BIOSCIENCE REPORTS ACCEPTED MANUSCRIPT. Estrogen receptor negativity in breast cancer: A cause or consequence?

BIOSCIENCE REPORTS ACCEPTED MANUSCRIPT Estrogen receptor negativity in breast cancer: A cause or consequence?  Vijaya Narasihma Reddy Gajulapalli...
Author: Roderick Payne
3 downloads 0 Views 944KB Size


BIOSCIENCE REPORTS

ACCEPTED MANUSCRIPT Estrogen receptor negativity in breast cancer: A cause or consequence? 

Vijaya Narasihma Reddy Gajulapalli, Vijaya Lakshmi Malisetty, Suresh Kumar Chitta  and Bramanandam Manavathi  Endocrine resistance, which occurs either by de novo or acquired route, is posing a major  challenge in treating hormone‐dependent breast cancers by endocrine therapies. The  loss of ERα expression is the vital cause of establishing endocrine resistance in this  subtype. Understanding the mechanisms that determine the causes of this phenomenon  are therefore essential to reduce the disease efficacy. But how we negate estrogen  receptor (ER) negativity and endocrine resistance in breast cancer is questionable, to  answer that two important approaches are considered: 1) Understanding the cellular  origin of heterogeneity and ER negativity in breast cancers, and 2) characterization of  molecular regulators of endocrine resistance. Breast tumors are heterogeneous in  nature, having distinct molecular, cellular, histological and clinical behaviour. Recent  advancements in perception of the heterogeneity of breast cancer revealed that the  origin of a particular mammary tumor phenotype depends on the interactions between  the cell of origin and driver genetic hits. On the other hand, histone deacetylases  (HDACs), DNA methyl transferases (DNMTs), miRNAs and ubiquitin ligases emerged as  vital molecular regulators of ER negativity in breast cancers. Restoring response to  endocrine therapy through re‐expression of ERα by modulating the expression of these  molecular regulators is therefore considered as a relevant concept that can be  implemented in treating ER negative breast cancers. In this review, we will thoroughly  discuss the underlying mechanisms for the loss of ERα expression and provide the future  prospects for implementing the strategies to negate ER negativity in breast cancers. 

Cite as Bioscience Reports (2016) DOI: 10.1042/BSR20160228

Copyright 2016 The Author(s). This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence. All other rights reserved.



Estrogen receptor negativity in breast cancer: A cause or consequence?



Short title: Estrogen receptor negativity in breast cancer



4  5 

Vijaya Narasihma Reddy Gajulapalli1#, Vijaya Lakshmi Malisetty2#, Suresh Kumar



Chitta3 and Bramanandam Manavathi1*

7  8  9  10  11  12  13  14  15  16  17 

1

18  19  20  21  22  23  24  25  26  27 

Dr. Bramanandam Manavathi, PhD Assistant Professor Department of Biochemistry School of Life Sciences University of Hyderabad Hyderabad-500046 India. Email: [email protected] [email protected]

28 

#

Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad-500046, India. 2

Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India. 3

Department of Biochemistry, Sri Krishnadevaraya University, Anantapur 515002, Andhra Pradesh, India. *To whom correspondence should be addressed:

These authors contributed equally to this work.

29  30  31  32  33  1   

34 

Abstract

35 

Endocrine resistance, which occurs either by de novo or acquired route, is posing a

36 

major challenge in treating hormone-dependent breast cancers by endocrine therapies. The

37 

loss of ERα expression is the vital cause of establishing endocrine resistance in this subtype.

38 

Understanding the mechanisms that determine the causes of this phenomenon are therefore

39 

essential to reduce the disease efficacy. But how we negate estrogen receptor (ER) negativity

40 

and endocrine resistance in breast cancer is questionable, to answer that two important

41 

approaches are considered: 1) Understanding the cellular origin of heterogeneity and ER

42 

negativity in breast cancers, and 2) characterization of molecular regulators of endocrine

43 

resistance. Breast tumors are heterogeneous in nature, having distinct molecular, cellular,

44 

histological and clinical behaviour. Recent advancements in perception of the heterogeneity

45 

of breast cancer revealed that the origin of a particular mammary tumor phenotype depends

46 

on the interactions between the cell of origin and driver genetic hits. On the other hand,

47 

histone deacetylases (HDACs), DNA methyl transferases (DNMTs), miRNAs and ubiquitin

48 

ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring

49 

response to endocrine therapy through re-expression of ERα by modulating the expression of

50 

these molecular regulators is therefore considered as a relevant concept that can be

51 

implemented in treating ER negative breast cancers. In this review, we will thoroughly

52 

discuss the underlying mechanisms for the loss of ERα expression and provide the future

53 

prospects for implementing the strategies to negate ER negativity in breast cancers.

54  55 

Key words:Estrogen receptor alpha/ ER negative breast cancer/ endocrine resistance/

56 

miRNAs / epigenetic factors /ubiquitin ligases

57  58  2   

59 

Throughout the world, breast cancer remains as one of the prevailing malignancies

60 

affecting millions of women, although it is scarce in men. Despite of our increased

61 

understanding of the disease and the improved diagnosis of it, large number of new cases are

62 

still being registered challenging the current diagnostic measures. For instance, the estimated

63 

new breast cancer cases and deaths by Sex in United States for the year 2016 is 249,260 and

64 

40,890, respectively [1]. Breast cancer can originate from different areas of the breast that

65 

include the ducts, lobules, or in some cases, between the breasts. The majority of breast

66 

cancers originates from epithelial cells and hence are called ‘carcinomas’ [2]. When left

67 

untreated, breast cancer can metastasize to other areas of the body, preferably to bone, lung,

68 

liver or brain and can cause malignancies.

69  70 

1. Breast cancer classification

71 

Breast cancer is heterogeneous in nature as it comprises of various cell types with distinct

72 

biological features and clinical behaviour. Breast cancers are classified as invasive or non-

73 

invasive types on the basis of localization and the extent of the tumor spread [3]. On a

74 

molecular basis (gene expression profile), breast cancers are classified into the following

75 

major sub-types (Figure 1) [4-12]. Each of these tumors has different risk factors, for

76 

incidence response to treatment, disease progression, and preferential metastases sites [13,

77 

14]. Further, the etiology, pathogenesis, and prognosis of breast cancer in patients of various

78 

races / ethnicities are significantly influenced by intrinsic molecular breast cancer sub-types

79 

across the different populations around the globe [15]. PAM50 signature assay is by far the

80 

most recent classification of breast cancer by molecular approach techniques, which

81 

measures 50 genes quantitatively. This assay was developed by Parker et al., for sub-

82 

classification of breast cancers into the three molecular sub-types (luminal A/B, basal-like,

83 

and HER2) [16]. The modern classification of breast cancer sub-types based on gene

3   

84 

expression profiling of the tumors, facilitated the clinical implications and the predictive

85 

values of each sub-type. A recent report showed that the St. Gallen surrogate classification of

86 

breast cancer sub-types can successfully predicts tumor presenting features, nodal

87 

involvement, recurrence patterns and disease free survival [17]. Further, intrinsic molecular

88 

profiling provides clinically relevant information endorsed by St. Gallen Consensus Panel

89 

[11]. In view of the heterogenous nature of breast cancer, the optimal classification and sub-

90 

typing of each tumor will eventually help in the development of a conspicuous therapy.

91  92 

1.1 Triple-negative breast cancer (TNBC)

93 

Based on the immunohistochemical analysis, TNBCs have been identified as breast

94 

cancers that do not express ERα (estrogen receptor α), PR (progesterone receptor) and Her-2

95 

(human epidermal growth factor receptor 2) (triple-negative immunophenotype) [18]. Within

96 

the TNBCs, using gene expression and cluster analysis, Lehmann et al., identified 6 sub-types

97 

which include two basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal

98 

(M), a mesenchymal stem-like (MSL), and a luminal androgen receptor (LAR) sub-type [19].

99 

Recently, Prat et al., sub-classified TNBCs into basal-like (BL) (70%) or non basal-like

100 

breast cancers (NBL) (~25%) based on gene expression profiling data [20]. Irrespective of

101 

these different classifications, basically all TNBCs are aggressive in nature and are associated

102 

with more proliferation and metastasis than other sub-types. TNBCs account for up to 20% of

103 

all breast cancers. These types of tumors are associated with BRCA1 and BRCA2 mutations

104 

[21]. With respect to treatment, basal-like breast cancer patients within TNBC, but not in

105 

non-basal type, appear to benefit with either carboplatin or bevacizumab, an anti-VEGF

106 

monoclonal antibody therapy in neoadjuvent setting [22]. On the other hand, the non-Basal-

107 

like (i.e. Luminal A, Luminal B and HER2-enriched) or AR-positive, estrogen receptor (ER),

108 

and progesterone receptor (PgR)-negative metastatic breast cancers might benefit from anti4   

109 

androgens [23]. However, in many cases the option for treatment is chemotherapy only, as

110 

the TNBC tumors are not amenable to conventional targeted therapies [24].

111  112 

1.2 Her-2 positive breast cancers:

113 

Her-2 positive breast tumors are characterized by the lack of expression of

114 

luminal/ER-related genes and over-expression or augmentation of Her-2 gene associated with

115 

aggressive phenotypes. ERBB2 gene encodes for a trans-membrane tyrosine kinase receptor

116 

(Her-2) which belongs to the epidermal growth factor (EGFR) family. These tumors are

117 

frequently high-grade and 50% of them exhibit p53 mutations and are associated with poor

118 

prognosis [16, 25]. This sub-types comprise approximately of about 14% of all the breast

119 

tumors and can be effectively treated by various anti-Her-2 therapies such as Transzumab or

120 

Lapatinib [25].

121  122 

1.3 Luminal breast cancer:

123 

About 2/3rd of breast cancers are ER-positive [26-28] that are specified by the expression

124 

of estrogen receptor α (ERα) and progesterone receptor (PR) in breast tumors. Because these

125 

tumors depend on estrogen for their growth, treatment with selective ER modulators (SERM)

126 

such as tamoxifen or raloxifene; or aromatase, which are crucial for estrogen biosynthesis,

127 

inhibitors like anastrozole or letrozole have better outcome in these patients. However, many

128 

patients with ER-positive breast tumors fail to respond to endocrine therapy with tamoxifen,

129 

an anti-estrogen, and most tumors that are initially responsive acquiring resistance by various

130 

mechanisms [29-31]. In recent years, high-throughput gene expression screening studies

131 

identify specific gene expression signatures that predict response to endocrine therapy and

132 

directs breast cancer patients for more appropriate therapeutic options [32, 33]. In other

133 

studies while using gene expression screening in mammary tumors, it was indicated that ER-

5   

134 

positive breast tumors with poor response to endocrine therapy tend to have lower ERα

135 

expression and high levels of proliferation-associated genes [32, 34-36]. Based on the

136 

proliferative index, luminal or ER-positive tumors were further classified into two intrinsic

137 

subtypes, Luminal A, and Luminal B [37]. Luminal A breast cancers express high levels of

138 

ERα, lack of HER-2 expression, low expression of proliferative genes such as Ki67 and low-

139 

grade (1 or 2). These tumors grow very slowly and have the better prognosis than luminal B

140 

type [38]. These tumors (luminal A) are successfully treated with endocrine therapy and have

141 

the best prognosis with high survival rates with low recurrence. On the other hand, low levels

142 

of ERα are expressed by Luminal B tumors, which constitute about 10-20%, whereas Her-2

143 

positive are often high grade (2 or 3). Expression of proliferative markers like Ki67 and

144 

Cyclin B1 is higher in Luminal B tumors than in luminal A. Tumors of this sub-group are

145 

associated with a unfavourable prognosis than in Luminal A type and may benefit from the

146 

chemotherapy [39]. They can be treated with targeted therapies, for e.g., selective estrogen

147 

receptor modulators (SERMs), such as tamoxifen or, in postmenopausal women aromatase

148 

inhibitors such as anastrozole [40].

149  150 

2. ER negativity and endocrine resistance in breast cancer

151 

Anti-estrogen resistance is likely to develop over time because of the highly pliable

152 

and adaptive nature of breast cancers to various selective pressures [41, 42]. Anti-estrogen

153 

resistance is of two types: de novo and acquired. The absence of both ERα and progesterone

154 

receptor (PR) expressions represents the prevailing mechanisms of de novo resistance.

155 

However, approximately 25% of ER+/PR+, 66% of ER+/PR-, and 55% of ER-/PR+ breast

156 

tumors do not respond to anti-estrogens [42]. Several experimental studies suggest that loss

157 

of ERα can be due to long-term activation of growth factor signaling pathways.

158 

Approximately 30% of the patients display loss of ERα where EGFR/HER2 activity is high 6   

159 

[43, 44], where the acquired resistance is defined by loss of anti-estrogen responsiveness by

160 

initially responsive tumors. Most of the initial responsive breast tumors to anti-estrogens

161 

confer acquired resistance [29], which express ERα at recurrence on anti-estrogen therapy

162 

and are considered as ER+ tumors [45]. Although, tamoxifen has been shown to diminish

163 

the relapse and mortality rates of ER-positive breast cancers, a significant number of ER-

164 

positive tumors develop resistance to tamoxifen and become ER-negative [41]. It appears

165 

that a loss of ERα expression does not represent the major mechanism, driving acquired anti-

166 

estrogen resistance. Furthermore, it is very difficult to attribute any single mechanism that

167 

confers anti-estrogen resistance. Accumulating evidence suggests that several mechanisms

168 

acting at cellular or molecular levels are likely to be responsible for the endocrine resistance

169 

as discussed below.

170 

Endocrine resistance is posing a major challenge today in treating significant

171 

percentage of breast cancers by hormone therapy. Understanding the mechanisms that

172 

underlie the causes of this phenomenon is therefore essential to reduce the burden of this

173 

disease. But how we negate ER negativity and endocrine resistance in breast cancers is

174 

questionable, to answer that two important approaches are considered: 1) Understanding the

175 

origin of heterogeneity and ER negativity, and 2) characterization of molecular regulators of

176 

endocrine resistance.

177  178 

2.1 Understanding the origin of heterogeneity and ER negativity

179 

Breast cancers are heterogeneous anomalies, having distinct molecular, cellular,

180 

histological and clinical behavior [13]. Tumor heterogeneity is of two types: intra-tumor

181 

(within the tumor) and inter-tumor (inter tumor). Breast cancers exhibit both intra-tumor as

182 

well as inter-tumor heterogeneity. But the underlying biology, causing tumor heterogeneity is

183 

yet to be fully understood. Due to the intra-tumor heterogeneity, breast cancer treatment has 7   

184 

become more challenging today in clinical oncology studies [46]. To understand the tumor

185 

heterogeneity, it is essential to define the origin of each tumor cell type. Recent evidence

186 

suggests that the genetic lesions determine the tumor phenotype and cancers of distinct sub-

187 

types within a tissue, which may be derived from different 'cells of origin'. Defined genetic

188 

alterations/changes may lead to the initiation of respective breast cancer cell type [47].

189 

Although, identification of cell-of-origin of each sub-type of breast cancer is challenging, it

190 

would provide the identity and degree of transformation, which eventually enables us in

191 

better understanding of the breast tumor sub-types as well as it would help in predicting the

192 

tumor behaviour and early detection of malignancies. In normal breast cells where ER-

193 

positive cells rarely proliferate, whereas in breast tumors ER drives cell proliferation [48].

194 

The lack of proliferation in the ER-positive ductal epithelium indicates a positive link

195 

between ERα expression and terminal differentiation in the normal breast cells and it further

196 

implies that ER-positive and -negative tumors arise from distinct cell types. Recent studies in

197 

model systems reported that luminal progenitors will serve as precursors for basal-like tumors

198 

if they receive a genetic or epigenetic event(s) that could change the phenotypes [49-53]. For

199 

instance, deletion of BRCA1 or PTEN in luminal epithelial cells results in loss of luminal

200 

differentiation, and then oncogenic insults in these cells, leading to the formation of basal-

201 

like tumors [54].

202 

Mouse models were used to address if the origin of a particular mammary tumor

203 

phenotype depends on the interactions between the cell of origin and driver genetic hits.

204 

Melchor et al., generated mice deleted of Pten, p53, and Brca2 in mammary basal epithelial

205 

cells or luminal ER-negative cells. Conditional deletion of Brca2 and p53 in either basal or

206 

luminal ER-negative cells resulted in tumors with different latencies and histopathological

207 

features. For example, tumors in mice derived upon of p53, Pten or Brca2 depletion in basal

208 

epithelial tumor cells displayed features of basal-like cells, whereas luminal ER-negative cell-

8   

209 

origin tumors mimicked molecular sub-types of breast cancer, including basal-like and

210 

luminal B [55]. Transcriptome analysis from these tumors further provided the molecular link

211 

between the genetic lesion and tumor type. Consistent with the phenotypic data, gene

212 

expression signature of Brca1:p53 mouse correlated with the human basal-like sub-type and

213 

with human BRCA1 breast cancers. The tumors of Pten deleted mice matched with the

214 

molecular features of Luminal A and non-BRCA1/2 cancers, whereas Brca2:p53/Pten:p53

215 

gene signature had been seen across the range of human breast cancer molecular sub-types.

216 

Based on these observations, it has been concluded that the initiating genetic lesion is the

217 

primary determinant of the molecular expression pattern of the resulting tumors.

218 

Furthermore, the genetic lesions together with a cell of origin serve as strict drivers of tumor

219 

phenotype but not the cell of origin alone, reiterating the fact that mammary tumor

220 

heterogeneity is a result of interactions between the cell of origin and early genetic events.

221 

The breast cancer can be initiated in a single cell by a combined effect of genetic and

222 

epigenetic events, suggesting that breast cancer is a monoclonal disease. Subsequent tumor

223 

progression is driven by the accumulation of additional genetic changes combined with clonal

224 

expansion and selection. The two models such as the cancer stem cell (CSC) and the clonal

225 

evolution and selection hypotheses agree that tumors originate from a single cell. However,

226 

controversies prevail regarding the tumor heterogeneity, progression, and development of

227 

drug resistance. The differences between two models depict how a transformed cell acquires

228 

multiple mutations and unlimited proliferative potential. In particular, these two models

229 

explain tumor heterogeneity with different mechanisms: CSC suggests tumor heterogeneity

230 

as a program of aberrant differentiation, whereas clonal evolution supports that it is a result of

231 

competition among tumor cells with different phenotypes [56, 57].

232 

Tamoxifen treatment and heterogeneity have an intimate association in the

233 

development of endocrine resistance in breast cancer. Many breast cancers that arise after 9   

234 

tamoxifen treatment are typically ER-negative, although premalignant lesions such as

235 

atypical ductal hyperplasia are highly ER-positive. The p53 null mouse mammary epithelial

236 

transplant model is characterized by ER-positive premalignant lesions that give rise to both

237 

ER-positive and -negative tumors. Given this progression from ER-positive to ER-negative

238 

lesions, Medina et al tested the ability of tamoxifen to block or delay mammary

239 

tumorigenesis in several versions of this model. Tamoxifen blocked estrogen signalling in

240 

these mice as evidenced by a decrease in progesterone-induced lateral branching and

241 

epithelial proliferation in the mammary epithelium. Tamoxifen also significantly delayed

242 

tumorigenesis in ER-positive high premalignant line PN8a from 100% to 75%. From this

243 

study the authors derive that tamoxifen delays the emergence of ER-negative tumors if given

244 

in early stages of premalignant progression [58].

245 

Recently, attempts were made to generate a novel heterogeneous, spontaneous

246 

mammary tumor animal model of Kunming mice (Mus musculus Km) which is ER-negative

247 

that have developed invasive ductal tumors which spread through the blood vessel into the

248 

liver and lungs. The mammary tumors are either ER or PR negative, while human epidermal

249 

growth factor receptor-2 (HER-2) protein is weakly positive. In addition, these tumors also

250 

had high expression of vascular endothelial growth factor (VEGF), moderate or high

251 

expression of c-Myc and cyclin D1 which elucidates that this is one of the first spontaneous

252 

mammary model displaying colony-strain of outbred mice and could serve as a pivotal tool in

253 

understanding the biology of anti-hormonal breast cancer in women [59]. These mouse

254 

models can be further explored to study the origin of ER negativity and to further understand

255 

the endocrine resistance.

256  257 

2.2 Characterisation of molecular regulators of endocrine resistance in breast cancer

10   

258 

Because ERα is responsible for the development and progression of majority of breast

259 

cancers, current therapies target ERα functions where tamoxifen, an anti-estrogen, has been

260 

the principal front-line therapy for breast cancers for the last three decades [60, 61]. But a

261 

large number of patients displayed tamoxifen resistance posing a major challenge in treating

262 

these patients [36, 62]. Although reduced expression of ERα is one of the major contributing

263 

factors to the endocrine resistance [63, 64], the mechanism of ERα down regulation in

264 

endocrine resistance is not fully understood. Recent advancements in the field suggest that

265 

epigenetic modifications, miRNA-mediated gene silencing and proteasomal degradation,

266 

either of which can cause loss of ERα expression resulting in ER negativity of breast cancers

267 

(Figure 2).

268  269 

2.2.1 Epigenetic regulation of ERα and development of ER negativity in breast cancer

270 

Mammalian genomes contain a high degree of punctuated DNA sequences of CpG

271 

called CpG islands [65]. Methylation of DNA at these CpG sites in the proximal regions of

272 

gene promoters is quite often linked to suppression of the respective gene expression [66],

273 

which is an epigenetic mechanism in which methyl groups are covalently attached to the

274 

5´carbon of a cytosine ring in a CpG dinucleotide. Although CpG island methylation occurs

275 

in normal developmental processes such as X chromosome inactivation and genomic

276 

imprinting, these CpG islands are usually not methylated in normal cells [67].

277 

Methylation of the ERα gene promoter is intimately linked to loss of ERα expression

278 

in breast cancers [68]. Re-expression of ERα upon treatment of MDA-MB231 cells, an ER

279 

negative breast cancer cell line, with 5-azacytidine, a DNA methyltransferase (DNMT)

280 

inhibitor, provided initial clues about the role of DNA methylation on ERα expression [69].

281 

Indeed, this was further supported by the observation that ER-negative tumors maintained the

282 

methylation status of ESR1 gene (encodes ERα) promoter, but not in ER-positive tumors

11   

283 

implying that DNA methylation is the potential contributing factor for ER negativity in breast

284 

cancers [70]. Yan et al showed that DNMT1 is responsible for ESR1 promoter methylation in

285 

ER-negative breast cancer cell lines, MDA-MB-231. When DNMT1 expression was silenced

286 

by antisense oligonucleotides, the expression of ERα was retained in MDA-MB-231 cells

287 

[71]. Increased total DNMT activity and elevated levels of DNMT3B in a set of ER-negative

288 

cell lines as compared to ER positive cell lines further attributed to higher rates of

289 

methylation on promoters of ESR1 in ER-negative cells [72]. In other studies, methyl-CpG-

290 

binding protein 2 (MeCP2) was shown to stabilize the methylation status of the ESR1 gene

291 

promoter [73]. The MeCP2 is a component of NuRD complex, nuclear remodeling and

292 

deacetylation complex is a large protein complex containing the dual core histone

293 

deacetylases 1 and 2 (HDAC1 and 2), the metastasis-associated proteins MTA1 (or

294 

MTA2/MTA3), the methyl-CpG-binding domain protein MBD3 or MeCP2, the

295 

chromodomain-helicase-DNA-binding protein CHD3 (Mi-2α) or CHD4 (Mi-2β) and the

296 

histone binding proteins RbAp46 and RbAp48. As the Mi-2/nucleosome remodeling and

297 

deacetylase (NuRD) complex contains deacetylase activity, MeCP2-NuRD complex

298 

represses ER expression by a dual mechanism involving methylation and deacetylation of

299 

ESR1 promoter. Similarly, silencing of MTA1, another component of NuRD complex, is also

300 

shown to reduce the ERα expression in ER-positive breast cancer cells [74]. Binding of the

301 

NuRD complex to the ERα-target gene promoters has also been observed in ER-negative

302 

breast cancer cells re-expressing functional ERα in response to tamoxifen [75]. In contrast to

303 

these observations, a recent study postulated that an increased ERα expression in ERα-

304 

negative cells also increased its expression in ER-positive cells upon MTA1

305 

silencing,differential recruitment of MTA1 transcriptional complex bound to ER promoter

306 

has been identified as the underlying mechanism causing it. The transcriptional factors AP-2γ

307 

(TFAP2C) and the IFN-γ-inducible protein 16 (IFI16) were associated with MTA1 complex

12   

308 

in MCF7 cells, in which TFAP2C activated ESR1 gene transcription in contrast to MDA-

309 

MB231 cells where MTA1 complexed with IFI16 repressed the promoter activity and

310 

silenced the MTA1 which increased the expression of ERα [76]. In another study, a different

311 

model of epigenetic regulation of the ESR1 promoter was proposed based on the

312 

experimental evidence obtained from ER–postive and –negative cell lines. In this model, an

313 

activator complex composed of pRb2/E2F4/5/HDAC1/SUV39H1/p300 binds to E2F boxes in

314 

the promoter region of ESR1 gene. However the presence of p300, a HAT, overcomes the

315 

repressor activity imposed by both HDAC1 and the HMT SUV39H1 on ESR1 promoter.

316 

Whereas in MDA-MB231 cells, methylation of CpG by Dnmt3a/3b on this promoter induces

317 

the recruitment of ICBP90 (inverted CCAAT box binding protein of 90 kDa) and

318 

consequently facilitate the replacement of p300 by Dnmt1 in the repressor complex

319 

pRb2/E2F4/5/HDAC1/SUV39H1/Dnmt1 to silence the ESR1 gene expression [77].

320 

Subsequently MeCP2 is recruited to the methylated ESR1 promoter to ensure its complete

321 

repression [78] which infers that distinct protein complexes with opposing transcriptional

322 

activities contribute to the epigenetic regulation of ESR1 gene expression in different breast

323 

cancer cells. Similarly, inhibition of EZH2, a histone H3 Lys 27 (H2K27) methyltransferase

324 

and Polycomb group protein, is associated with upregulation of ERα in breast cancer cells,

325 

suggesting that targeting of EZH2 provides an option for restoring response to tamoxifen in

326 

endocrine-resistant breast cancers [79]. In addition to these intrinsic regulators, arsenic also

327 

has been shown to induce re-expression of functional ERα in MDA-MB231 cells [80]. The

328 

re-expression of ERα by arsenic involves repression of DNMT1 and DNMT3a expression

329 

along with partial dissociation of DNMT1 protein from the ESR1 promoter in these cells.

330 

Thus, it can be concluded that ESR1 promoter is under constant threat from the protein

331 

complexes that contain methylation and deacetylation enzymes and, provides an option to

13   

332 

target these mechanisms to re-express ERα which eventually restores the hormone sensitivity

333 

and response to endocrine therapy in ER-negative breast cancers.

334 

Attempts were made to test the therapeutic effects of methylation and deacetylation

335 

inhibitors both in vitro and in vivo. Zhou et al showed that treatment with HDAC inhibitor

336 

suberoylanilide hydroxamic acid (SAHA) resulted in the re-expression of ERα coupled with

337 

the loss of EGFR in ER-negative MDA-MB231 cells and restored tamoxifen sensitivity in

338 

these cells [81]. Down-regulation of EGFR by SAHA is due to the attenuation of its mRNA

339 

stability. In contrary, Yi et al reports that SAHA enhances ER degradation through CHIP-

340 

mediated proteasomal pathway in MCF7 cells, an ER-positive breast cancer cell line [82] and

341 

thus can be postulated that opposing effects of SAHA in different breast cancer cells could be

342 

due to the cell lines used, however precise mechanisms are yet to be identified. The combined

343 

therapy using both DNMT and HDAC inhibitors displays better assurance to treat ER-

344 

negative breast cancers [83]. Valproic acid (VPA), a HDAC inhibitor, is also shown to

345 

restore estrogen sensitivity in MDA-MB231 cells by inducing the re-expression of ERα and

346 

FoxA1, a coactivator of ERα [84]. Another study showed that letrozole treatment in

347 

combination with Entinostatin, a HDAC inhibitor, increased the sensitivity in xenografts

348 

where Letrozole alone had significant reduction in the expression of ERα but there was a

349 

marked increase in the expression of Her-2 also [85]. As growth factor signalling antagonizes

350 

ERα expression, treating it with trastuzumab (anti-Her-2 antibody) ablates Her-2 action,

351 

leading in increased expression of ERα and enhances its sensitivity to endocrine therapy [86,

352 

87]. However, the exact mechanism of trastuzumab blocking Her-2 leading to up regulation

353 

of ERα remains elusive. A recent study shows that trastuzumab treatment enhances Myc–

354 

SMRT interactions in Her-2 over expressing breast cancer cells and inhibits expression of the

355 

Myc target gene, survivin. Further trastuzumab treatment induces the interaction between

356 

CAAT box binding protein (CBP) and ERα which in turn enhances ERα transcriptional

14   

357 

activity and expression of the ERα target gene, pS2. Furthermore, metastatic tissues from

358 

patients who had failed for trastuzumab therapy were pS2-positive providing the proof that

359 

trastuzumab treatment can benefit endocrine-resistant breast cancer patients with hormone

360 

therapy [88]. Recent studies also showed that FTY720 and avermectin, inhibitors of histone

361 

deacetylase and SIN3 corepressor, as a novel strategy to restore tamoxifen sensitivity in ER-

362 

negative and TNBC tumors [89, 90]. Overall, these studies showed the combination therapy

363 

using various inhibitors of epigenetic modulators providing a new arsenal to the limited list of

364 

therapies to endocrine-resistant breast cancer treatments.  

365  366 

2.2.2 Role of miRNAs in the development of ER negativity in breast cancer

367 

MicroRNAs (miRNAs) are small non-coding RNA molecules with a length of 18–22

368 

nucleotides, miRNAs are naturally synthesized by mammalian cells which mostly are

369 

evolutionary conserved. These small RNAs modulate post-transcriptional expression of

370 

protein-coding genes in diverse biological processes including cell cycle, survival,

371 

differentiation, autophagy and senescence [91, 92]. miRNAs bind to 3’untranslated region

372 

(UTR) of mRNA transcripts and inhibit their translation either by degradation or

373 

destabilization of target mRNA [93]. Large data suggest that dysregulated expression of

374 

miRNAs is found in many cancers, including breast cancer [94-97].

375 

The connection between miRNAs and breast cancers was derived from studies

376 

investigating the expression of miRNAs in breast cancer cell lines and tumor samples. As 3’

377 

UTR of ERα mRNA, which is about ~4.3 kb long, contains several putative binding sites for

378 

various miRNAs created curiosity to investigate the role of miRNAs on ERα functions and its

379 

functional relevance to breast cancer development. miR-206 was the first miRNA reported to

380 

regulate ERα expression in breast cancer cells,miR-206 has two binding sites within the 1200

381 

bp region in the 3’UTR of ERα. Overexpression of miR-206 in MCF7 cells led to the 15   

382 

decrease in ERα levels, but has no effect on ERβ and the expression levels of ERα target

383 

genes such as PR, CCDN1, and pS2 [98]. Similar to miR-206, miR-221 and miR-222 levels

384 

that are elevated in ER-negative breast cancers could decrease ERα protein levels by binding

385 

to 3’UTR of ERα. miR-221/222 expression confers tamoxifen and fulvestrant resistance in

386 

ER-positive breast cancer cells indirectly contributing to ER negativity [99, 100]. It appears

387 

that miR-221/222 expression confers fulvestrant resistance by activating β-catenin and

388 

modulating TGF-β and p53 signalling [101]. Further, elevated levels of miR-221/222 were

389 

found in ER-negative and Her-2-positive breast cancer cells. Silencing of these two miRNAs

390 

partially restores ERα protein expression, tamoxifen-induced cell growth arrest and

391 

apoptosis. In contrast, ectopic expression of miR-221/222 in ER-positive cells reduced levels

392 

of ERα and conferred resistance to tamoxifen [63, 102]. In another study, miR-22 was

393 

identified as a potential ERα-targeting miRNAs [103]. Ectopic expression of miR-22 caused

394 

degradation of ERα mRNA and inhibition of ERα-dependent proliferation of breast cancer

395 

cells. Further, miR-22 expression was found to be down regulated in ER positive human

396 

breast cancer cell lines and tumor specimens [103, 104]. High level expression of miR-22 in

397 

MDA-MB231 decreased ERα levels and subsequently induced apoptosis. let-7 is an ERα

398 

targeting miRNA whose expression is low in ER-positive breast cancer cell lines. Studies by

399 

Zhao et al., revealed that ectopic expression of let-7 miRNA in MCF7 cells decreases ERα

400 

activity and cell proliferation, and subsequently induces apoptosis in MCF7 cells [105].

401 

Furthermore, let-7 expression was inversely correlated with invasion and metastasis, which

402 

indicates that loss of ER expression by let-7 may result in poor clinical outcomes and

403 

resistance to endocrine therapy [106]. Since the activity of co-regulators is crucial for ERα

404 

functioning, miRNAs that target co-regulators could also indirectly influence the

405 

functionality of ERα in breast cancer cells. Consistent with this notion, miR-17-5p, represses

406 

the AIB1/SRC-3, a coactivator of ERα, thereby attenuating ERα-mediated cell proliferation

16   

407 

[107]. Expression of miR-17-5p was low in breast cancer cell lines. Hossain et al found that

408 

down regulation of AIB1 by miR-17-5p results in decreased ERα target gene expression and

409 

proliferation of breast cancer cells [107].

410 

In addition, high throughput analysis of miRNAs expression in breast cancers brings

411 

about the prognostic value of breast cancer status irrespective of the influence of estrogen on

412 

their expression and whether these miRNAs target ERα or not. For example, a microarray-

413 

based study identified ERα is a target of miRNAs, miR-18a/b, miR-193b, miR-206 and miR-

414 

302c [108]. Furthermore, high expression levels of miR-18a and miR-18b were correlated

415 

with ER-negative status in breast tumors [109]. Another recent study found that 20 miRNAs

416 

were significantly dysregulated in ER-positive compared to ER-negative breast cancers. Of

417 

which, 12 miRNAs are up-regulated and eight are down-regulated. In particular, a miR-190b

418 

expression is found to be 23 folds higher in ER-positive as compared to ER-negative breast

419 

tumors [109]. Although the miR-190b expression is high in ER-positive breast tumors, its

420 

expression is not directly influenced by estrogen and does not affect breast cancer cell

421 

proliferation.

422 

In order to identify the miRNA-mediated tamoxifen resistance in breast cancers,

423 

Miller et al performed microarray studies comparing the miRNA profiles in tamoxifen-

424 

resistant vs. tamoxifen-sensitive MCF7 breast cancer cell lines [102] which revealed that

425 

eight miRNAs were significantly up-regulated while seven miRNAs were markedly down-

426 

regulated in tamoxifen-resistant MCF7 breast cancer cells as compared to tamoxifen-sensitive

427 

cells. Reintroduction of low expressing miRNAs in tamoxifen-resistant breast cancer cell

428 

lines could restore tamoxifen sensitivity. For instance, down regulation of miR-342 in Her-2-

429 

positive and negative cell lines as well as in tamoxifen refractory breast tumors were found

430 

To be sensitive to tamoxifen when the expression of miR-342 was restored. Hence, restoring

431 

miR-342 expression could be a novel approach to sensitize refractory breast tumors to 17   

432 

endocrine therapy [110, 111]. Together, these studies imply that miRNAs those target ERα,

433 

contributes to the ER negativity in breast cancers and therefore, serves as potent therapeutic

434 

markers as well as targets in endocrine-resistant breast cancers (Table 1). Additional studies

435 

are required to confirm the roles of miRNAs in a clinical setting to get clear results. For,

436 

clinical applications, miRNA expressions should be carefully validated prior to being

437 

adopted.

438  439 

2.2.3 Role of ubiquitination on ERα stability and breast cancer phenotype

440 

The cellular levels of crucial regulators like kinases, receptors, phosphatases,

441 

transcription factors, etc. are tightly regulated as their persistent high expression may have

442 

undesirable effects on the cell. Ciechanover et al., first reported the selective degradation of

443 

protein through the conjugation of ubiquitin molecules in an ATP-dependent manner [112].

444 

Ubiquitinated proteins are recognized and degraded by the multi-subunit complex called the

445 

26S proteasome [113], This ubiquitin–proteasome pathway has a role in diverse cellular

446 

processing such as cell-cycle regulation, cell proliferation differentiation, apoptosis, etc. in

447 

higher eukaryotes. Depending on the number of ubiquitins added to the target protein,

448 

ubiquitination is two types: monoubiquitination and polyubiquitination. Although

449 

monoubiquitination is associated with diverse processes ranging from membrane transport to

450 

transcriptional regulation, polyubiquitination is mainly known to regulate protein turnover

451 

through proteasome-mediated degradation [114].

452 

The first report about ER ubiquitination was investigated by Nirmala and Thampan

453 

[115]. They identified that the ERα in the uterus is ubiquitinated and this ubiquitination is

454 

enhanced by estradiol treatment. The half-life of ERα in the presence of estrogen is about 3-4

455 

hours [115] which was further supported by Nawaz et al,depicted that ubiquitin activating

456 

enzyme, UBA, and ubiquitin conjugating enzymes, UBCs, can degrade ER protein in vitro. 18   

457 

Treatment of cells with the proteasome inhibitor MG132 or lactacystin could significantly

458 

enhance the stability of ERα [116]. Subsequent studies clearly established that ERα

459 

undergoes ubiquitination upon ligand binding and this modification is important for efficient

460 

transactivation by the receptor [117]. Other than natural ligand, anti-estrogen ICI-182,780 can

461 

induce proteasome-dependent proteolysis of ERα and therefore considered as a therapeutic

462 

drug for treating ER-positive breast cancers [118].

463 

Many ubiquitin ligases are known to directly interact with ERα and stimulate its

464 

degradation and associate with breast cancer phenotype [119]. Fan and his colleagues

465 

identified that the C-terminus of Hsp70-interacting protein (CHIP), a chaperone-dependent

466 

E3 ligase, interacts directly with ERα and promote ERα degradation through ubiquitination-

467 

proteasomal degradation pathway [120]. The U-box (containing ubiquitin ligase activity) and

468 

the tetratricopeptide repeat (TPR, essential for chaperone binding) domains of CHIP are

469 

necessary for CHIP-mediated ERα degradation. Ectopic expression of the CHIP, resulted in

470 

decreased levels of endogenous ERα protein and impairment of ERα-mediated gene

471 

expression, and hormone responsiveness in ER-positive cells. Notably, PES1, an estrogen-

472 

inducible gene, inhibits CHIP-mediated ERα degradation mediated by CHIP. In contrast,

473 

PES1 promotes CHIP-mediated ERβ ubiquitination and degradation. This differential

474 

regulation of ER protein stability lies in the interaction of PES1 with AF1 domain of ERα but

475 

not with ERβ. PES1 expression displayed good clinical outcome in breast cancers [121].

476 

Whereas, suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, was

477 

reported to enhance ERα degradation through a CHIP-mediated proteasomal pathway in

478 

breast cancer MCF7 cells, suggesting the positive crosstalk between CHIP and SAHA in ER-

479 

positive breast cancers [82]. von Hippel-Lindau (VHL), another E3 Ub ligase and a tumor

480 

suppressor, also regulates ERα stability. Ectopic expression of pVHL suppresses endogenous

481 

ERα levels and also promotes ubiquitinylation-mediated degradation of ERα [122]. pVHL19   

482 

mediated ERα suppression is critical for the maintenance of microtubule organizing center

483 

(MTOC) as elevated ERα promotes MTOC amplification through disruption of BRCA1-

484 

Rad51 interaction and induces γ-tubulin expression [123]. Furthermore, activation of ERα

485 

signalling can increase γ-tubulin, a core factor of TuRC which render resistance to Taxol in

486 

breast tumors. Together, these findings suggest that pVHL-mediated ERα suppression is

487 

important for regulation of MTOC as well as drug resistance in breast tumors [123]. The

488 

speckle-type POZ protein (SPOP), an adaptor of Cullin3 based E3 ubiquitin ligase, also binds

489 

to ERα and targets ERα for ubiquitination-dependent degradation [124].

490 

Neural precursor cell developmentally expressed down-regulation of 8 (NEDD8) -

491 

Uba3 pathway which is shown to mediate ERα proteolysis [125]. Uba3 interacts with ligand-

492 

bound ERα through NR boxes that are important for the interaction between co-regulators

493 

and steroid hormone receptors. Uba3 has neddylation activity, which is required for inhibition

494 

of steroid receptor transactivation [126]. Duong et al., reported that Mdm2, an oncogenic E3

495 

ubiquitin-ligase, directly interacts with ERα in a ternary complex involving p53. This

496 

complex regulates both ligand-dependent and independent reduction of ERα stability in

497 

human breast cancer cell lines, MCF7 [127]. Recent findings by Pan and colleagues showed

498 

that CUE domain containing protein CUEDC2 could promote ERα degradation through the

499 

ubiquitin-proteasome pathway. By studying specimens from a large cohort of subjects with

500 

breast cancers, the authors found a strong inverse correlation between CUEDC2 and ERα

501 

expression. Notably, patients with high levels of CUEDC2 expression had poor

502 

responsiveness to tamoxifen treatment and high potential for relapse. Further, ectopic

503 

CUEDC2 expression impaired the responsiveness of breast cancer cells to tamoxifen,

504 

implying that CUEDC2 can contribute to resistance in breast cancer.

20   

505 

Not only the polyubiquitination but monoubiquitination of ERα has been associated

506 

with its functional activity. For instance, lysine 302 of ERα is subjected to mono-

507 

ubiquitination by BRCA1/BARD1E3 Ub ligase [128]. Down-regulation of BRCA1 leads to

508 

activation of ERα, conversely ectopic expression of BRCA1 down regulates ERα activity

509 

[129]. In contrary, monoubiquitination at lysine 302 and 303 is shown to be important for

510 

ERα transcriptional activity and estrogen-induced cell proliferation [130]. RNF31, an atypical

511 

E3 ubiquitin ligase, is also shown to monoubiquitinate ERα and increases ERα stability. This

512 

is consistent with the previous reports supporting the stabilization of ERα by its

513 

monoubiquitination. RNF31 and ERα association mainly occurs in the cytosol and activates

514 

the non-genomic mechanism, by which RNF31 via stabilizing ERα levels, controls the

515 

transcription of estrogen-dependent genes linked to breast cancer cell proliferation [131].

516 

Other than ubiquitination, ERα phosphorylation is also prone to proteasomal degradation and

517 

breast cancer phenotype. For instance, mitogen-activated protein kinase (p38MAPK)

518 

mediated phosphorylation of ERα at Ser-294 is prone to its turnover via the SCF (Skp2)

519 

proteasome-mediated pathway. Surprisingly inhibition of p38MAPK or Skp2 knockdown

520 

restored functional ERα protein levels in ERα-negative breast cancer cells which, suggests

521 

that p38MAPK or Skp2 are responsible for the loss of ER protein expression in ER-negative

522 

breast cancer cells [132].

523 

Over a decade of research on these aspects revealed that ERα regulators such as

524 

epigenetic factors and ubiquitin ligases emerged as vital contributors of ER negativity in

525 

breast cancers. The optimal balance between the expression of these regulators may predicts

526 

the outcome of the endocrine response in breast cancer (Figure 3). With this data, we propose

527 

a model wherein various epigenetic factors and ubiquitin ligases directly or indirectly

528 

contribute to ER negativity and endocrine resistance in breast cancers by inhibiting ER

529 

expression/functionality. The ER negativity along with PR (progesterone receptor) and Her-2 21   

530 

negativity together contributes to TNBC phenotype. As estrogen signalling via the ERα has

531 

been shown to up-regulate the expression of the PR gene and thus the majority of ER-positive

532 

tumors are also PR-positive. Therefore, loss of ERα expression could lead to PR negativity.

533 

Since Her-2 over-expression or amplification is associated with loss of ERα expression and

534 

vice versa, Her-2 overexpression is also a potential mechanism for ER negativity in breast

535 

cancer (Figure 4).

536  537 

3. ERα rescue therapy

538 

The percentages of breast cancer cells, which become ER-negative that are initially ER-

539 

positive are not very high (10%) [133]. Due to acquired resistance, initially sensitive ERα+

540 

breast cancers response to a second and even third line therapies falls with increasing lines of

541 

treatment [134]. It implies that the selective growth of ER-negative populations is not a

542 

common contributor to acquired resistance. However, it is difficult to assess whether ERα+

543 

breast cancers that do not respond will become ER-negative with treatment or not. But this

544 

could be due to either the loss of ERα functionality or cells might have lost their dependence

545 

on ERα to drive proliferation, and so the presence of functional ERα is no longer a

546 

requirement for cell survival and proliferation [41]. On the other hand, tumors that exhibit de

547 

novo resistance had an association between lower ERα expression for lesser extent and lower

548 

rate of response to endocrine therapy [135]. This raised the possibility that re-expression of

549 

ERα may benefit the endocrine therapy in these patients, but not in those who had tumors

550 

with acquired resistance.

551 

Rescue therapy, also known as salvage therapy, is a form of therapy given to the

552 

patients who does not respond to the standard therapy. As the effects of anti-estrogens such as

553 

tamoxifen are primarily mediated through the ERα, breast tumors expressing the receptor

554 

respond well to SERM (selective estrogen receptor modulators) therapy. However, about 22   

555 

30% of invasive breast cancers are hormone-independent because they lack ERα expression

556 

due to inactive ESR1 promoter [136]. Many of the tumors that initially respond to tamoxifen

557 

can acquire resistance during and after tamoxifen therapy [30]. Therefore, ER negativity in

558 

breast carcinomas confronts to treat with anti-estrogens. A hypothesis was emerged where re-

559 

expression of the ERα could restore the endocrine response in ER-negative cells. When ERα

560 

was ectopically expressed in an ER-negative breast cancer cell line (MDA-MB-231), 17-β-

561 

estradiol inhibited the proliferation of these cells, while the anti-estrogens ICI182780, and

562 

tamoxifen blocked this effect indicating that ERα reexpression restores tamoxifen sensitivity

563 

in ER-negative cells [137]. Later on, several investigations led to provide the crosstalk

564 

between ERα expression and growth factor signalling [138, 139]. Analysis of breast tumors

565 

using phosho-specific growth factor receptor antibodies revealed that erbB-2/Her-2 over-

566 

expressing tumors are ER-/PR-negative [140], indicating that increased Her-2 receptor is

567 

associated with the ER-negative phenotype. Because ER-negative tumors often display over-

568 

expression or amplification of growth factor receptors of the erbB family, particularly EGFR

569 

and erbB-2, and consequently, elevated growth factor signaling and resultant MAP kinase

570 

(ERK) activity, EGFR or Her2 over-expression in ER-positive breast cancer cells was

571 

investigated. Accordingly, over expression of either EGFR or Her-2 in MCF7 cells results in

572 

acquisition of estrogen-independence due to loss of ERα expression further supporting the

573 

fact that growth factor signaling and ERα expression have mutual inhibitory action in breast

574 

cancer cells [141, 142]. Since MAPK is the downstream molecule of these growth factor

575 

signaling pathways, inhibition of this hyperactive MAPK restores ERα and acquired anti-

576 

estrogen response [143, 144]. An exception to this relationship is that hyperactivation of

577 

MAPK does not lead to re-expression of ERα in SUM-102 and SUM159, two ER-negative

578 

basal type breast cancer cell lines which are found to exhibit hypermethylation of the ESR1

579 

promoter suggesting that additional mechanisms may operate to repress ERα expression in

23   

580 

these cell lines [44]. Summing these studies, it can be concluded that the re-expression of

581 

ERα in ER-negative breast cancer cells by inhibiting EGFR or Her-2 signaling restores, at

582 

least in part, a hormone-responsiveness and could be useful as a potential therapeutic

583 

approach to endocrine-resistant breast cancer.

584 

Initial studies on ER-negative breast cancer cells by treating with demethylating

585 

agents and histone deacetylase inhibitors led to the expression of ER mRNA and functional

586 

protein. Fan et al reported that ERα can be re-expressed in ER-negative breast cancer cells by

587 

both DNA methyltransferase-1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (AZA) and

588 

histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic

589 

acid (SAHA)1 [145]. Another study by Zhou et al., showed that ERα reactivation can be

590 

achieved using clinically relevant HDAC inhibitor LBH589 without demethylation of the

591 

CpG island within the ESR1 promoter [146]. These studies provide evidence that ER-

592 

negative breast cancer cells can be sensitized with anti-tumor effects of tamoxifen by

593 

combining treatment with 5-aza-dC/TSA. As indicated earlier, inhibition of growth factor

594 

signaling by trastuzumab that blocks Her-2/MAPK activation renders ERα re-expression and

595 

acquire the tamoxifen sensitivity. These studies provide new treatment options for patients

596 

with de novo resistance to endocrine therapies.

597 

ERα re-expression is a win-win strategy to combat ER-negative breast cancer

598 

(personal opinion). Because the application of HDAC, DNMT or MEK inhibitors restores

599 

ERα expression in ER-negative breast cancer cells, these cells have responded to selective

600 

ERα antagonists [143, 145]. However, studies by Al-Eshry’s group demonstrated that ERα

601 

re-expression does not always result in effective responses to SERM therapy [44], which is

602 

because certain cancer cells fail to re-express ERα upon inhibition of the growth factor

603 

pathway. Over a period of time, the heterogeneity of a tumor might have changed due to

604 

which these tumor cells did not re-express ERα. Moreover, the systemic factors that 24   

605 

accounts for establishing the local ecosystem within the tumor had opposed the re-

606 

expression of ERα. It implies that although combined therapy using these inhibitors along

607 

with Tamoxifen has shown promising results in vitro and in vivo models, the following

608 

concerns need to be fully addressed before implementation of re-expression of ER therapy

609 

in clinics: 1) does all tumor cells respond to anti-estrogens? In case of tumors that exhibit

610 

acquired resistance has developed more heterogeneity and may respond poorly to anti-

611 

estrogens, 2) re-expression of ERα in those tumors with the application of HDAC, DNMT

612 

or MEK inhibitors may develop resistance to these inhibitors, 3) since ER-positive breast

613 

cancer cells die without ERα and ER-negative breast cancer copes without the receptor, why

614 

does one want to give another selective advantage to these tumor cells? and 4) because breast

615 

cancer cells will gain also the proliferative advantage given by the endogenous circulating

616 

estrogen, will that not affect the quality of the life of the patient? Therefore, the ERα re-

617 

expression in ER-negative breast cancer cells for restoring response to endocrine therapy

618 

need to be thoroughly investigated using large cohorts of clinical trials.

619 

As the mechanisms underlying endocrine resistance is very complex, for the benefit

620 

of these patients, exploring combination therapies are extremely important for improving

621 

the overall survival. Indeed, endocrine therapy combined with Gefitinib, lapatinib or

622 

everolimus is currently under investigation in clinical trials. The study results have

623 

provided the evidence that combination therapy may improve the progression free survival

624 

in treated patients [147, 148]. A recent study also showed that Gefitinib could reverse TAM

625 

resistance in breast cancer cells by inducing ERα re-expression [149]. The same group also

626 

previously showed that elemene (ELE), a traditional Chinese medicine, could reverse the

627 

TAM resistance of breast cancer cells and that ERα loss was the primary cause for the

628 

development of TAM resistance in these cells [150]. ELE appears to induce ERα re-

629 

expression by increasing the ERα transcript level to sensitize the cells to anti-estrogens. It 25   

630 

implies that re-exposure of ER-negative breast cancer patients to either drugs such as

631 

Gefitnib, decitabine, elemene (ELE) or LBH589 followed by endocrine therapy may benefit

632 

these patients and provide a novel therapeutic strategy for endocrine therapy.Although one

633 

such attempt was made, unfortunately, the clinical trial of combination therapy using

634 

tamoxifen in combination with decitabine, demethylating agents and LBH589, deacetylation

635 

inhibitor was discontinued. The reason being for early termination of the study was due to

636 

small numbers of participant’s analyzed and technical problems.

637 

4.

Concluding remarks and future prospects

638 

Because endocrine resistance possesses a major challenge in treating the significant

639 

number of breast cancer cases, understanding the mechanisms that underlie the causes of this

640 

phenomenon is essential to reduce the burden of this disease. Although significant

641 

advancements are being made in the identification and characterization of several factors that

642 

contribute to the endocrine resistance, but our present understanding of this phenomenon is

643 

still at premature stage. Lack of ERα expression due to hypermethylation of ESR1 promoter

644 

made researchers in this field to draw new strategies to re-express ERα in ER-negative breast

645 

cancers. Indeed, such strategies were successful in pre-clinical trials, but yet to reach the

646 

clinics. Of note, drugs such as SAHA in combination with Herceptin perceived greater

647 

attention to show the promise in endocrine therapy [151]. Several miRNAs have been

648 

differentially expressed in endocrine cancers and emerged as new prognostic markers of the

649 

disease. More importantly, expression profiling studies showed over-expression of several

650 

ERα targeting miRNAs in ER-negative breast cancers suggesting that they can be served as

651 

bio-markers in the diagnosis and also in the management of breast cancer. Furthermore,

652 

developing the miRNA mimics as therapeutic drugs targeting these miRNAs will have the

653 

greater clinical value, but future awaits improving our technological advances in delivering

26   

654 

these agents in the form of drugs into the sites of tumor. The other contributing factor for

655 

endocrine resistance is ERα-specific ubiquitin ligases. Because several lines of evidence

656 

suggest that re-expression of ERα in ER-negative breast cancer cells can restore sensitivity to

657 

tamoxifen, restoring the ERα expression by inhibiting ERα-specific Ub ligases provide

658 

potential novel strategies for restoring tamoxifen sensitivity. Therefore, small molecule

659 

inhibitors specific to these Ub ligases may overcome tamoxifen resistance in breast cancers.

660 

In particular, whether ER negativity is a cause or a consequence of the disease progression is

661 

a million dollar question in this field. Therefore the debate continues until to unravel the

662 

precise mechanism/s that explains the origin of ER negativity in breast cancer. Besides this,

663 

understanding tumor heterogeneity and real time monitoring of early resistance to targeted

664 

therapies by analyzing the resistant tumors through integrated approach is needed. We

665 

envisage more intensive research and debates with a resurgence of interest to better

666 

understand the ER negativity in breast cancer.

667  668 

Acknowledgments

669 

This work is supported by the Department of Biotechnology (DBT), India grants No-

670 

BT/MED/30/SP11273/2015 and BT/PR8764/MED/97/104/2013; and Department of Science

671 

and Technology (DST) grant No- SB/SO/BB/013/2013, (to BM) India, DST-PURSE and

672 

UGC-UPE2, UGC-DRS grant. No conflict of interest exist to disclose.

673  674  675  676  677  678  679  680  681  682 

References 1.  2.  3.  4. 

Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p.  7‐30.  Richie, R.C. and J.O. Swanson, Breast cancer: a review of the literature. J Insur Med, 2003.  35(2): p. 85‐101.  Schnitt, S.J., Classification and prognosis of invasive breast cancer: from morphology to  molecular taxonomy. Mod Pathol, 2010. 23 Suppl 2: p. S60‐4.  Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses  with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869‐74.  27 

 

683  684  685  686  687  688  689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704  705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720  721  722  723  724  725  726  727  728  729  730  731  732 

5.  6.  7.  8.  9.  10.  11.  12.  13.  14.  15.  16.  17.  18. 

19.  20.  21.  22. 

23. 

24.  25.  26. 

27. 

Brenton, J.D., et al., Molecular classification and molecular forecasting of breast cancer:  ready for clinical application? J Clin Oncol, 2005. 23(29): p. 7350‐60.  Sotiriou, C. and L. Pusztai, Gene‐expression signatures in breast cancer. N Engl J Med, 2009.  360(8): p. 790‐800.  Banerjee, S., et al., Basal‐like breast carcinomas: clinical outcome and response to  chemotherapy. J Clin Pathol, 2006. 59(7): p. 729‐35.  Rakha, E.A., et al., Triple‐negative breast cancer: distinguishing between basal and nonbasal  subtypes. Clin Cancer Res, 2009. 15(7): p. 2302‐10.  Bertos, N.R. and M. Park, Breast cancer ‐ one term, many entities? J Clin Invest, 2011.  121(10): p. 3789‐96.  Haibe‐Kains, B., et al., A three‐gene model to robustly identify breast cancer molecular  subtypes. J Natl Cancer Inst, 2012. 104(4): p. 311‐25.  Prat, A., et al., Clinical implications of the intrinsic molecular subtypes of breast cancer.  Breast, 2015. 24 Suppl 2: p. S26‐35.  Cheang, M.C., et al., Ki67 index, HER2 status, and prognosis of patients with luminal B breast  cancer. J Natl Cancer Inst, 2009. 101(10): p. 736‐50.  Polyak, K., Heterogeneity in breast cancer. J Clin Invest, 2011. 121(10): p. 3786‐8.  Tang, Y., et al., Classification, Treatment Strategy, and Associated Drug Resistance in Breast  Cancer. Clin Breast Cancer, 2016. 16(5): p. 335‐343.  Olopade, O.I., et al., Advances in breast cancer: pathways to personalized medicine. Clin  Cancer Res, 2008. 14(24): p. 7988‐99.  Parker, J.S., et al., Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin  Oncol, 2009. 27(8): p. 1160‐7.  Scorletti, E. and C.D. Byrne, Extrahepatic Diseases and NAFLD: The Triangular Relationship  between NAFLD, Type 2‐Diabetes and Dysbiosis. Dig Dis, 2016. 34 Suppl 1: p. 11‐8.  Badve, S., et al., Basal‐like and triple‐negative breast cancers: a critical review with an  emphasis on the implications for pathologists and oncologists. Mod Pathol, 2011. 24(2): p.  157‐67.  Lehmann, B.D., et al., Identification of human triple‐negative breast cancer subtypes and  preclinical models for selection of targeted therapies. J Clin Invest, 2011. 121(7): p. 2750‐67.  Prat, A., et al., Molecular characterization of basal‐like and non‐basal‐like triple‐negative  breast cancer. Oncologist, 2013. 18(2): p. 123‐33.  Sorlie, T., et al., Repeated observation of breast tumor subtypes in independent gene  expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8418‐23.  Sikov, W.M., et al., Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant  once‐per‐week paclitaxel followed by dose‐dense doxorubicin and cyclophosphamide on  pathologic complete response rates in stage II to III triple‐negative breast cancer: CALGB  40603 (Alliance). J Clin Oncol, 2015. 33(1): p. 13‐21.  Gucalp, A., et al., Phase II trial of bicalutamide in patients with androgen receptor‐positive,  estrogen receptor‐negative metastatic Breast Cancer. Clin Cancer Res, 2013. 19(19): p. 5505‐ 12.  Cancer Genome Atlas, N., Comprehensive molecular portraits of human breast tumours.  Nature, 2012. 490(7418): p. 61‐70.  Carey, L.A., et al., Race, breast cancer subtypes, and survival in the Carolina Breast Cancer  Study. JAMA, 2006. 295(21): p. 2492‐502.  Harvey, J.M., et al., Estrogen receptor status by immunohistochemistry is superior to the  ligand‐binding assay for predicting response to adjuvant endocrine therapy in breast cancer.  J Clin Oncol, 1999. 17(5): p. 1474‐81.  Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer  Trialists' Collaborative Group. Lancet, 1998. 351(9114): p. 1451‐67. 

28   

733  734  735  736  737  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752  753  754  755  756  757  758  759  760  761  762  763  764  765  766  767  768  769  770  771  772  773  774  775  776  777  778  779  780  781  782 

28.  29.  30.  31.  32. 

33. 

34. 

35. 

36.  37.  38.  39.  40.  41.  42.  43.  44.  45. 

46.  47.  48.  49.  50. 

Nadji, M., et al., Immunohistochemistry of estrogen and progesterone receptors  reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol, 2005. 123(1): p. 21‐7.  Clarke, R., et al., Cellular and molecular pharmacology of antiestrogen action and resistance.  Pharmacol Rev, 2001. 53(1): p. 25‐71.  Jordan, V.C. and B.W. O'Malley, Selective estrogen‐receptor modulators and antihormonal  resistance in breast cancer. J Clin Oncol, 2007. 25(36): p. 5815‐24.  Jordan, V.C., Tamoxifen as the first targeted long‐term adjuvant therapy for breast cancer.  Endocr Relat Cancer, 2014. 21(3): p. R235‐46.  Loi, S., M. Piccart, and C. Sotiriou, The use of gene‐expression profiling to better understand  the clinical heterogeneity of estrogen receptor positive breast cancers and tamoxifen  response. Crit Rev Oncol Hematol, 2007. 61(3): p. 187‐94.  Huang, L., et al., An integrated bioinformatics approach identifies elevated cyclin E2  expression and E2F activity as distinct features of tamoxifen resistant breast tumors. PLoS  One, 2011. 6(7): p. e22274.  Bardou, V.J., et al., Progesterone receptor status significantly improves outcome prediction  over estrogen receptor status alone for adjuvant endocrine therapy in two large breast  cancer databases. J Clin Oncol, 2003. 21(10): p. 1973‐9.  Creighton, C.J., et al., Proteomic and transcriptomic profiling reveals a link between the PI3K  pathway and lower estrogen‐receptor (ER) levels and activity in ER+ breast cancer. Breast  Cancer Res, 2010. 12(3): p. R40.  Musgrove, E.A. and R.L. Sutherland, Biological determinants of endocrine resistance in breast  cancer. Nat Rev Cancer, 2009. 9(9): p. 631‐43.  Tran, B. and P.L. Bedard, Luminal‐B breast cancer and novel therapeutic targets. Breast  Cancer Res, 2011. 13(6): p. 221.  Kim, H.S., et al., Analysis of the potent prognostic factors in luminal‐type breast cancer. J  Breast Cancer, 2012. 15(4): p. 401‐6.  Lonning, P.E., Poor‐prognosis estrogen receptor‐ positive disease: present and future clinical  solutions. Ther Adv Med Oncol, 2012. 4(3): p. 127‐37.  Prat, A. and C.M. Perou, Deconstructing the molecular portraits of breast cancer. Mol Oncol,  2011. 5(1): p. 5‐23.  Clarke, R., J.J. Tyson, and J.M. Dixon, Endocrine resistance in breast cancer‐‐An overview and  update. Mol Cell Endocrinol, 2015. 418 Pt 3: p. 220‐34.  Osborne, C.K. and R. Schiff, Mechanisms of endocrine resistance in breast cancer. Annu Rev  Med, 2011. 62: p. 233‐47.  Nicholson, R.I., J.M. Gee, and M.E. Harper, EGFR and cancer prognosis. Eur J Cancer, 2001.  37 Suppl 4: p. S9‐15.  Bayliss, J., et al., Reversal of the estrogen receptor negative phenotype in breast cancer and  restoration of antiestrogen response. Clin Cancer Res, 2007. 13(23): p. 7029‐36.  Bachleitner‐Hofmann, T., et al., Pattern of hormone receptor status of secondary  contralateral breast cancers in patients receiving adjuvant tamoxifen. Clin Cancer Res, 2002.  8(11): p. 3427‐32.  Beca, F. and K. Polyak, Intratumor Heterogeneity in Breast Cancer. Adv Exp Med Biol, 2016.  882: p. 169‐89.  Visvader, J.E., Cells of origin in cancer. Nature, 2011. 469(7330): p. 314‐22.  Clarke, R.B., et al., Dissociation between steroid receptor expression and cell proliferation in  the human breast. Cancer Res, 1997. 57(22): p. 4987‐91.  Chaffer, C.L., et al., Normal and neoplastic nonstem cells can spontaneously convert to a  stem‐like state. Proc Natl Acad Sci U S A, 2011. 108(19): p. 7950‐5.  Proia, T.A., et al., Genetic predisposition directs breast cancer phenotype by dictating  progenitor cell fate. Cell Stem Cell, 2011. 8(2): p. 149‐63. 

29   

783  784  785  786  787  788  789  790  791  792  793  794  795  796  797  798  799  800  801  802  803  804  805  806  807  808  809  810  811  812  813  814  815  816  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832  833 

51.  52.  53.  54.  55.  56.  57.  58.  59. 

60.  61.  62.  63. 

64.  65.  66.  67.  68.  69. 

70.  71. 

72.  73.  74. 

Lim, E., et al., Aberrant luminal progenitors as the candidate target population for basal  tumor development in BRCA1 mutation carriers. Nat Med, 2009. 15(8): p. 907‐13.  Molyneux, G., et al., BRCA1 basal‐like breast cancers originate from luminal epithelial  progenitors and not from basal stem cells. Cell Stem Cell, 2010. 7(3): p. 403‐17.  Skibinski, A. and C. Kuperwasser, The origin of breast tumor heterogeneity. Oncogene, 2015.  34(42): p. 5309‐16.  Liu, S., et al., BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci  U S A, 2008. 105(5): p. 1680‐5.  Melchor, L., et al., Identification of cellular and genetic drivers of breast cancer heterogeneity  in genetically engineered mouse tumour models. J Pathol, 2014. 233(2): p. 124‐37.  Polyak, K., Tumor heterogeneity confounds and illuminates: a case for Darwinian tumor  evolution. Nat Med, 2014. 20(4): p. 344‐6.  Janiszewska, M. and K. Polyak, Clonal evolution in cancer: a tale of twisted twines. Cell Stem  Cell, 2015. 16(1): p. 11‐2.  Medina, D., et al., Tamoxifen inhibition of estrogen receptor‐alpha‐negative mouse  mammary tumorigenesis. Cancer Res, 2005. 65(8): p. 3493‐6.  Zheng, L., et al., A model of spontaneous mouse mammary tumor for human estrogen  receptor‐ and progesterone receptor‐negative breast cancer. Int J Oncol, 2014. 45(6): p.  2241‐9.  Clark, G.M. and W.L. McGuire, Steroid receptors and other prognostic factors in primary  breast cancer. Semin Oncol, 1988. 15(2 Suppl 1): p. 20‐5.  McGuire, W.L., et al., How to use prognostic factors in axillary node‐negative breast cancer  patients. J Natl Cancer Inst, 1990. 82(12): p. 1006‐15.  Clarke, R., et al., Antiestrogen resistance in breast cancer and the role of estrogen receptor  signaling. Oncogene, 2003. 22(47): p. 7316‐39.  Garcia‐Becerra, R., et al., Mechanisms of resistance to endocrine therapy in breast cancer:  focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci, 2012.  14(1): p. 108‐45.  Rondon‐Lagos, M., et al., Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci,  2016. 17(8).  Illingworth, R.S. and A.P. Bird, CpG islands‐‐'a rough guide'. FEBS Lett, 2009. 583(11): p.  1713‐20.  Schinke, C., et al., Aberrant DNA methylation in malignant melanoma. Melanoma Res, 2010.  20(4): p. 253‐65.  Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683‐92.  Flanagan, J.M., et al., DNA methylome of familial breast cancer identifies distinct profiles  defined by mutation status. Am J Hum Genet, 2010. 86(3): p. 420‐33.  Ferguson, A.T., et al., Demethylation of the estrogen receptor gene in estrogen receptor‐ negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res,  1995. 55(11): p. 2279‐83.  Lapidus, R.G., et al., Mapping of ER gene CpG island methylation‐specific polymerase chain  reaction. Cancer Res, 1998. 58(12): p. 2515‐9.  Yan, L., et al., Specific inhibition of DNMT1 by antisense oligonucleotides induces re‐ expression of estrogen receptor‐alpha (ER) in ER‐negative human breast cancer cell lines.  Cancer Biol Ther, 2003. 2(5): p. 552‐6.  Roll, J.D., et al., DNMT3b overexpression contributes to a hypermethylator phenotype in  human breast cancer cell lines. Mol Cancer, 2008. 7: p. 15.  Wilson, M.E. and J.M. Westberry, Regulation of oestrogen receptor gene expression: new  insights and novel mechanisms. J Neuroendocrinol, 2009. 21(4): p. 238‐42.  Manavathi, B. and R. Kumar, Metastasis tumor antigens, an emerging family of multifaceted  master coregulators. J Biol Chem, 2007. 282(3): p. 1529‐33.  30 

 

834  835  836  837  838  839  840  841  842  843  844  845  846  847  848  849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864  865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880  881  882  883  884 

75. 

76.  77. 

78. 

79. 

80. 

81. 

82. 

83.  84. 

85. 

86.  87. 

88.  89. 

90. 

91.  92.  93.  94. 

Sharma, D., et al., Restoration of tamoxifen sensitivity in estrogen receptor‐negative breast  cancer cells: tamoxifen‐bound reactivated ER recruits distinctive corepressor complexes.  Cancer Res, 2006. 66(12): p. 6370‐8.  Kang, H.J., et al., Differential regulation of estrogen receptor alpha expression in breast  cancer cells by metastasis‐associated protein 1. Cancer Res, 2014. 74(5): p. 1484‐94.  Macaluso, M., et al., pRb2/p130‐E2F4/5‐HDAC1‐SUV39H1‐p300 and pRb2/p130‐E2F4/5‐ HDAC1‐SUV39H1‐DNMT1 multimolecular complexes mediate the transcription of estrogen  receptor‐alpha in breast cancer. Oncogene, 2003. 22(23): p. 3511‐7.  Westberry, J.M., A.L. Trout, and M.E. Wilson, Epigenetic regulation of estrogen receptor  alpha gene expression in the mouse cortex during early postnatal development.  Endocrinology, 2010. 151(2): p. 731‐40.  Reijm, E.A., et al., Decreased expression of EZH2 is associated with upregulation of ER and  favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Res Treat, 2011.  125(2): p. 387‐94.  Du, J., et al., Arsenic induces functional re‐expression of estrogen receptor alpha by  demethylation of DNA in estrogen receptor‐negative human breast cancer. PLoS One, 2012.  7(4): p. e35957.  Zhou, Q., P.G. Shaw, and N.E. Davidson, Inhibition of histone deacetylase suppresses EGF  signaling pathways by destabilizing EGFR mRNA in ER‐negative human breast cancer cells.  Breast Cancer Res Treat, 2009. 117(2): p. 443‐51.  Yi, X., et al., Histone deacetylase inhibitor SAHA induces ERalpha degradation in breast  cancer MCF‐7 cells by CHIP‐mediated ubiquitin pathway and inhibits survival signaling.  Biochem Pharmacol, 2008. 75(9): p. 1697‐705.  Kondo, Y., Epigenetic cross‐talk between DNA methylation and histone modifications in  human cancers. Yonsei Med J, 2009. 50(4): p. 455‐63.  Hwang, C., et al., EZH2 regulates the transcription of estrogen‐responsive genes through  association with REA, an estrogen receptor corepressor. Breast Cancer Res Treat, 2008.  107(2): p. 235‐42.  Sabnis, G.J., et al., HDAC inhibitor entinostat restores responsiveness of letrozole‐resistant  MCF‐7Ca xenografts to aromatase inhibitors through modulation of Her‐2. Mol Cancer Ther,  2013. 12(12): p. 2804‐16.  Chumsri, S., et al., Aromatase inhibitors and xenograft studies. Steroids, 2011. 76(8): p. 730‐ 5.  Sabnis, G.J., et al., Functional activation of the estrogen receptor‐alpha and aromatase by  the HDAC inhibitor entinostat sensitizes ER‐negative tumors to letrozole. Cancer Res, 2011.  71(5): p. 1893‐903.  Collins, D.C., et al., Growth factor receptor/steroid receptor cross talk in trastuzumab‐treated  breast cancer. Oncogene, 2015. 34(4): p. 525‐30.  Hait, N.C., et al., The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that  reactivates ERalpha expression and enhances hormonal therapy for breast cancer.  Oncogenesis, 2015. 4: p. e156.  Kwon, Y.J., et al., Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel  Therapeutic Strategy in Triple‐Negative Breast Cancer. Mol Cancer Ther, 2015. 14(8): p.  1824‐36.  Du, T. and P.D. Zamore, microPrimer: the biogenesis and function of microRNA.  Development, 2005. 132(21): p. 4645‐52.  Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350‐5.  Davis‐Dusenbery, B.N. and A. Hata, MicroRNA in Cancer: The Involvement of Aberrant  MicroRNA Biogenesis Regulatory Pathways. Genes Cancer, 2010. 1(11): p. 1100‐14.  Shah, N.R. and H. Chen, MicroRNAs in pathogenesis of breast cancer: Implications in  diagnosis and treatment. World J Clin Oncol, 2014. 5(2): p. 48‐60.  31 

 

885  886  887  888  889  890  891  892  893  894  895  896  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912  913  914  915  916  917  918  919  920  921  922  923  924  925  926  927  928  929  930  931  932  933 

95.  96.  97.  98. 

99. 

100. 

101.  102.  103.  104. 

105.  106.  107.  108.  109. 

110.  111.  112. 

113.  114.  115.  116. 

Khan, S., et al., miR‐379 regulates cyclin B1 expression and is decreased in breast cancer.  PLoS One, 2013. 8(7): p. e68753.  Muluhngwi, P. and C.M. Klinge, Roles for miRNAs in endocrine resistance in breast cancer.  Endocr Relat Cancer, 2015. 22(5): p. R279‐300.  Di Leva, G., D.G. Cheung, and C.M. Croce, miRNA clusters as therapeutic targets for  hormone‐resistant breast cancer. Expert Rev Endocrinol Metab, 2015. 10(6): p. 607‐617.  Adams, B.D., H. Furneaux, and B.A. White, The micro‐ribonucleic acid (miRNA) miR‐206  targets the human estrogen receptor‐alpha (ERalpha) and represses ERalpha messenger RNA  and protein expression in breast cancer cell lines. Mol Endocrinol, 2007. 21(5): p. 1132‐47.  Zhao, J.J., et al., MicroRNA‐221/222 negatively regulates estrogen receptor alpha and is  associated with tamoxifen resistance in breast cancer. J Biol Chem, 2008. 283(45): p. 31079‐ 86.  Cicatiello, L., et al., Estrogen receptor alpha controls a gene network in luminal‐like breast  cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol, 2010.  176(5): p. 2113‐30.  Rao, X., et al., MicroRNA‐221/222 confers breast cancer fulvestrant resistance by regulating  multiple signaling pathways. Oncogene, 2011. 30(9): p. 1082‐97.  Miller, T.E., et al., MicroRNA‐221/222 confers tamoxifen resistance in breast cancer by  targeting p27Kip1. J Biol Chem, 2008. 283(44): p. 29897‐903.  Pandey, D.P. and D. Picard, miR‐22 inhibits estrogen signaling by directly targeting the  estrogen receptor alpha mRNA. Mol Cell Biol, 2009. 29(13): p. 3783‐90.  Xiong, J., et al., An estrogen receptor alpha suppressor, microRNA‐22, is downregulated in  estrogen receptor alpha‐positive human breast cancer cell lines and clinical samples. FEBS J,  2010. 277(7): p. 1684‐94.  Zhao, Y., et al., Let‐7 family miRNAs regulate estrogen receptor alpha signaling in estrogen  receptor positive breast cancer. Breast Cancer Res Treat, 2011. 127(1): p. 69‐80.  Qian, P., et al., Pivotal role of reduced let‐7g expression in breast cancer invasion and  metastasis. Cancer Res, 2011. 71(20): p. 6463‐74.  Hossain, A., M.T. Kuo, and G.F. Saunders, Mir‐17‐5p regulates breast cancer cell proliferation  by inhibiting translation of AIB1 mRNA. Mol Cell Biol, 2006. 26(21): p. 8191‐201.  Leivonen, S.K., et al., Protein lysate microarray analysis to identify microRNAs regulating  estrogen receptor signaling in breast cancer cell lines. Oncogene, 2009. 28(44): p. 3926‐36.  Cizeron‐Clairac, G., et al., MiR‐190b, the highest up‐regulated miRNA in ERalpha‐positive  compared to ERalpha‐negative breast tumors, a new biomarker in breast cancers? BMC  Cancer, 2015. 15: p. 499.  Cittelly, D.M., et al., Downregulation of miR‐342 is associated with tamoxifen resistant breast  tumors. Mol Cancer, 2010. 9: p. 317.  He, Y.J., et al., miR‐342 is associated with estrogen receptor‐alpha expression and response  to tamoxifen in breast cancer. Exp Ther Med, 2013. 5(3): p. 813‐818.  Ciechanover, A., et al., ATP‐dependent conjugation of reticulocyte proteins with the  polypeptide required for protein degradation. Proc Natl Acad Sci U S A, 1980. 77(3): p. 1365‐ 8.  Ciechanover, A., The ubiquitin‐mediated proteolytic pathway: mechanisms of action and  cellular physiology. Biol Chem Hoppe Seyler, 1994. 375(9): p. 565‐81.  Hicke, L., Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol, 2001. 2(3): p. 195‐201.  Nirmala, P.B. and R.V. Thampan, Ubiquitination of the rat uterine estrogen receptor:  dependence on estradiol. Biochem Biophys Res Commun, 1995. 213(1): p. 24‐31.  Nawaz, Z., et al., Proteasome‐dependent degradation of the human estrogen receptor. Proc  Natl Acad Sci U S A, 1999. 96(5): p. 1858‐62. 

32   

934  935  936  937  938  939  940  941  942  943  944  945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960  961  962  963  964  965  966  967  968  969  970  971  972  973  974  975  976  977  978  979  980  981  982  983 

117. 

118.  119.  120. 

121.  122. 

123. 

124.  125.  126. 

127.  128.  129.  130.  131. 

132. 

133. 

134. 

135.  136. 

Lonard, D.M., et al., The 26S proteasome is required for estrogen receptor‐alpha and  coactivator turnover and for efficient estrogen receptor‐alpha transactivation. Mol Cell,  2000. 5(6): p. 939‐48.  Preisler‐Mashek, M.T., et al., Ligand‐specific regulation of proteasome‐mediated proteolysis  of estrogen receptor‐alpha. Am J Physiol Endocrinol Metab, 2002. 282(4): p. E891‐8.  Zhou, W. and J.M. Slingerland, Links between oestrogen receptor activation and proteolysis:  relevance to hormone‐regulated cancer therapy. Nat Rev Cancer, 2014. 14(1): p. 26‐38.  Fan, M., A. Park, and K.P. Nephew, CHIP (carboxyl terminus of Hsc70‐interacting protein)  promotes basal and geldanamycin‐induced degradation of estrogen receptor‐alpha. Mol  Endocrinol, 2005. 19(12): p. 2901‐14.  Cheng, L., et al., PES1 promotes breast cancer by differentially regulating ERalpha and  ERbeta. J Clin Invest, 2012. 122(8): p. 2857‐70.  Jung, Y.S., et al., Estrogen receptor alpha is a novel target of the Von Hippel‐Lindau protein  and is responsible for the proliferation of VHL‐deficient cells under hypoxic conditions. Cell  Cycle, 2012. 11(23): p. 4462‐73.  Jung, Y.S., et al., Elevated estrogen receptor‐alpha in VHL‐deficient condition induces  microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction.  Neoplasia, 2014. 16(12): p. 1070‐81.  Byun, B. and Y. Jung, Repression of transcriptional activity of estrogen receptor alpha by a  Cullin3/SPOP ubiquitin E3 ligase complex. Mol Cells, 2008. 25(2): p. 289‐93.  Fan, M., et al., The activating enzyme of NEDD8 inhibits steroid receptor function. Mol  Endocrinol, 2002. 16(2): p. 315‐30.  Fan, M., R.M. Bigsby, and K.P. Nephew, The NEDD8 pathway is required for proteasome‐ mediated degradation of human estrogen receptor (ER)‐alpha and essential for the  antiproliferative activity of ICI 182,780 in ERalpha‐positive breast cancer cells. Mol  Endocrinol, 2003. 17(3): p. 356‐65.  Duong, V., et al., Differential regulation of estrogen receptor alpha turnover and  transactivation by Mdm2 and stress‐inducing agents. Cancer Res, 2007. 67(11): p. 5513‐21.  Eakin, C.M., et al., Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin  ligase. Proc Natl Acad Sci U S A, 2007. 104(14): p. 5794‐9.  Ma, Y., et al., BRCA1 regulates acetylation and ubiquitination of estrogen receptor‐alpha.  Mol Endocrinol, 2010. 24(1): p. 76‐90.  La Rosa, P., et al., Palmitoylation regulates 17beta‐estradiol‐induced estrogen receptor‐alpha  degradation and transcriptional activity. Mol Endocrinol, 2012. 26(5): p. 762‐74.  Zhu, J., et al., The atypical ubiquitin ligase RNF31 stabilizes estrogen receptor alpha and  modulates estrogen‐stimulated breast cancer cell proliferation. Oncogene, 2014. 33(34): p.  4340‐51.  Bhatt, S., et al., Phosphorylation by p38 mitogen‐activated protein kinase promotes estrogen  receptor alpha turnover and functional activity via the SCF(Skp2) proteasomal complex. Mol  Cell Biol, 2012. 32(10): p. 1928‐43.  Ellis, M.J., et al., Outcome prediction for estrogen receptor‐positive breast cancer based on  postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst, 2008. 100(19):  p. 1380‐8.  Carlson, R.W. and I.C. Henderson, Sequential hormonal therapy for metastatic breast cancer  after adjuvant tamoxifen or anastrozole. Breast Cancer Res Treat, 2003. 80 Suppl 1: p. S19‐ 26; discussion S27‐8.  Brouckaert, O., et al., A critical review why assessment of steroid hormone receptors in  breast cancer should be quantitative. Ann Oncol, 2013. 24(1): p. 47‐53.  Roodi, N., et al., Estrogen receptor gene analysis in estrogen receptor‐positive and receptor‐ negative primary breast cancer. J Natl Cancer Inst, 1995. 87(6): p. 446‐51. 

33   

984  985  986  987  988  989  990  991  992  993  994  995  996  997  998  999  1000  1001  1002  1003  1004  1005  1006  1007  1008  1009  1010  1011  1012  1013  1014  1015  1016  1017  1018  1019  1020  1021  1022 

137. 

138.  139.  140. 

141. 

142. 

143.  144.  145. 

146. 

147. 

148. 

149.  150. 

151. 

Barron‐Gonzalez, A. and I. Castro Romero, Re‐expression of estrogen receptor alpha using a  tetracycline‐regulated gene expression system induced estrogen‐mediated growth inhibition  of the MDA‐MB‐231 breast cancer cell line. Biochem Cell Biol, 2004. 82(2): p. 335‐42.  Sainsbury, J.R., et al., Epidermal‐growth‐factor receptors and oestrogen receptors in human  breast cancer. Lancet, 1985. 1(8425): p. 364‐6.  Gusterson, B.A., Identification and interpretation of epidermal growth factor and c‐erbB‐2  overexpression. Eur J Cancer, 1992. 28(1): p. 263‐7.  Digiovanna, M.P., D.F. Stern, and R.R. Roussel, Production of antibodies that recognize  specific tyrosine‐phosphorylated peptides. Curr Protoc Immunol, 2002. Chapter 11: p. Unit  11 6.  El‐Ashry, D., et al., Estrogen induction of TGF‐alpha is mediated by an estrogen response  element composed of two imperfect palindromes. J Steroid Biochem Mol Biol, 1996. 59(3‐4):  p. 261‐9.  Liu, Y., et al., MCF‐7 breast cancer cells overexpressing transfected c‐erbB‐2 have an in vitro  growth advantage in estrogen‐depleted conditions and reduced estrogen‐dependence and  tamoxifen‐sensitivity in vivo. Breast Cancer Res Treat, 1995. 34(2): p. 97‐117.  Oh, A.S., et al., Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer  cells. Mol Endocrinol, 2001. 15(8): p. 1344‐59.  Billam, M., A.E. Witt, and N.E. Davidson, The silent estrogen receptor‐‐can we make it speak?  Cancer Biol Ther, 2009. 8(6): p. 485‐96.  Fan, J., et al., ER alpha negative breast cancer cells restore response to endocrine therapy by  combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin  Oncol, 2008. 134(8): p. 883‐90.  Zhou, Q., P. Atadja, and N.E. Davidson, Histone deacetylase inhibitor LBH589 reactivates  silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation.  Cancer Biol Ther, 2007. 6(1): p. 64‐9.  Villanueva, C., et al., Phase II study assessing lapatinib added to letrozole in patients with  progressive disease under aromatase inhibitor in metastatic breast cancer‐Study BES 06.  Target Oncol, 2013. 8(2): p. 137‐43.  Liu, Y., et al., Everolimus in combination with letrozole inhibit human breast cancer MCF‐ 7/Aro stem cells via PI3K/mTOR pathway: an experimental study. Tumour Biol, 2014. 35(2):  p. 1275‐86.  Zhang, X., et al., Mechanisms of Gefitinib‐mediated reversal of tamoxifen resistance in MCF‐7  breast cancer cells by inducing ERalpha re‐expression. Sci Rep, 2015. 5: p. 7835.  Zhang, B., et al., Investigation of elemene‐induced reversal of tamoxifen resistance in MCF‐7  cells through oestrogen receptor alpha (ERalpha) re‐expression. Breast Cancer Res Treat,  2012. 136(2): p. 399‐406.  Bali, P., et al., Activity of suberoylanilide hydroxamic Acid against human breast cancer cells  with amplification of her‐2. Clin Cancer Res, 2005. 11(17): p. 6382‐9. 

1023  1024 

Figure Captions/Legends

1025 

Table 1. The expression of miRNAs, their function and the breast cancer phenotype.

1026 

Figure 1. The pie diagram represents percentage of different molecular subtypes of breast

1027 

cancers.

34   

1028 

Figure 2. Schematic representation of role of various regulatory mechanisms in loss of ERα

1029 

expression and function in ER-negative breast cancer. Epigenetic regulators such as DNA

1030 

methyl transferases (DNMT), histone deacetylases (HDACs) and ER-specific miRNAs

1031 

negatively regulate ERα expression. The ERα expression is also lost by hyperactive MAPK

1032 

pathway. ER-specific Ubiquitin ligases promote ERα degradation through ubiquination

1033 

mechanism. These three types of molecular regulators ensure endocrine resistance in ER-

1034 

negative breast cancer. SERMs, specific estrogen receptor modulators; Me, DNA

1035 

methylation; Ac, histone acetylation.

1036 

Figure 3. Schematic representation of a model depicting the subtle balance between ER

1037 

regulators (+ ve / - ve) dictate ER negativity and therefore, endocrine resistance in breast

1038 

cancer.

1039 

Figure 4. Schematic representation of a model depicting the role of miRNAs, epigenetic

1040 

factors and ubiquitin ligases which directly or indirectly regulate ER expression and causes

1041 

ER negativity and endocrine resistance in breast cancer. The ER negativity along with PR

1042 

and Her-2 negativity together contribute to TNBC phenotype. As PR expression is dependent

1043 

on ERα, loss of ERα expression led to PR negativity. Because growth factor signalling

1044 

antagonises ERα expression, Her-2 negativity may lead to re-expression of ERα. But whether

1045 

Her-2 negativity opposes ER negativity in breast cancer is unknown.

1046 

35   

Table 1. The effect of various miRNAs on ERα expression and the breast cancer phenotype. Name of miRNA miR-22 miR-206 miR-221 miR-222 Let-7 miR-193b miR-190b miR-302c miR-342 miR-17-5p

miRNA function ERα levels decreased ERα levels decreased ERα levels decreased ERα levels decreased ERα levels decreased ERα levels decreased ERα levels high ERα levels decreased Sensitive to tamoxifen Represses AIB1/SRC-3 (ERα coactivator)

Phenotype (Breast cancer) ERα-negative

References

ERα-negative

[98]

ERα-negative

[99,100]

ERα-negative

[99,100]

ERα-negative

[105]

ERα-negative

[108]

ERα-positive ERα-negative

[109] [108]

ERα-positive ERα-negative

[103,104]

[110, 111] [107]

 

Figure 1

Her2

14

[ER+|PR+] HER2-Ki67-

11.2

[ER+|PR+] HER2-Ki67+ Luminal 7.8

Luminal 20.1

38.8

TNBC

[ER+|PR+] HER2+Ki67+ Her2 overexpression

12.3

Basal Normal-Like

23.7

Her2 TNBC

Figure 2

E2 DNMT

Me

HDAC MAPK

Me

Ac

Ac

ERα mRNA

Ub Ligases

miRNAs

ERα degradation ERα

ESR1 promoter SERMs

Loss of ERα Target gene expression

Figure 3

ER +ve regulators ER -ve regulators Endocrine response

Endocrine resistance

Figure 4

TNBC ?

EREpigenetic factors DNMT1, DNMT3B MTA1/IFI16, MeCP2, HDACs, EZH2

miRNAs miR-22 miR-221 miR-342 miR-18a/b miR-206 Let-7

miR-206 miR-222 miRNA-449 miR-193b miR-302c

Ub Ligases CHIP SPOP MDM2 SKP2

VHL NEDD4 CUEDC2

Suggest Documents