Transparent Amorphous Oxide Semiconductors and Their TTFT Application Hideo HOSONO

Transparent Amorphous Oxide Semiconductors and Their TTFT Application Hideo HOSONO Frontier Collaborative Research Center & Materials and Structures ...
Author: Stanley Flynn
56 downloads 2 Views 5MB Size
Transparent Amorphous Oxide Semiconductors and Their TTFT Application

Hideo HOSONO Frontier Collaborative Research Center & Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, JAPAN & ERATO-SORST, Japan Science and Technology Agency (JST)

Thin Film Transistor : Switching device in display present : TFT on glass Semiconductor:a-Si:H

future : TFT on plastic ?

http://www.pioneer.co.jp/ Electronics everywhere

Giant-microelectronics

flexible electronics,

TFT: Active Matrix Display

TFT



pixel

Market Forecast of Flexible Display

Sources:iSuppli

Examples of Flexible TFT poly-Si (Transfer Technique)

a-Si on SUS foil LG. Philips LCD

SEIKO EPSON

Difficulty in large area fabrication Expensive

Heavy Expensive (Passivation) LG Philips

Organic TFT

SEIKO EPSON

Philips & Polymer Vision Plastic Logic

Novel Material

Low mobility Poor stability

Low process temperature Long-term stability High mobility

Plastic Logic

Why amorphous semiconductor

semiconductor Excellent controllability of carrier

amorphous low T formation of large area thin films

Amorphous semiconductor

Wide controllability of carrier concentration. High optical transparency in invisible region. Room temperature and large area deposition. Unique carrier transport properties

AOSs based flexible pn diodes

Current density, J ( A cm-2 )

10

8

6

4

2

0

-2 -4

-2

0

2

4

Voltage ( V )

A rectifying ratio : >103 Adv. Mater. 15,1409 (2003)

Vth : ~2V

History of amorphous semiconductor 1950.

1960.

1970.

1980.

1990.

2000

Photoconductivity in a-Se(Xerography) Glassy semicond.(V2O5 based oxide) Chalcogenide glass DVD) Switching and memory effect in a-chal. film a-Si:H ‘Giant-Microelectronics’

Flexible electronics ( novel a-sc)

Proposal of materials design concept for a-TAOS with large mobility Proc. of ICAMS-16

Ionic Amorphous Oxide Semiconductor : novel class of a-Semicon. Wide Gap Molten salt Ionic amorphous oxide semicon.

Conventional glass Glassy oxide Semicon. a-Chal.

Ionic

Covalent a-Si:H

a-metal Narrow Gap

Material design concept (electron pathway) covalent semicon.

ionic oxide semicon. M:(n-1)d10ns0 (n≥4)

crystal

amorphous

JNCS(1996)

Ionic amorphous oxide semiconductors (N-type) Optical transparency in visible region

Electrical conductivity

Amorphous

Transparent amorphous oxide semiconductors e.g. a-2CdO・GeO2, a-CdO・PbOx, a-AgSbO3, a-InGaO3(ZnO)m (found in1995-2001)

a-In2O3:Sn

Advantages ・Low temperature deposition flexible electronic device ・No long range ordering reduction of severe requirements for PN-junction ・Large electron mobility compared to the conventional a-semiconductors.

Conductivity change upon H+- implantation H+:40kV+70kV

Sample: sputtered thin film(300nmt)

T(K)

0

200

×2

15

-2

10 cm Ea= 0.06 eV

120

×2

60

16

13

-2

10 cm Ea < 1 m eV

-5

×2

100

14

10 cm Ea= 1 eV

-2

before implantation

-10

4

6 40 -1 1000 / T ( K )

EF is continuously controllable from ~Eg/2 to above mobility gap

A

APL(1995)

TRANSMITTANCE ( % )

-1

Log σ ( S cm )

300

80

Mobility amorphous 15 cm2(Vs)-1

50

before implantation after implantation

0

1000

2000

WAVELENGTH ( nm ) cf. crystal 20cm2(Vs)-1

a-Si:H

doping limit

EF cannot exceed mobility gap

Why doping is inefficient for a-Si:H ?

EF never enters conduction band extended states by doping P30 + Si40 → P4+ + Si3Doping creates D- state

P

Mott-Street model

Si

P

+

Si

Carriers are NOT generated

-

Observed and calculated DOS

Intensity (arb. units)

IPES PES

EF

10

0

-10

Binding Energy (eV)

DOS (arb. units)

Valence Band Valence Band

Conduction Band Conduction Band

Cd 4d

Total Cd 5s O 2p

Ge 4s

-10

0 MO Energy (eV)

Cd 5p Ge 4p

10

Phys.Rev.B(2002)

Contour map of wave function @ conduction band bottom

Cd

Ge

Cd

Cd

Cd

Cd

Cd

Ge

(a) crystalline

(b) amorphous

Cd-Cd correlations in RMC-fitted model d(Cd2+-Cd2+)< 2r(Cd 5s) 3D-percolated!

Cd 5s crystalline

PRB(2002)

Electron Transport in a-IGZO

m*=0.35

APL(2004)

Carrier Concentration and conduction 18 cm-3 N Nee 1018 cm -3

EEthth > < EF

EF

Eth EF

Ec

electron

2(Vs)-1 µµHall >10 cm ~ 1 Hall

APL(2004),TSF(2005).

Ionic Amorphous Oxide Semicon. Chemical bond

Mecha -nism

Hall effect

Tetrahedral

covalent

hopping

abnor mal

~1

Chalcogenide

covalent

hopping

abnor mal

< 10-3

Material system

Oxides (glass semiconductors)

(Ionic amorphous oxide semicondutors)

covalent + Ionic

Ionic

Mobility (cm2/(Vs))

hopping ~10-4 Band conduction

norm al

Example

Si:H Tl2SeAs2Se3 V2O5 -P2O5 In-Ga-Zn -O

10~60

Transparent FET on plastic Device structure

200µm (no passivation)

W / L : 200 / 50 (µm)

Amorphous InGaZnO4 Thin Fims t=200nm thick Pulsed Laser deposition @ RT RT 400 ºC 500 600 700

Stable up to ~500 ºC

Transistor Performance output µsat = 12 cm2(Vs)-1

W / L : 200 / 10 (µm)

transfer ON/OFF ratio =106

Nature(2004)

High performance transparent FET was fabricated on PET substrate Material exploration High mobility & carrier controllability N-type AOS, In-Ga-Zn-O (a-IGZO) µHall >15 cm2(Vs)-1 :Ne 10 cm2(Vs)-1 @Ne >1018 cm-3

µsat ~ 12 cm2 (Vs)-1

cf. ~1 for a-Si:H, pentacene

c fON / OFF ratio ~106

Normally-Off (Vth ~+1 V)

Device fabrication Y2Ox (high k) as gate insulator & RT

S = ~0.2 V/dec

a-IGZO can be deposited on plastic by the same process as ITO Large process merit

Current Status of TFT for Elexible Displays

アモルファ -IGZO スa-IGZO

Channel material

Pentacene

Thin Film Fabrication

Vacuum Evap.

CVD

PLD

スパッター sputter

Max. Tem.(℃)

6

~5

S (V/decade)

0.2

0.4

1.3

~8 0.2

a-Si:H Poly-ZnO

Long Term Stability Spec for Large-sized OLED TV Panel SID2006

µFE ΔVTH

1-10 cm2/Vs < 1 V for 105 hrs

Long Team Stabilty Test(SAIT) @E - MRS2006 W/L=200/4 µm, 3 µA µ /Pixel x 300hrs Active Layer

ZnO

IZO

IGZO

ΔVTH (V)

5.0

3.0

0.2

5-stage RO VDD VGG =

0.5 mm

Au/Ti

Au/Ti

IGZO

sputter Ti/Au/Ti

glass

SiO2

Ti/Au/Ti

glass

patterning metals

lift-off

semiconductor etching insulator

Ld-TFT

etching

L Ld = L Dr = 10 µm β R = (W / L) Dr / (W / L) Ld = 5

Dr-TFT

14

10 8 6 4 2 0

Delay per stage (µs)

Voltage (V)

Vdd = +18 V

10 8

10

6 4

1

2 0.1

0 0

Time (2 µs / div.)

5

10 15 V dd (V)

20

410 kHz (0.24 µs/stage), 7.5 Vp-p @ Vdd = +18 (V)

Voltage swing (Vp-p)

12

100

amorphous/oxide TFT-based Ring Oscillators a-Si:H

Oxide

Organic P3HT

IGO

a-IGZO

L (µm)

5

2–5

60

?

VDD (V)

+30

-80

+80

?

83

106

9.5

?

0.54

0.68

11

?

EDL 5, 224 (1984)

APL 81, 1735 (2002)

SSE 50, 500 (2006)

fOSC (kHz) Δt(µs/stag e) Ref.

OLED monolithic 2Tr-1C pixel driver

3.5

OLED using TAOS-FET

Backplane

Gate insulator; Si3N4

LG (IDW 06)

Images of Flexible Electrophoretic Displays Driven with aIGZO TFT Array

Thickness : 320 µm Weight : 1.3 g Electrophoretic imaging film supplied by

Toward New Continent of Transparent Oxide Electronics

?

Flexible displays

Suggest Documents