Understanding Basic. (as Applied to Fingerprints)

Understanding Basic  Statistical Concepts Statistical Concepts  (as Applied to Fingerprints) Presented by Michele Triplett, CLPE at the International ...
12 downloads 0 Views 2MB Size
Understanding Basic  Statistical Concepts Statistical Concepts  (as Applied to Fingerprints) Presented by Michele Triplett, CLPE at the International Association for Identification's 97th International Educational Conference 24 July 2012

Background

Why is this a hot topic? Why is this a hot topic? • Recent Recent advances in probabilistic models advances in probabilistic models • The models can be confusing • There are different views, which makes it more  There are different views, which makes it more confusing • This presentation will give you BASIC information.  Specifically: simple terminology and concepts.

Explaining Probabilities Explaining Probabilities

Fun with Statistics Fun with Statistics

Terms • Statistics – Collection and Interpretation of data. • Frequency – How many times an event happens. • Probabilities – The measurement of how often an event will  happen when we aren’t certain (rate of frequency of events). Probabilit or Rate Probability or Rate =  Freq enc of e ent Frequency  of event  Total number of possible outcomes • Conditional Conditional Probabilities – Probabilities Probabilities Probabilities of an event happening  of an event happening when we know additional information. (Probability of someone speaking Spanish vs. Probability    of someone speaking Spanish who is from Spain). • Likelihood Ratios – Ratio of two probabilities under different  circumstances, comparing the two probabilities to each other. circumstances, comparing the two probabilities to each other.  • Bayesian Methods – Conditional Probability / Bayesian  Inference.

Reverend Thomas Bayes Reverend Thomas Bayes

1701‐1761, English Mathematician

Bayes’ss Theorem Bayes • Two Two applications applications • Both are used in situations where probabilities  can’tt be directly calculated. can be directly calculated • 1) Conditional probabilities (with the ability to  update the model as new beliefs d h d l b li f are  established).  • 2) relate two events (known as Bayesian  Inference).

Bayes Factors

Establishing the Rate of Frequency of  an Occurrence (Event) ( ) • Classical Probabilities ‐ percentage of possible  p g p outcomes (finite outcomes) • Empirical Probabilities ‐ based on a sample of  observances (larger and relevant samples are better) b (l d l t l b tt ) • Subjective Probabilities ‐ user defines the probability  based on existing knowledge. Can be dangerous if user based on existing knowledge. Can be dangerous if user  is using a gut feeling or experience instead of using  current relevant knowledge.  All methods are valuable for different situations. Choose the method that works best for the situation at  hand.

Different Uses of Subjective  Probabilities • YYankee’s winning a game based on a gut  k ’ i i b d t feeling. • Yankee’s winning a game based on the other  team having a lot of injured players.

Accuracy of Methods Accuracy of Methods The results are as accurate as the data, the method used  The results are as accurate as the data, the method used and the thoroughness used.  This means the results of  research are USELESS without knowing how they were  arrived at.

Reminder • Classical Probabilities – finite number of  outcomes. • Empirical Probabilities ‐ based on a sample  group. j ‐ user defines the  • Subjective Probabilities probability. 

Comparing Different Methods Comparing Different Methods • Probability of it raining today

– Classically: 1/2 outcomes = 50% Cl i ll 1/2 t 50% • Assumes equally likely events

– Empirically: Sample group = 1/100 people = 1%

• Assumes the sample looked at accurately represents the situation

– Subjectively: Look of the window and see it’s cloudy = 85% • Can consider more information than supplied in the model Can consider more information than supplied in the model

• Probability of me winning an election – Classically: 1/2 outcomes = 50% • Assumes equally likely events

– Empirically: Sample group = 9/10 people = 90%

• Assumes the sample looked at accurately represents the situation p y p

– Subjectively: With current knowledge I’m not running = 0% • Can consider more information than supplied in the model

Comparing Different Methods Comparing Different Methods • Probability of tossing a coin and getting heads – Classically: 1/2 outcomes = 50% Classically: 1/2 outcomes = 50% • Assumes equally likely events

– Empirically: Sample group of 10 tosses = could be 20%

• Assumes the sample looked at accurately represents the situation Assumes the sample looked at accurately represents the situation • Assumes the sample group is an adequate size

– Subjectively: = 85%

• Can just be the gut feeling of the person Can just be the gut feeling of the person

• Probability of a long commute

– Classically: 1/2 outcomes = 50% • Assumes equally likely events

– Empirically: Sample group of number of cars (low #) = 15% • Assumes the sample looked at accurately represents the situation

– Subjectively: With current knowledge of fog (low #) = 90% • Can consider more information than supplied in the model

Comparing Different Methods Comparing Different Methods • Probability of it being busy at work on a  Tuesday – Classically: 1/2 outcomes = 50% • Assumes equally likely events

– Empirically: Sample group of Tuesdays = could be  30% (Tuesdays are usually slow) • Assumes the sample looked at accurately represents  the situation the situation • Assumes the sample group is an adequate size

– Subjectively: = 85% Subjectively: = 85% • Knowledge of a big arrest

Benefits and Limitations Benefits and Limitations • Classical: 

– Benefit: Objective – Limitation: May not consider all relevant information

• Empirical:  E ii l

– Benefit: Can show that events don’t have the same  q y frequency of occurrence. – Limitation: Sample size may not be adequate, sample  group may not be representative

• Subjective:

– Benefit: Allows one to consider current relevant data – Limitation: Allows for not using relevant data g

Example 1 Example 1 Jamie gets 80% (80/100 or .8) A’s in  g ( / ) her classes.  If she takes an  automotive class, what is the  probability of her getting an A? Empirically: 80% (average from sample group) Classically: 20% (1 out of 5 possible grades) (assumes equal possibilities of each event) S bj ti l Subjectively:  Could be 60% if she dislikes the topic. Could be 99% if she likes the topic Could be 99% if she likes the topic

Which Method is Best? Which Method is Best? • Equal chance of each grade: P(A)= 1 A out of 5 possible grades = 1/5 = 20% • Empirically probability may show there’s not an equal possibility of  each event P(A)= 80% ( ) P(B)= 10% P(C)= 5% P(D)= 4% P(F)= 1% Classical probabilities doesn’t consider all relevant information. Empirical probabilities may show frequency of each event is different  but may not be showing other current factors (desire). Subjective probabilities allows for other relevant data.

• What What if we know the lower grades were or weren if we know the lower grades were or weren’tt  recent? Then the ‘current probabilities’ may be  different than the ‘overall probabilities’.  • Need the sample group to be relevant (current) in  addition to being an adequate size. • Need to use the best method for the situation  (classical, empirical or subjective).

Example 2 Example 2 P(flipping 3 tails in a row) P(flipping 3 tails in a row)= Classical, fair coin = (1/2)x(1/2)x(1/2)=1/8 Classical, unfair coin = 1x1x1  Classical, unfair coin  1x1x1 = 1 1 Likelihood ratio of it being a fair coin = (1/8) /1  = 1/8 the likelihood of it being a fair coin or 8 times  1/8 the likelihood of it being a fair coin or 8 times more likely that it’s not a fair coin. Empirically=?? (Try it) p y ( y ) Empirical probabilities are better with large sample  groups (in the long run – Law of Large Numbers).

3 Tails – 1 of 8 possibilities 3 Tails  1 of 8 possibilities • • • • • • • •

HHH HTT HTH HTH  HHT TTT THT TTH THH

Example 3 Example 3 • P(being P(being born on January 1) born on January 1)=?? Classically = 1/365 Are birthdays equally distributed throughout the year?   What is it dependent on (factors)? Which method would work best for determining the  frequency of birthdates? q y

Frequency of an Event Frequency of an Event

Is it the same everywhere (equally distributed)?

Frequency of an Event Frequency of an Event

• The frequency of a characteristic is different in  different areas (enclosure under a core v. enclosure  over a core). We don’t know the frequency of  characteristics We haven’tt found a mathematical way  characteristics.  We haven found a mathematical way of establishing the frequency of ridge events.

• How How many points are enough? many points are enough? – Since we haven’t been able to establish the  frequency of features, classical probabilities can’t  determine a high probability that a certain number  of features are sufficiency (one reason classical  probabilities don’t work). b biliti d ’t k) – 10 common features may have less weight than 5  uncommon features Need to consider the rarity uncommon features.  Need to consider the rarity  (weight of features).

Close Non‐Match Henry Templeman l

Only Considering L2… Only Considering L2…

… means you’re ignoring other  relevant information l f

Questions for the Use of Statistics Questions for the Use of Statistics • How are probabilities and likelihood ratios going to be  p g g used? ‐ Use to support current conclusions (more accurate)? ‐ Use to arrive at additional conclusions (for current  ‘inconclusive decisions’, lower the sufficiency needed)? ‐ In 2010, the IAI rescinded their resolution stating no  In 2010 the IAI rescinded their resolution stating no possible, probable or likely conclusions.  This was not to  incorporate statistical models, it was to acknowledge that  conclusions are not absolute conclusions, they are  inferences (subjective probabilities).  The answer on ‘how The answer on  how stats will be used stats will be used’ hasn hasn’tt been  been decided yet. Decided in Feb 2012.

Questions for the Use of Probabilities Questions for the Use of Probabilities • Are Are we looking at the probability of duplication? we looking at the probability of duplication? • Are we looking at the probability that the conclusion is  in error? Majority of errors are not due to the possibility of  duplication, they are due to misinterpretation of data.

Misuse of Statistics Misuse of Statistics • Interpreting the data one‐sidedly, ignoring relevant  p g y, g g information (intentionally and unintentionally). yg y • Mathematical models may give a false sense of security  in a conclusion.  Need to look at: – Is the sample size adequate – Is the sample group relevance – Is the frequency of events a good estimate – Are major factors considered (perhaps: clarity, quantity,  Are major factors considered (perhaps clarit q antit rarity (frequency), dissimilarities, intervening ridges,  level 1, level 2, level 3) – Do the models account for misinterpretation?

Fingerprint Individuality Models Fingerprint Individuality Models Galton (1892) Galton (1892) • P(fingerprint configuration)= (1/16)x (1/256)x(1/2)24 • 24 regions 24 regions • P(correct number of ridges entering and  exiting) 1/256 exiting)=1/256 • P(pattern type) = 1/16

Fingerprint Individuality Models Fingerprint Individuality Models • Henry (1900), Balthazard y( ), ((1911), Bose (1917) ), ( ) • 4 possible events (the events for each model were  different) • Assumed equal probability of each event • P(event)= ¼ • P(a configuration)= ∑(¼) x (¼) x (¼) x (¼)… = (¼)n • For 10 minutia, one in millions • Expectation of how many would have this configuration = P(a configuration)/ number of people

Fingerprint Individuality Models Fingerprint Individuality Models • • • •

Wentworth (1918) Wentworth (1918) P(event)= 1/50, but had no list of the 50 features P(a configuration)=(1/50)n P(a configuration) Assumed equal probability of each event

Advanced Models Advanced Models • • • • • • • •

Gupta (1968) M More possibilities of events ibiliti f t Established that the frequency of events isn’t equal 1/10 f 1/10 for endings and bifurcations di d bif i 1/100 for others Ch Champod d (1995) 9 possible events Improved the known frequency  d h k f of events

Generative Models Generative Models Generative Models incorporate ridge types (direction) • Pankanti, Prabhakar and Jain (minutiae only) 2001 • Dass, Zhu and Jain (minutiae only) 2005 • Fang, Srihari and Srinivasan (minutiae and ridges) 2006

Differences in Models Differences in Models • • • •

Use different types of features Use different types of features Use different frequencies for features Use different mathematical equations Use different mathematical equations Tested their models on a different number of  fingerprints (easier with computer technology) g p ( p gy) The research has been valuable and  lead to the use in biometrics and lights‐out technology! g gy As more information is considered, the research may be  able to be used for latent prints as well. 

Current Models for Partial Prints Current Models for Partial Prints • Christophe Champod’s Model – No info • Dactsys – Forensic Science Service (FSS) in UK

– Original prototype developed by Cedric Neumann in 2006

• TT‐Model Model – Henry Templeman Henry Templeman

– Original version released in Aug 2008

• WOVI – Netherlands Forensic Institute (NFI) ‐ No info • Cedric Neumann’s Model  C di N ’ M d l

– Used for 11 points and under.  Wouldn’t account for the past  problem cases.

Very little is published on these models. None of these models have been  independently validated independently validated.

Current Models for Partial Prints Current Models for Partial Prints • Are these models  an objective weight of conclusions? Are these models an objective weight of conclusions? – Do they account for the major factors?

• Do they use empirical data? y p – Based on information in data bases.

• Are there subjective elements? – Examiners are still plotting points.

Views on Use for Partial Prints Views on Use for Partial Prints Just starting questioning the validity of different  statistical models.  They haven’t started  evaluating models. Estimates it’ll take 2 million dollars and years to  evaluate the validity of 4 models. Individuals: ‐ Some think we’ll be moving to probabilities or likelihood  ratios quickly ; others think it is far off. i i kl h hi k i i f ff ‐ Most people feel it’s worth researching.  They acknowledge  we need to be open to the use of statistics but question  whether models have a sound basis. h th d l h db i

Answering Questions in Court Answering Questions in Court • Lots of models have been attempted since 1892. p • Current statistical models are useful when you have a   large number of clear minutia. • No model has been found to replicate reality accurately  for low number of minutia (too much information isn’t  considered). d d) • Current models have not been externally validated. • Our conclusions (subjective probabilities) incorporate  more information than statistical models can consider  at this time at this time.

Answering in Court Answering in Court • Currently, our current conclusions are based on  subjective probabilities.  We consider L1, L2, L3,  quality, quantity, rarity, intervening ridges and  dissimilarities of features dissimilarities of features. • We make our current conclusion less subjective:   By arriving at conclusions that others would arrive at  By arriving at conclusions that others would arrive at (inter‐subjectively testable).  By being able to explain the basis behind our  By being able to explain the basis behind our conclusions. y g j (  By using  objective data (data others would use or data  others can see).

The Future The Future • Statistics Statistics and probabilities are not new in fingerprints  and probabilities are not new in fingerprints but many of us have been able to avoid them.   • We’re no longer able to avoid statistics since models  are being recommended for use and because models  are getting better (closer to being used).  Everyone will need to be able to discuss basic concepts  about statistics and probabilities. b t t ti ti d b biliti

Most Important Concept Most Important Concept • Be Be able to explain the benefits and limitations of  able to explain the benefits and limitations of different types of probabilities. – Classical – Empirical – Subjective j If you can’t explain the value of the method you’re  using then others will exploit the limitations in an  effort to discount the value of your conclusion. • If you decide to discuss models with attorneys, you’d  b better be able to discuss specific factors of the models. b bl di ifi f f h d l

Terms and Concepts Not Included Terms and Concepts Not Included • Error Error Rates  Rates ‐ since errors seem so rare, a huge sample  since errors seem so rare, a huge sample size is needed to mathematically estimate error rates…  Law of Large Numbers. • Mutually Exclusive – can’t happen at the same time  (boy or girl, rich or poor) • Independent – one occurrence doesn’t effect other  occurrences (I: rolling dice, dependent: pulling a card  from a deck of cards may be dependent on what cards from a deck of cards may be dependent on what cards  were already picked).  There are different mathematical rules for different There are different mathematical rules for different  situations.

Terms and Concepts Not Included Terms and Concepts Not Included • Sensitivity – can experiment find positive results, equation ( (or used with a different formula, incorporating false inconclusives) d ith diff tf l i ti f l i l i ) • Specificity – can experiment find negative results, equation ( p (or specific… not specific being non‐specificity, as in L2 and L3) p g p y ) (or rarity… which is the frequency) • Selectivity – ability to distinguish small differences  (or used in place of the specificity equation) (or used in place of the specificity equation) (or used with a slightly different equation, incorporating false  inconclusives) (or rarity… which is the frequency) These terms are used differently in chemistry and in statistics.  Since fingerprints have both elements, people are using the same  g p p p g words for different meanings.  Analysts need to consider how an  author is using the word.

Quote of the Day Quote of the Day Statisticians are people who like math but don’t  have the personality to be accountants have the personality to be accountants.

Questions?