TMD PDFs on the Lattice

Transverse momentum in hadrons, Duke University 2010-03-13 TMD PDFs on the Lattice Bernhard Musch (Jefferson Lab) in collaboration with Philipp H¨ag...
Author: Ambrose Fisher
3 downloads 4 Views 5MB Size
Transverse momentum in hadrons, Duke University

2010-03-13

TMD PDFs on the Lattice Bernhard Musch (Jefferson Lab) in collaboration with Philipp H¨agler (TU M¨ unchen), John Negele (MIT), Andreas Sch¨afer (Univ. Regensburg), and the LHP Collaboration ¨ gler et al. EPL88 61001 (2009)] [Ha [Musch arXiv:0907.2381]

overview: parton densities

2 TMD PDFs transverse momentum dependent parton distribution f unctions e.g., f1 (x, k2⊥ ) ⇒ quark density ρ(k⊥ ).

x (longitudinal momentum fraction)



PDFs

x, b⊥ (impact parameter)



GPDs

x, k⊥ (intrinsic transverse momentum)



TMD PDFs

“basic” factorization (example SIDIS)

3

e.g., [Collins PLB 93], [Bacchetta et al. JHEP 07]

...

s gluon ...

quark

ton

pho

ha dr on

lepto n

k

P

P

nucleon

d3 P

dσ ∝ Lµν 3 |{z} h d Pl 0

W µν | {z }

lepton

hadron

tensor

tensor

µν Wunpol.,LO ∝ H(Q2 , . . .) | {z } hard part

Z

d2 k⊥ f1 (x, k⊥ , . . .) Dh (z, k⊥ + q ⊥ , . . .) | {z } | {z } TMD PDF

fragmentation f.

definition of TMD PDFs (“basic” version) Dirac matrix Γ selects quark spin

quark

Γ

P

k P

nucleon

Φ[Γ] (k, P, S) ≡ “ hP, S| q¯(k) Γ q(k) |P, Si ” lightcone coor. w± = √12 (w0 ±w3 ), so w = w+ n ˆ + + w− n ˆ − + w⊥ + proton flies along z-axis: P large, P⊥ = 0 parametrization in terms of TMD PDFs, example Z + dk − Φ[γ ] (k, P, S) + = f1 (x, k2⊥ ) + hspin dep. termsi k =xP + [Ralston, Soper NPB 1979], [Mulders, Tangerman NPB 1996], [Goeke, Metz, Schlegel PLB 2005]

4

definition of TMD PDFs (“basic” version) Dirac matrix Γ selects quark spin

quark

Γ k

P

P

nucleon

Φ[Γ] (k, P, S) ≡

1 2

Z

d4 ` −ik·` e hP, S| q¯(`) Γ U q(0) |P, Si (2π)4

ˆ + + w− n ˆ − + w⊥ lightcone coor. w± = √12 (w0 ±w3 ), so w = w+ n proton flies along z-axis: P + large, P⊥ = 0 parametrization in terms of TMD PDFs, example Z + dk − Φ[γ ] (k, P, S) + = f1 (x, k2⊥ ) + hspin dep. termsi k =xP + [Ralston, Soper NPB 1979], [Mulders, Tangerman NPB 1996], [Goeke, Metz, Schlegel PLB 2005]

4

gauge link operator U !

`

Z

dξ µ Aµ (ξ)

U ≡ P exp −ig

5

along path from 0 to `

0

=⇒

hP | q(`) Γ U q(0) |P i is gauge invariant.

SIDIS / Drell Yan

? ` 0 v=n ˆ − (lightlike),

v 1 or slightly off, v −  v +

our lattice method

¨ gler, Musch arXiv:0908.1283, arXiv:0907.2381]6 [Ha

nucleon source (fixed position)

nucleon sink (fixed momentum)

u u d

u u d d

xsrc

U

gauge link on lattice

P

lat d Euclidean

tsrc



tsnk

time

For now, approximate direct gauge link, no soft factor. =⇒ no T -odd structuers (Sivers, Boer-Mulders fcn.)

extract Lorentz-invariant amplitudes A˜i (`2 , `·P ) hP, S| q(`) γµ U q(0) |P, Si = 4 A˜2 Pµ + 4i mN 2 A˜3 `µ ⇒ f1 (x, k2⊥ ) Amplitudes are complex and fulfill [A˜i (`2 , `·P )]∗ = A˜i (`2 , −`·P ) . Operator must not have temporal extent: `0 = `4 = 0 .

link renormalization

7

continuum renormalization of gauge links smooth path q U q¯

[Craigie, Dorn NPB185,204 (1981)]

 l [¯ q U q] a l : the total length of the gauge link, δm ˆ : removes the power divergence ∼ 1/a [¯ q U q]ren = Z −1 exp



−δ m ˆ

static quark potential 1.5

string

[L¨ uscher,Symanzik,Weisz (1980)]

at large r: Vren (r) ≈ Vstring (r) = σr −π/12r + C

VHrL HGeVL

Vren (r) = V (r) + 2 δ m/a ˆ

1.0 a = 0.06 fm 0.5

a = 0.09 fm a = 0.12 fm a = 0.18 fm

0.0

method [Cheng PRD77,014511 (2008)] determine δ m ˆ from ! Vren (0.7 fm) = Vstring (0.7 fm)

0.0

0.2

0.4

0.6 r HfmL

0.8

1.0

link renormalization

7

continuum renormalization of gauge links smooth path q U q¯

[Craigie, Dorn NPB185,204 (1981)]

 l [¯ q U q] a l : the total length of the gauge link, δm ˆ : removes the power divergence ∼ 1/a [¯ q U q]ren = Z −1 exp



−δ m ˆ

static quark potential 1.0

Vren (r) = V (r) + 2 δ m/a ˆ [L¨ uscher,Symanzik,Weisz (1980)]

at large r: Vren (r) ≈ Vstring (r) = σr −π/12r + C

VHrL HGeVL

0.5

string

a = 0.06 fm 0.0

a = 0.09 fm a = 0.12 fm

-0.5

a = 0.18 fm -1.0

method [Cheng PRD77,014511 (2008)] determine δ m ˆ from ! Vren (0.7 fm) = Vstring (0.7 fm)

0.0

string, linear 0.2

0.4

0.6 r HfmL

0.8

1.0

link renormalization

7

continuum renormalization of gauge links smooth path q U q¯

[Craigie, Dorn NPB185,204 (1981)]



 l [¯ q U q] a l : the total length of the gauge link, δm ˆ : removes the power divergence ∼ 1/a [¯ q U q]ren = Z −1 exp

static quark potential

−δ m ˆ

renormalization condition C ren = 0 1.0

Vren (r) = V (r) + 2 δ m/a ˆ [L¨ uscher,Symanzik,Weisz (1980)]

at large r: Vren (r) ≈ Vstring (r) = σr − π/12r + 0

VHrL HGeVL

0.5

string

a = 0.06 fm 0.0

a = 0.09 fm a = 0.12 fm

-0.5

a = 0.18 fm -1.0

method [Cheng PRD77,014511 (2008)] determine δ m ˆ from ! Vren (0.7 fm) = Vstring (0.7 fm)

0.0

string, linear 0.2

0.4

0.6 r HfmL

0.8

1.0

link renormalization

7

continuum renormalization of gauge links smooth path q U q¯

 l [¯ q U q] a l : the total length of the gauge link, δm ˆ : removes the power divergence ∼ 1/a [¯ q U q]ren = Z −1 exp

static quark potential

[L¨ uscher,Symanzik,Weisz (1980)]

at large r: Vren (r) ≈ Vstring (r) = σr − π/12r + 0 method [Cheng PRD77,014511 (2008)] determine δ m ˆ from ! Vren (0.7 fm) = Vstring (0.7 fm)

−δ m ˆ

0.4 Yline + ∆m HGeVL

Vren (r) = V (r) + 2 δ m/a ˆ string

[Craigie, Dorn NPB185,204 (1981)]



0.2

lattice cutoff effects

0.0

a = 0.06 fm

-0.2

a = 0.09 fm

-0.4

a = 0.12 fm

-0.6 0.0

a = 0.18 fm

0.2

0.4

0.6

0.8

1.0

1.2

l HfmL

Yline (l) ≡

d lnhtr Ui(Landau gauge) dl

technical details of the lattice data used We employ the Chroma library [Edwards, Joo (2005)] to process ' $ '

8

$

MILC gauge configurations staggered Asqtad action, 2+1 flavors, a ≈ 0.124 fm, mπ ≈ 500, 610, and 760 MeV [Orginos, Toussaint PRD (1999)]

+ finer MILC lattices to test renormalization [Aubin et al. PRD (2004)] [Bazavov et al. 0903.3598]

&

LHPC propagators domain wall valence fermions, mπ adjusted to staggered sea, nucleon momenta: P = 0 and |P | = 500 MeV

& %

e.g., [H¨ agler et al. PRD (2008)]

%

from amplitudes to TMD PDFs Φ[Γ] (k, P, S) ≡

1 2

Z

d4 ` −ik·` e hP, S| q¯(`) Γ U q(0) |P, Si (2π)4

Z ∞ Φ[Γ] (x, k⊥ ; P, S) ≡ dk − Φ[Γ] (k; P, S) + k =xP + −∞ Z 1 − 2 ik·` = d` d ` e hP, S| q ¯ (`) Γ U q(0) |P, Si + ⊥ 2(2π)3 ` =0 Z 2 Z d `⊥ −ik⊥ ·`⊥ d(`·P ) ix(`·P ) e e hP, S| q ¯ (`) Γ U q(0) |P, Si = + + 2 4πP (2π) ` =0 Note: `2 = −`2⊥ . x ←→ `·P k2⊥ ←→ `2 `+ =0

example: unpolarized case +

f1 (x, k2⊥ ) ≡ Φ[γ ] (x, k⊥ ; P, S) Z Z 2 d(` · P ) ix(`·P ) d `⊥ −ik⊥ ·`⊥ ˜ 2 = e e 2A2 (` , ` · P ) + 2 2π (2π) ` =0

9

Lorentz invariant amplitudes from the lattice

10

+

f1 (x, k2⊥ ) ≡ Φ[γ ] (x, k⊥ ; P, S) Z Z 2 d(` · P ) ix(`·P ) d `⊥ −ik⊥ ·`⊥ ˜ 2 = e e 2 A (` , ` · P ) + 2 2π (2π)2 ` =0 unrenormalized lattice data: `2

FT

←−→ k2⊥ FT

`·P ←−→

x

Lorentz invariant amplitudes from the lattice

10

+

f1 (x, k2⊥ ) ≡ Φ[γ ] (x, k⊥ ; P, S) Z Z 2 d(` · P ) ix(`·P ) d `⊥ −ik⊥ ·`⊥ ˜ 2 = e e 2 A (` , ` · P ) + 2 2π (2π)2 ` =0 unrenormalized lattice data: `2

FT

←−→ k2⊥ FT

`·P ←−→

x

Euclidean lattice `4 = 0 ⇓ 2

` ≤ 0,√ |`·P | ≤ |P | −`2

Lorentz invariant amplitudes from the lattice

10

+

f1 (x, k2⊥ ) ≡ Φ[γ ] (x, k⊥ ; P, S) Z Z 2 d(` · P ) ix(`·P ) d `⊥ −ik⊥ ·`⊥ ˜ 2 = e e 2 A (` , ` · P ) + 2 2π (2π)2 ` =0 unrenormalized lattice data: `2

FT

←−→ k2⊥ FT

`·P ←−→

x

Euclidean lattice `4 = 0 ⇓ 2

` ≤ 0,√ |`·P | ≤ |P | −`2

Lowest x-moment of TMD PDFs

lowest x-moment of f1 (x, k2⊥ ) (0x )

f1

(k2⊥ ) ≡

Z

1

dx f1 (x, k2⊥ ) ≡

12

Z

Z dx

+

dk − Φ[γ ] (k, P, S)

−1

Z =

2.0

ìì ìì ç ì

Ž 2 Re A2

ììì ç ç

1.0

ì ìì ì ìì

ç ç

1.5

0.5

d2 `⊥ ik⊥ ·`⊥ ˜ e 2 A2 (−`⊥2 , 0) (2π)2

ç

renormalized unrenorm.

ì ì ì ììì ì çç ì ç ìì ì ç ìì ì çç ì ìì çç ìì ç ìì ç ç ìì ççç çç ììì çç ç çç çç ììì çç ì ìììì çç çç ì ìì ç ç ççç ççç ç çç ççç ç ç

up quarks mπ = 500 MeV

0.0 0.0

0.5

1.0 -{2 HfmL

1.5

fit function C1 exp(−|`|2 /σ12 ) Z-factor !

Z −1 C1up-down = 1 ì ç

multiplicative 2.0 renormalization based on quark counting ì ç

lowest x-moment of f1 (x, k2⊥ ) (0x )

f1

(k2⊥ ) ≡

Z

1

dx f1 (x, k2⊥ ) ≡

12

Z

Z dx

+

dk − Φ[γ ] (k, P, S)

−1

Z

4

(0 H1L ) sW

-2

f1 fx1 (k2⊥ ) HGeV (GeV−2L)

=

3 2 1

renormalized unrenorm. up quarks mπ = 500 MeV

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Èk¦ È HGeVL

d2 `⊥ ik⊥ ·`⊥ ˜ e 2 A2 (−`⊥2 , 0) (2π)2

width of the distribution (RMS momentum): hk2⊥ i1/2 = (391 ± 8stat ± 27sys ) MeV compare phenomenology [Anselmino et al., PRD71, 074006 (2005)]:

hk2⊥ i1/2 ≈ 500 MeV (estimate, Gaussian Ansatz)

lowest x-moment of f1 (x, k2⊥ ) (0x )

f1

(k2⊥ ) ≡

Z

1

dx f1 (x, k2⊥ ) ≡

12

Z

Z dx

+

dk − Φ[γ ] (k, P, S)

−1

Z =

d2 `⊥ ik⊥ ·`⊥ ˜ e 2 A2 (−`⊥2 , 0) (2π)2

2

width of the distribution correlator with straight (RMS Wilsonmomentum): line renormalized renormalized to string potential with C = 0 unrenorm. hk2⊥ i1/2 = Gaussian fit ansatz (391 ± 8stat ± 27sys ) MeV (“wrong” up quarksat large-k⊥ [Diehl, arXiv:0811.0774])

1

500 MeV MeV mm π π≈=500

4

(0 H1L ) sW

-2

f1 fx1 (k2⊥ ) HGeV (GeV−2L)

keep in mind

3

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Èk¦ È HGeVL

compare phenomenology [Anselmino et al., PRD71, 074006 (2005)]:

hk2⊥ i1/2 ≈ 500 MeV (estimate, Gaussian Ansatz)

from A˜2

2.0

ìì ìì ç ì

ììì

Ž 2 Re A2

ì ìì ì ìì

ç ç

1.5

ç ç

1.0 0.5

13 renormalized unrenorm.

ç ì ì ì ììì ì çç ì ç ìì ì ç ìì ì çç ì ìì çç ìì ç ìì ç ç ìì ççç çç ììì çç ç çç çç ììì çç ì ìììì çç çç ì ìì ç ç ççç ççç ç çç ççç ç ç

up quarks mπ = 500 MeV

0.0 0.0

0.5

1.0

1.5

ì ç

f1H1L sW HGeV-2 L

(0x )

f1

4 3 2

2.0

Ž 2 Re A2

0.6 0.4

ììì ç

ì ì ì ì ìì

ç ç ç

renormalized unrenorm.

ç ì ì ì ììì ì çç ì ç ìì ç ì ìì ì çç ì çç ìì ç ç ìì ìì ç ìì ççç çç ìì çç ì ìì ç çç çç ì ìì çç çç ì ììì ì çç ç ç ççç ì ççç ç çç ççç ç ç

0.2 down quarks mπ = 500 MeV 0.0 0.0 0.5 1.0

-{2 HfmL

up quarks mπ = 500 MeV

1

Èk¦ È HGeVL

1.5

f1H1L sW HGeV-2 L

ìì ìì ç ì

0.8

unrenorm.

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2

ì ç

-{2 HfmL

1.0

renormalized

2.0 renormalized

1.5

Fourier-

======⇒1.0 transform

ì ç

ì ç

2.0

0.5

unrenorm. down quarks mπ = 500 MeV

0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Èk¦ È HGeVL

from A˜2

2.0

ìì ìì ç ì

ììì ç ç ç

1.0

renormalized unrenorm.

ç ì ì ì ììì ì çç ì ç ìì ì ç ìì ì çç ì ìì çç ìì ç ìì ç ç ìì ççç çç ììì çç ç çç çç ììì çç ì ìììì çç çç ì ìì ç ç ççç ççç ç çç ççç ç ç

4 3 2

multiplicative renormalizaup quarks tion constant Z adjusted to 1 mπ = 500 MeV number of valence quarks 0 0.0 0.0 0.0 0.5 R 21.0 1.5 2.0 (0) d k⊥ f1 (k2⊥ ) = 2A˜2 (0, 0), 2 -{fixed HfmL in u − d channel 0.5

1.0

ìì ìì ç ì

0.8 0.6 0.4

ììì ç

ì ì ì ì ìì

ç ç ç

-{2 HfmL

1.5

unrenorm. up quarks mπ = 500 MeV

transform

2.0

Èk¦ È HGeVL

renormalized

1.5

Fourier-

ì ç

0.2 0.4 0.6 0.8 1.0 1.2

2.0

======⇒1.0

ì ç

renormalized

ì ç

renormalized unrenorm.

ç ì ì ì ììì ì çç ì ç ìì ç ì ìì ì çç ì çç ìì ç ç ìì ìì ç ìì ççç çç ìì çç ì ìì ç çç çç ì ìì çç çç ì ììì ì çç ç ç ççç ì ççç ç çç ççç ç ç

0.2 down quarks mπ = 500 MeV 0.0 0.0 0.5 1.0

ì ç

f1H1L sW HGeV-2 L

Ž 2 Re A2

ì ìì ì ìì

ç

1.5

Ž 2 Re A2

13 f1H1L sW HGeV-2 L

(0x )

f1

0.5

unrenorm. down quarks mπ = 500 MeV

0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Èk¦ È HGeVL

(0 ) g1Tx from A˜7

-0.05 -0.10 -0.15 0.0

0.5

renormalized unrenorm.

1.0 2

-{

Ž 2 mN Re A7 HGeVL

ç ç çç ç ç ì ççççç ç ç ì ì ì ì ìì ì ì ì ì ì ì

1.5

6 renormalized 5 unrenorm. 4 3 up quarks mπ = 500 MeV 2 1 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2

sW gH1L mN HGeV-3 L 1T

ç ç çç ç ç çç ç çç çç ç çç ç ì çç ç ç ì ç çç ìì ç ç ìì ì ì ç ì ì ççç ìì ì ì ìì ìì ç ìì ì çç ç ìì ì ì ì ìì ì ììì ì ì ì ç

up quarks

2.0

Èk¦ È HGeVL

HfmL

0.035 ì renormalized 0.030 ì ì ìì ìì ç unrenorm. ç ì ì 0.025 ì ì ìì ìç ìì ì ììì ì ì 0.020 ç ì çç ì ìì ç ç ç ìììì ì 0.015 çç ì ç çç ç ì çççç 0.010 ì çç ì ç ç 0.005 down quarksççççççç ç ç ì ìì ì ç ç ç ì ì ç çç ç ç ì ç ç 0.000 ç ç 0.0 0.5 1.0 1.5ç 2.0 ç ç

ì

2

-{ç HfmL ì

sW gH1L mN HGeV-3 L 1T

Ž 2 mN Re A7 HGeVL

0.00

14

0.0

Fourier-

======⇒-0.5 transform

down quarks mπ = 500 MeV

-1.0 -1.5

renormalized unrenorm.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 Èk¦ È HGeVL

a polarized k⊥ -dependent quark density

15

Density of quarks with positive helicity, λ = 1, in a transversely polarized nucleon, S ⊥ = (1, 0): Z Z 5 +1 1 ρT L (k⊥ ; S ⊥ , λ) ≡ dx dk − Φ[γ 2 (1+γ )] (k, P, S⊥ ) 2 λ k⊥ · S ⊥ (0x ) 2 1 (0 ) = f1 x (k2⊥ ) + g1T (k⊥ ) 2 2 mN kx (GeV)

kx (GeV) down

up

ky

ky

λ



u

d u

S

λ

u

d u

S

mπ ≈ 500 MeV, straight gauge link operator, renormalization condition C ren = 0, Gaussian fit



a polarized k⊥ -dependent quark density

15

Density of quarks with positive helicity, λ = 1, in a transversely polarized nucleon, S ⊥ = (1, 0): Z Z 5 +1 1 ρT L (k⊥ ; S ⊥ , λ) ≡ dx dk − Φ[γ 2 (1+γ )] (k, P, S⊥ ) 2 λ k⊥ · S ⊥ (0x ) 2 1 (0 ) = f1 x (k2⊥ ) + g1T (k⊥ ) 2 2 mN kx (GeV)

kx (GeV) down

up hkx i = (67 ± 5stat ± 3sys ) MeV

hkx i = (−30 ± 5stat ± 1.3sys ) MeV

ky

ky

λ



u

d u

model [Pasquini et. al 0912.1761] hkx iu = 55.8 MeV S λ u d hkSx id = −27.9 MeV u 

mπ ≈ 500 MeV, straight gauge link operator, renormalization condition C ren = 0, Gaussian fit



k⊥ -moments, weighted asymmetries f (mx ,n⊥ ) ≡

Z

1

dx xm

−1

Z

d2 k⊥



k2⊥ 2m2N

n

16

f (x, k2⊥ )

Let us assume the amplitudes A˜i are sufficiently regular at `2 = 0. (0 ,1⊥ )

hk⊥ iρT L = λS ⊥ mN λS ⊥ mN

g1Tx

=

(0x ,0⊥ )

f1

A˜7 (0, 0) ? A˜7 (`2 , 0) = lim λS m ⊥ N `2 →0 A˜2 (0, 0) A˜2 (`2 , 0)

All self-energies from the gauge link cancel on the RHS (⇒ no dependence on the renormalization condition). Similar to weighted asymmetries from experiment (→ EIC): QT mN

ALT

cos(φh −φS )

=2

QT hm cos(φh − φS )iU T N

h1iU U

P

(1 )

q ∝ P

⊥ e2q x g1T,q (x) D1,q (z)

q

e2q x f1,q (x) D1,q (z)

[Boer, Mulders PRD 1998], [Bacchetta et al. arXiv:1003.1328]

testing Gaussian parametrization

17 (0x )

(0 ) f1 x (k2⊥ ) (0 ) g1 x (k2⊥ )

=

C0 exp(−k2⊥ /µ20 )

=

C2 exp(−k2⊥ /µ22 )

1 ρ± LL (k⊥ ) ≡ 2 f1

vs.

(0x )

(k2⊥ ) ± 21 g1

(k2⊥ )

2 2 ρ+ LL (k⊥ ) = C+ exp(−k⊥ /µ+ ) 2 2 ρ− LL (k⊥ ) = C− exp(−k⊥ /µ− )

1.0

0.5

statistical error

0.0

g1

(0xg)  f (0x ) 1 /f 1 1

f1 and g1 Gaussian fit f1 +g1 and f1 -g1 Gaussian fit

-0.5

-1.0 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|k⊥Èk¦|È HGeVL (GeV) ⇒ Asymptotic behavior at large k⊥ imposed by Gaussian ansatz; not a “lattice result”. Similar issues in analysis of experimental data.

x-dependence

`·P -dependence in A˜2

19

real part `2

FT

←−→ k2⊥ FT

`·P ←−→

x

(x, k⊥ )-factorization hypothesis factorization hypothesis (0x )

f1 (x, k2⊥ ) ≈ f1 (x) f1

(k2⊥ ) / N

as in phenomenological applications, e.g., Monte Carlo event generators

Then A˜2 factorizes, too: (`·P ) A˜2 (`2 , 0). A˜2 (`2 , `·P ) = A˜norm 2 To test this, we define A˜2 (`2 , `·P ) 2 A˜norm (` , `·P ) ≡ 2 Re A˜2 (`2 , 0) (needs no renormalization!) If factorization holds, A˜norm should be 2 `2 -independent.

20

(x, k⊥ )-factorization hypothesis

20 15

factorization hypothesis

{×P =

(0x )

f1 (x, k2⊥ ) ≈ f1 (x) f1

(k2⊥ ) / N

10

as in phenomenological applications, e.g., Monte Carlo event generators

(`·P ) A˜2 (`2 , 0). A˜2 (`2 , `·P ) = A˜norm 2 To test this, we define A˜2 (`2 , `·P ) 2 A˜norm (` , `·P ) ≡ 2 Re A˜2 (`2 , 0)

Ž norm Im 2A2 H+offsetL

5

Then A˜2 factorizes, too:

0

-5

(needs no renormalization!) -10

If factorization holds, A˜norm should be 2 `2 -independent.

X within statistics

3.77 3.46 3.14 2.83 2.51 2.20 1.88 1.57 1.26 0.94 0.63 0.31 0.00 -0.31 -0.63 -0.94 -1.26 -1.57 -1.88 -2.20 -2.51 -2.83 -3.14 -3.46 -3.77

-0.5

0

0.5 -{2 HfmL

1

1.5

global `·P -behavior

21

(`2 , `·P ) at mπ ≈ 610 MeV All our data for A˜norm 2 qualitative comparison to a Fourier transform of f1 (x) from CTEQ5 [Lai et al., EPJ C12, 375 (2000)] √ a scalar diquark model at −`2 = 0 and 1 fm [JMR, NPA626, 937 (1997)]

1.2 1.0

Ž norm Re 2A2

0.8 0.6 0.4 lattice data 0.2

CTEQ

0.0

diquark model

-0.2 -3

-2

-1

0 {×P + small offsets

1

2

3

Towards Extended Gauge Links

SIDIS beyond the “basic” ansatz

23

hadr on

e.g., [Ji, Ma, Yuan PRD (2005)] :

µν Wunpol.,LO



γ*

H × f1 ⊗ Dh ⊗ |{z} S

soft factor

~ H

P nucleon

~ Dh,q ~ S

~ fq

~ H

P

modified definition of TMD PDF correlator: Z d4 ` −ik·` hP, S| q¯(`) Γ U q(0) |P, Si 1 e Φ[Γ] (k, P, S) ≡ e ⊥ , . . .) 2 (2π)4 S(` ?

v

v `

+ 0

gauge links slightly off lightcone: v 6= n ˆ−

?

+ –

`? –

0 ~ v

⇒ evolution eqn. in ζ ≡ (v·P )2 /v 2 ˜ vacuum soft factor S: expectation value of gauge link structure

subtraction factor

24

How to get rid of the gauge link self engergy exp(δm L)? Soft factor in TMD PDF correlator? Suggestion

[Collins arXiv:0808.2665]

`

` ´v

:

2´v

Is this a meaningful definition of TMD PDFs? prerequisite for quantitative lattice predictions “To allow non-perturbative methods in QCD to be used to estimate parton densities, operator definitions of parton densities are needed that can be taken literally.” [Collins arXiv:0808.2665 (2008)] k⊥ -moments from ratios of amplitudes ... ... may bridge the gap until we know more. Example Sivers effect: hk⊥ iρT U from A˜12 /A˜2 . Self-energies cancel, no explicit subtraction factor needed.

Conclusion Summary: We have explored ways to calculate intrinsic transverse momentum distributions in the nucleon with lattice QCD. We directly implement non-local operators on the lattice. First results are based on a simplified operator geometry (direct gauge link) and a Gaussian fit model, at mπ ≈ 500 MeV: We calculate the first Mellin moment of leading twist TMD PDFs (0) (0) ⊥(1) f1 (k2⊥ ), g1T (k2⊥ ), h1L (k2⊥ ) etc. k⊥ -densities of longitudinally polarized quarks in a transversely (0) polarized proton are deformed, due to non-vanishing g1T . So far, no statistically significant incompatibility with (0 ) factorization f1 (x, k2⊥ ) ≈ f1 (x) f1 x (k2⊥ )/N detectable within the limited range of available lattice data. Outlook: Beyond Gaussian fits: Matching to perturbative behavior at small `, i.e., large k⊥ . Study of non-straight gauge links similar as in SIDIS. Focus on selected k⊥ -moments (↔ weighted asymmetries), until appropriate subtraction factors are better understood.

25

Backup Slides

parametrization of the matrix elements 1 Φ (k, P, S) ≡ 2 [Γ]

Z

d4 ` −ik·` e hP, S| q¯(`) Γ U q(0) |P, Si (2π)4

isolation of Lorentz-invariant amplitudes

compare [Mulders, Tangerman NPB (1996)]

hP, S| q(`) γµ U q(0) |P, Si = 4 A˜2 Pµ + 4i mN 2 A˜3 `µ hP, S| q(`) γµ γ 5 U q(0) |P, Si = −4 mN A˜6 Sµ −4i mN A˜7 Pµ (` · S) +4 mN 3 A˜8 `µ (` · S) hP, S| q(`) . . . U q(0) |P, Si = further structures (9 amplitudes in total)

Transformation properties of the matrix element (†, P, T ) limit number of allowed structures. No T -odd structures (Sivers function, . . .) with straight gauge link. i∗ h The amplitudes fulfill A˜i (`2 , ` · P ) = A˜i (`2 , −` · P ) .

28

parametrization of the matrix elements 1 Φ (k, P, S) ≡ 2 [Γ]

Z

28

d4 ` −ik·` e hP, S| q¯(`) Γ U q(0) |P, Si (2π)4

isolation of Lorentz-invariant amplitudes

compare [Mulders, Tangerman NPB (1996)]

hP, S| q(`) γµ U q(0) |P, Si = 4 A˜2 Pµ + 4i mN 2 A˜3 `µ ⇒ f1 (x, k2⊥ ) hP, S| q(`) γµ γ U q(0) |P, Si = −4 mN A˜6 Sµ 5

−4i mN A˜7 Pµ (` · S) +4 mN 3 A˜8 `µ (` · S) ⇒ g1T (x, k2⊥ ) hP, S| q(`) . . . U q(0) |P, Si = further structures (9 amplitudes in total)

Transformation properties of the matrix element (†, P, T ) limit number of allowed structures. No T -odd structures (Sivers function, . . .) with straight gauge link. h i∗ The amplitudes fulfill A˜i (`2 , ` · P ) = A˜i (`2 , −` · P ) .

extracting nucleon structure from the lattice Ingredients

gauge configs.

quark propagators

Output : 3-point correlator C3pt nucleon source (fixed position)

nucleon sink (fixed momentum)

u u d

u u d d

xsrc

U nucleon sequential propagators

29

P

lat d Euclidean

tsrc



tsnk

time

[We neglect “disconnected contributions” (absent for up minus down).]

transfer matrix formalism

30

ratio of correlators far away from nucleon source and sink C3pt (τ ; Γ, `, P ) C2pt (P )

tsrc τ t

sink −−−−−−−− −→

const. (“plateau value”), ⇓ access to hP, S| q(`) Γ U q(0) |P, Si

Γ

1 ren 2 C3pt (τ ; Γ, `, P )/C2pt (P )

1

mN ˜ A1 E(P )

−γ4 γ5

imN A˜7 `z

γ4 1 2 [γ2 , γ4 ]

...

(LHPC projectors)

A˜2 1 ˜ im2N ˜ m2N ˜ A 9 Px + A10 `x + A11 (`z )2 Px E(P ) E(P ) E(P ) ...

transfer matrix formalism

30

ratio of correlators far away from nucleon source and sink C3pt (τ ; Γ, `, P ) C2pt (P )

tsrc τ t

sink −−−−−−−− −→

const. (“plateau value”), ⇓ access to hP, S| q(`) Γ U q(0) |P, Si

example plateau plots at mπ ≈ 600 MeV for Γ = γ4 (⇒ A˜2 ), with HYP smeared gauge link U =

0.20

0.10

0.00

10

0.10 0.05

sink

0.05

0.15

P =0 12

14

16 ` Τ

18

20

0.00

10

P = 2π L (−1,0,0) 12

14

16 ` Τ

18

sink

0.15

source

C3pt  C2pt

0.20

source

C3pt  C2pt

0.25

:

20

leading-twist TMD PDFs

q N U

U

L

?

f1T

T ?

f1

L T

31

h1 ?

g1

h1L

g1T

h1 h1T

?

t ime-reversal odd

leading-twist TMD PDFs

q N U

U

L

?

f1T

T ?

f1

L T

31

h1 ?

g1

h1L

g1T

h1 h1T

?

t ime-reversal odd

“genuine” signs of intrinsic quark momentum

32

(d)

(u)

ρT L

ρT L

Diplole deformations

ky d u

u

λ

S

(u) ρLT

λ

u

d u

S

ρT L : ∼ λ k⊥ ·S ⊥ g1T ρT L : ∼ Λ k⊥ ·s⊥ h⊥ 1L

s

The corresponding dipole structures ∼ λ b⊥ ·S ⊥ , ∼ Λ b⊥ ·s⊥ for impact parameter densities (from GPDs) are ruled out by symmetries.

(d) ρT L

ky Λ

u

d u

s

kx

Λ

u

d u

kx

¨ gler, Musch, Negele, Scha ¨ fer EPL 88, 61001 (2009)] [Ha

`·P - dependence of A˜2 (`2 , `·P )

2 Re A˜2 (`2 , `·P )

33

2 Im A˜2 (`2 , `·P )

`·P - dependence of A˜2 (`2 , `·P )

33

2 Re A˜2 (`2 , `·P )

2 Im A˜2 (`2 , `·P )

1.0 æ

È{È=0. fm

Ž Re 2A2

È{È=0.25 fm 0.6

È{È=0.37 fm È{È=0.5 fm

0.4 È{È=0.62 fm

È{È=0.74 fm

0.2 0.0

È{È=0.99 fm È{È=1.5 fm -6

-4

È{È=1.2 fm -2

0 {×P

È{È=1.5 fm È{È=1.2 fm È{È=0.99 fm È{È=0.74 fm È{È=0.62 fm È{È=0.5 fm È{È=0.37 fm È{È=0.25 fm È{È=0.12 fm È{È=0. fm

0.8

2

4

Ž Im 2A2 H+offsetL

È{È=0.12 fm

0.8

0.6 0.4 0.2 0.0 -4

-2

0

2 {×P

4

6

effect of normalization with amplitude at `·P = 0

Re A˜2 (`2 , `·P ) Re A˜norm = 2 Re A˜2 (`2 , 0)

2 Re A˜2 (`2 , `·P )

1.0

5

È{È=0.12 fm

0.8

æ

È{È=0. fm 4

0.6

È{È=0.37 fm È{È=0.5 fm

0.4 È{È=0.62 fm

È{È=0.74 fm

0.2 È{È=0.99 fm È{È=1.5 fm

` Re 2A2 H+offsetL

Ž Re 2A2

È{È=0.25 fm

0.0

34

í í í

È{È=8 3

í í íííí íí í íí íííííí í íí í íí í íí áá á áá áá á á ááá ááá áá áá á áá á á á á á áá ç ç ç ç ç ç ç ç ç ç È{È=6 ç ç ç í íí

È{È=5

í

ô ô ôô ô ô ô ô ô ô ô ôô ò òò ò òò

2

È{È=3

-4

-2

0 {×P

2

4

ò òò ò òò ò

È{È=0 -15

-10

È{È=4

ì ì ì ì ì ì ì à à à à à

È{È=1.2 fm 1

-6

È{È=10

È{È=2

æ

0

-5 {×P

5

10

15

effect of normalization with amplitude at `·P = 0

34

Im A˜2 (`2 , `·P ) Im A˜norm = 2 Re A˜2 (`2 , 0)

2 Im A˜2 (`2 , `·P )

5

Ž Im 2A2 H+offsetL

0.8 0.6 0.4 0.2 0.0 -4

-2

0

2 {×P

4

6

4 Ž norm Im 2A2 H+offsetL

È{È=1.5 fm È{È=1.2 fm È{È=0.99 fm È{È=0.74 fm È{È=0.62 fm È{È=0.5 fm È{È=0.37 fm È{È=0.25 fm È{È=0.12 fm È{È=0. fm

È{È=1.2 fm È{È=0.95 fm

3

È{È=0.71 fm È{È=0.6 fm

2

È{È=0.48 fm È{È=0.36 fm

1

È{È=0.24 fm È{È=0.12 fm

0 -4

æ

-2

È{È=0. fm

0

2 {×P

4

6

staple-shaped gauge links

35

` ´v

32 Lorentz-invariant amplitudes

[Goeke,Metz,Schlegel PLB618,90 (2005)]

   v2 v·P  v·k v·k −1 , , Ai k 2 , k·P, = Ai k 2 , k·P, , ζ , sgn(v·P ) 2 |v·P | |v·P | |v·P | |v·P | | {z } ≈x Links approaching light cone: v → n ˆ − ⇒ ζ → ∞. For large ζ, the evolution with ζ is known [Collins,Soper NPB194,445 (1981)].

time reversal T

36

  (v 0 , v 1 , v 2 , v 3 )   (−v 0 , v 1 , v 2 , v 3 ) T future pointing v past pointing v − →   TMD PDFs for SIDIS TMD PDFs for Drell-Yan The transformation property of the matrix elements under time reversal provides relations: Example of a T -even amplitude:    v·k v·k A2 k2 , k·P , v·P , ζ −1 , 1 = A2 k2 , k·P , v·P , ζ −1 , −1) ⇓ (SIDIS)

f1

(Drell-Yan)

(x, k⊥ ; ζ, . . .) = f1

(x, k⊥ ; ζ, . . .)

⊥ Example of a T -odd amplitude: (→ Sivers function f1T )    v·k v·k A12 k2 , k·P , v·P , ζ −1 , 1 = −A12 k2 , k·P , v·P , ζ −1 , −1) ⇓ ⊥(SIDIS)

f1T

⊥(Drell-Yan)

(x, k⊥ ; ζ, . . .) = −f1T

(x, k⊥ ; ζ, . . .)

A˜2 from the lattice for extended gauge links 

v·` −1 A˜2 `2 , `·P, |v·P , sgn(v·P ) |, ζ



≡ lim a ˜2 (`2 , `·P, ηv·`, −η 2 , ηv·P ) η→∞

0.8

-{2 0.00 fm

Re RΓ4

0.6

0.12 fm 0.24 fm

0.4

0.59 fm 1.18 fm

0.2 0.0 -5

0

5

Ηv×P

But a ˜2 = Re Rγ4 always vanishes for large η! Reason: power divergence suppresses a ˜2 ∼ exp(−δm η).

37

A T -odd ratio from the lattice Rodd =

a ˜12 + (η

m2N v1 P1

38

) ˜b8

a ˜2 ±ηv·P large

A˜12 (`2 , 0, 0, ζ −1 , ±1) +

−−−−−−−−→



mN P1

2

˜8 (`2 , 0, 0, ζ −1 , ±1) B

A˜2 (`2 , 0, 0, ζ −1 , ±1)

1.0

Rodd

0.5 -{2

0.0

0.12 fm 0.24 fm

-0.5

0.59 fm 1.18 fm

-1.0 -5

0

5

10

Ηv×P ⊥ Part of the effect comes from the Sivers function f1T via A˜12 !