch ist der Bedarf an spezialisierten Ingenieuren. In dieser Vorlesung werden die Grundlagen von Elektround Hybridfahrzeugen, insbesondere die Architekturen, die Modellierung und das Energiemanagement, vermittelt und anhand zahlreicher Fallstudien auf Basis realisierter Fahrzeugkonzepte vertieft. Während der gesamten Vorlesung werden die Modellierungsund Energiemanagementmethoden unter MATLAB/Simulink mit spezialisierten Toolboxen veranschaulicht. Zur praktischen Anwendung der erworbenen Kenntnisse ist ergänzend ein Energiemanagementwettbewerb geplant.

Exam/ Study achievements:

Oral examination

Forms of media: Literature:

77

EE-E20 (Section Electrical Engineering) Module name:

Robot and Motion Control

Abbreviation:

Module No. EE-E20

Semester:

1 –2

Module coordinator:

Prof. Dr.-Ing. Steven Liu

Lecturer:

Prof. Dr.-Ing. Steven Liu

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

3h lecture

st

nd

as elective module

Workload: Credit points:

4

Recommended prerequisites: Targeted learning outcomes: Content:

Motion systems, modeling of mechanical systems, servo and stepper motors, robot kinematics, robot dynamics, trajectory planning, positioning and force control, interaction control

Exam/ Study achievements:

Oral exam

Forms of media: Literature:

78

EE-E21 (Section Electrical Engineering) Module name:

Robust Control

Abbreviation:

Module No. EE-E21

Semester:

1 –2

Module coordinator:

Prof. Dr.-Ing. Steven Liu

Lecturer:

Prof. Dr.-Ing. Steven Liu

Language:

English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

2h lecture

st

nd

as elective module

Workload: Credit points:

3

Recommended prerequisites:

Lineare Regelungen, Optimal Control

Targeted learning outcomes: Content:

Introduction in control sensitivity and robustness, multivariable frequency response design, H2 regulator, Hinf regulator, case studies

Exam/ Study achievements:

written exam

Forms of media: Literature:

79

SoSc-E1 (Section Social Sciences) Module name:

Einführung in die Soziologie Introduction in Sociology

Abbreviation:

Module No. SoSc-E1

Semester:

2

Module coordinator:

Prof. Dr. Henning Best

Lecturer:

Prof. Dr. Henning Best

Language:

Deutsch

Classification within the curriculum:

The module is an Elective Module in CVT. Note: 10 Credits Points must be gained from block “soft skills and social sciences”

Teaching format / class hours per week during the semester:

2 h Vorlesung

Workload:

2. Credits:

nd

-3

rd

Contact-study workload:

42 hrs per term

Self-study workload:

18 hrs per term

Overall workload:

60 hrs per term

3 Credits:

Credit points:

Contact-study workload:

42 hrs per term

Self-study workload:

48 hrs per term

Overall workload:

90 hrs per term

2 (Teilnahme) – 3 (Teilnahme und Hausarbeit)

Recommended prerequisites: Targeted learning outcomes:

Fähigkeit, Gesellschaften zu analysieren und soziologische Texte zu verstehen

Content:

Die Veranstaltung vermittelt einen Überblick über zentrale Themen der systemtheoretischen Soziologie. Die Theorie sozialer Systeme stellt gegenwärtig eine der umfassendsten und am weitesten entwickelten Ansätze der Soziologie dar. Behandelt werden: • Entwicklung der Soziologie • Grundlagen der Theorie sozialer Systeme • Systemtypen: Gesellschaft, Organisation, Interaktion • Evolution von Gesellschaften • Gesellschaftliche Funktionssysteme: Politik, Wirtschaft, Erziehung

Cooperation (international or industry): Exam/ Study achievements: Forms of media: Literature:

PP-Folien Luhmann, N. (1998): Die Gesellschaft der Gesellschaft, 2 Bände, Frankfurt Luhmann, N. (1987): Soziologische Aufklärung, 4 Bände, Opladen Luhmann, N. (1997): Die Gesellschaft der Gesellschaft, Frankfurt:

80

Suhrkamp Luhmann, N. Organisation und Entscheidung, Opladen, 2000 Schimank, U./Schöneck, M. Hg. (2008) Gesellschaft begreifen. Einladung zur Soziologie, Frankfurt new York

81

SoSc-E2 (Section Social Sciences) Module name:

Soziologische Handlungs- und Entscheidungstheorie Sociological action and decision theory

Abbreviation:

Module No. SoSc-E2

Semester:

2

Module coordinator:

Prof. Dr. Henning Best

Lecturer:

Prof. Dr. Henning Best

Language:

Deutsch

nd

-3

rd

Classification within the curriculum: Teaching format / class hours per week during the semester:

2h Vorlesung

Workload: Credit points:

5

Recommended prerequisites: Targeted learning outcomes: Content:

Modell soziologischer Erklärung • Analyse sozialen Handelns/Handlungstheorien • Soziale Normen • Kultur und Sozialisation • Institutionelle Ordnungen und Opportunitäten • Theorien der rationalen Wahl • Dual Process Theorien • Handlungsroutinen, Situative Cues und Frames, Habitus • Analyse strategischer Situationen/Spieltheorie • Kollektives Handeln • Mikro- und Makroerklärungen

Cooperation (international or industry): Exam/ Study achievements:

Written examination at the end of each semester

Forms of media: Literature:

82

SoSc-E3 (Section Social Sciences) Module name:

Introduction to Social Structure Analysis Einführung in die Sozialstrukturanalyse

Abbreviation:

Module No. SoSc-E3

Semester:

2

Module coordinator:

Prof. Dr. Henning Best

Lecturer:

Prof. Dr. Henning Best

Language:

Deutsch

nd

-3

rd

Classification within the curriculum: Teaching format / class hours per week during the semester:

2h Vorlesung

Workload: Credit points:

5

Recommended prerequisites: Targeted learning outcomes: Content:

Theorien, Konzepte und empirische Ergebnisse der Sozialstrukturanalyse: • Bevölkerungsstruktur und -dynamik • Lebensformen und Familie • Bildungssystem und Bildungschancen • Erwerbstätigkeit • Soziale Ungleichheit und soziale Mobilität • Erwerbseinkommen und Armut • Sozialkapital und soziale Netzwerke • Gesellschaftsvergleich • Sozialer Wandel

Cooperation (international or industry): Exam/ Study achievements:

Written examination at the end of each semester

Forms of media: Literature:

83

SoSc-E4 (Section Social Sciences) Module name:

Types of Ethical Theories / Economic Ethics I Typen ethischer Theorien / Wirtschaftsethik I

Abbreviation:

Module No. SoSc-E4

Semester:

2

Module coordinator:

Prof. Dr. Neuser

Lecturer:

Barbagallo

Language:

Deutsch

nd

-3

rd

Classification within the curriculum: Teaching format / class hours per week during the semester:

Seminar

Workload: Credit points:

5

Recommended prerequisites: Targeted learning outcomes: Content:

Unterschiedlich verfasste Gesellschaften haben unterschiedliche Begründungsstrategien ihrer Handlungsnormen. • Was ist der Unterschied zwischen Kants Kritik der praktischen Vernunft und Habermas Diskursethik? • Was ist ein Utilitarismus und was leistet er?

Cooperation (international or industry): Exam/ Study achievements:

Written examination at the end of each semester

Forms of media: Literature:

84

3. Master Thesis and Project Work

L1 Module name:

Project Work „Commercial Vehicle Technology“ (University or working student in industry)

Abbreviation:

L1

Semester:

3

Module coordinator:

Student must find a professor among the three faculties willing to supervise the project work

Lecturer:

-

Language:

-

Classification within the curriculum:

The project work is mandatory for all master students. For students from Germany, Austria, Switzerland or Luxemburg it is recommended to combine this work with an internship or a study term in a foreign country.

Teaching format / class hours per week during the semester:

Self studies or project work.

Workload:

4 Months á 75 hrs, overall workload 300 hrs for learning.

rd

This is equivalent to a fulltime employment from 4 to 6 month in an industrial company. Corresponding working student contracts may be 4 to 6 months. Credit points:

10

Recommended prerequisites:

Can be started at any time if at least 20 CP are gained. rd Recommended in 3 semester.

Targeted learning outcomes:

Student shows his/her ability to work under direction of a professor or assistant on an engineering task and is able to solve it.

Content:

Small Engineering project of manageable size.

Cooperation (international or industry):

Working on an industry project under supervision of a professor (Company should be part of CVT industry) Project at one of the Partner Universities

Exam/ Study achievements:

Technical written documentation on project planning, work and output.

Forms of media:

-

Literature:

-

86

L2 Module name:

Master Thesis

Abbreviation:

L2

Semester:

4 earliest

Module coordinator:

Student must find a professor among the three engineering faculties willing to supervise the master thesis

Lecturer:

-

Language:

-

Classification within the curriculum:

The master thesis is mandatory for all master students.

Teaching format / class hours per week during the semester:

Self studies or project work.

Workload:

6 Months á 150 hrs, overall workload 900 hrs

Credit points:

30

Recommended prerequisites:

Can be started at any time if at least 82 CP are gained

Targeted learning outcomes:

Student shows his/her ability to work autonomously to a large extent under direction of a professor or assistant on an engineering task and is able to solve it.

Content:

Engineering project of manageable size.

Cooperation (international or industry):

Working on an industry project under supervision of a professor is possible. Company should be part of CVT industry.

Exam/ Study achievements:

Technical written documentation on project planning, work and output.

th

Oral presentation of the project Forms of media:

-

Literature:

-

87

4. Supplementary Modules

88

SM-P1 Module name:

German Language Course

Abbreviation:

Module SM-P1

Semester:

1 &2

Module coordinator:

Dr.-Ing. P. Memar (International School for Graduate Studies)

Lecturer:

Ralf Krier

Language:

German

Classification within the curriculum:

Mandatory module in the first two semesters

Teaching format / class hours per week during the semester:

Intensive Language and Orientation Course (incl. Lectures, Exercises and Laboratories).

st

nd

Intensive course (6-8 weeks) in summer or spring previous to the start of the lectures. The course is continued during the lecture period (1st and 2nd semester).

Workload:

Approx. 300 hrs

Credit points: Recommended prerequisites:

None. The courses are offered in different levels.

Targeted learning outcomes:

Students should acquire a basic knowledge of the German language

Content:



Intensive German Language course (especially designed for international Graduates)



Cultural and social activities



Support in administrative issues

Cooperation (international or industry): Exam/ Study achievements:

DSI – exam (Deutsche Sprachprüfung für Studierende internationalen Studiengängen) after the 2nd semester.

in

The accomplishment of the DSI-exam is a precondition for continuing the study course. Forms of media: Literature:

Will be handed out in the course

SM-P2 Module name:

CVT - Introduction to Programming with CC++ CVT - Einführung in die Programmierung in C++

Abbreviation:

Module SM-P1

Semester: Module coordinator:

apl. Prof. Dr. Achim Ebert

Lecturer:

apl Prof. Dr. Achim Ebert Roger Daneker

Language:

English

Classification within the curriculum: Teaching format / class hours per week during the semester: Workload: Credit points: Recommended prerequisites:

None

Targeted learning outcomes: Content: Cooperation (international or industry): Exam/ Study achievements:

Passing this course is mandatory for CS-M4 CVT-ProgrammingProject

Forms of media: Literature:

Tony Gaddis et al.: "Starting Out with C++. Early Objects"; Prentice Hall; 7th revised edition; 2010; ISBN 978-0131377141; Link: http://www.pearsonstudium.de/main/main.asp?page=bookdetails&ProductID=181397

90