Study on the Hilbert’s Eighth Problem Jinzhu Han1

Zaizhu Han2

1. Baotou North Hospital, Inner Mongolia, China 2. National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China

Abstract In this paper, we first prove Riemann Hypothesis and General Riemann Hypothesis by L’Hospital rule. Then, we improve the result of the prime number theorems for arithmetic progression. Finally, we provide a proof that Goldbach Conjecture and Twin Prime Conjecture are established. Thus, we have resolved the Hilbert’s Eighth Problem.

Keywords: Riemann Hypothesis Goldbach Conjecture Twin Prime Conjecture AMS: 11P32 Notation: ∞

ζ ( s ) = ∑ n− s

Riemann zeta Function

n =1



L ( s, χ ) = ∑ χ ( n ) n − s

Dirichlet L -Function

∞ 1 ⎛ s⎞ = seγ s ∏ ⎜1 + ⎟e − s n n⎠ Γ (s) n =1 ⎝

Γ ( s ) as Γ -function

γ = 0.5772…

Euler constant

χ, χ 0, χ*

Character, principal character, primitive character

n =1

q

⎛n⎞

n =1

⎝ ⎠

τ ( χ ) = ∑ χ (n) e ⎜ ⎟ q f(

k)

(s) =

f (z) k! dz ∫ 2π i C ( z − s )k +1

One of Gauss sum

Cauchy derivative formula



φ ( n ) = n∏ ⎜1 − ⎝

pn

1⎞ ⎟ p⎠

Euler function

⎧log p, n = p m Λ (n) = ⎨ ⎩0, otherwise

Mangoldt function

ψ ( x) = ∑ Λ (n) n≤ x

θ ( x ) = ∑ log p p≤ x

π ( x ) = ∑1 p≤ x



ψ ( x; q, l ) =

Λ (n)

n≤ x n ≡ l mod q



ψ ( x; b, q, l ) =

Λ (n)

bn ≤ x bn ≡ l mod q

ψ ( x, χ ) = ∑ Λ ( n ) χ ( n ) n≤ x

θ ( x; q, l ) =



log p

p ≡ l mod q 2< p ≤ x



θ ( x; b, q, l ) =

log p

bp ≡ l mod q 2< p ≤ x

C(N) =



2< p N

p −1 ⎛ 1 ⎞ 1 − ⎜ ⎟ ∏ p − 2 p > 2 ⎜⎝ ( p − 1)2 ⎟⎠

0. Introduction In 1900, Hilbert suggested 23 famous mathematic problems, whose Eighth Problem includes the following hypotheses: 1) Riemann Hypothesis (RH): all of non-trivial zero points of

ζ ( s ) have real

part equal to 1 2 ; 2) General Riemann Hypothesis (GRH): all of non-trivial zero points of L ( s, χ ) have real part equal to 1 2 ; 3) Goldbach Conjecture: any even integer >2 is sum of two primes; 4) Twin Prime Conjecture: the number of twin primes is infinite. Although a number of mathematicians have attempted to prove or disproved the above four

hypotheses [1-39], none of them has been completely resolved up to now. In this article, we will prove all of these hypotheses using some novel ways. To prove some relevant theorems, we need the following Lemmas. 1. Lemmas

Lemma 1: There is the well-known equation for

ζ (s) ,

ζ ( s ) = A ( s ) ζ (1 − s ) ,

(1.1.1)

where

A ( s ) = 2 ( 2π )

s −1

cos

π (1 − s ) 2

Γ (1 − s ) .

(1.1.2)

Let s = σ + it , then we have

σ = 12 ⇔ A ( s ) ≡ 1 ,

(1.1.3)

and

t t → ∞ ⇒ A( s) = 2π

⇒σ ≠

1

2

1

2 −σ

⎛ ⎛ 1 ⎞⎞ ⎜1 + O ⎜⎜ ⎟⎟ ⎟ ⎜ ⎟ ⎝ t ⎠⎠ ⎝

⇒ A( s) ≠ 1.

(1.1.4)

Lemma 2: There is the equation for L ( s, χ ) ,

L ( s, χ ) = A ( s, χ ) L (1 − s, χ ) ,

(1.2.1)

where

A( s, χ ) = ( 2π ) q− sτ ( χ ) cos s −1

π (1 − s ) 2

{

}

Γ (1 − s ) e−iπ (1−s) 2 + χ ( −1) eiπ (1−s) 2 . (1.2.2)

Let s = σ + it , we obtain

σ = 1 2 ⇔ A ( s, χ ) ≡ 1 ,

(1.2.3)

and

qt t → ∞ ⇒ A ( s, χ ) = 2π

⇒σ ≠

1

2

1

2 −σ

⎛ ⎛ 1 ⎞⎞ ⎜1 + O ⎜⎜ ⎟⎟ ⎟ ⎜ ⎟ ⎝ t ⎠⎠ ⎝

⇒ A ( s, χ ) ≠ 1 .

(1.2.4)

Lemma 3: In complex region 0 ≤ Re ( s ) ≤ 1 , for k − th order derivative of ζ ( s ) , we have

ζ ( k ) ( s ) = ζ ( k ) (1 − s ) .

(1.3.1)

Proof: In complex region 0 ≤ Re ( s ) ≤ 1 , we select any of suitable simple closed contour

C = C1 + C2 , which is symmetry for real axis and line Re ( s ) =

1

2

, then

ζ ( z) ζ (1 − z ) k! k! dz = dz , k + 1 ∫ ∫ 2π i C1 ( z − s ) 2π i C2 ( z − s )k +1

(1.3.2)

and

ζ ( z) ζ (1 − z ) k! k! dz = dz . k + 1 ∫ ∫ 2π i C2 ( z − s ) 2π i C1 ( z − s )k +1

(1.3.3)

According to Cauchy derivative formula, we have

ζ (k ) ( s ) = =

ζ ( z) k! dz 2π i ∫C ( z − s )k +1 ζ ( z) ζ (z) k! k! dz + dz , (1.3.4) k +1 ∫ ∫ C C 2π i 1 ( z − s ) 2π i 2 ( z − s )k +1

and

ζ ( k ) (1 − s ) =

ζ (1 − z ) k! dz ∫ 2π i C ( z − s )k +1 =

ζ (1 − z ) ζ (1 − z ) k! k! dz + dz . (1.3.5) k + 1 ∫ ∫ 2π i C1 ( z − s ) 2π i C2 ( z − s )k +1

Through (1.3.2) – (1.3.5), we obtain

0 ≤ Re ( s ) ≤ 1 ⇒ ζ ( k ) ( s ) = ζ ( k ) (1 − s ) .

(1.3.6)

Lemma 3 is true. Lemma 4: In complex region 0 ≤ Re ( s ) ≤ 1 , for k − th order derivative of L ( s, χ ) , we have

L( k ) ( s, χ ) = L( k ) (1 − s, χ ) .

(1.4.1)

In a similar way, in complex region 0 ≤ Re ( s ) ≤ 1 , we select any suitable simple closed contour C ,

which is symmetry for real axis and line Re ( s ) =

L(

k)

( s, χ ) =

1

2

. By Cauchy derivative formula, we have

L ( z, χ ) k! k ! L (1 − z , χ ) = dz dz , 2π i ∫C ( z − s )k +1 2π i ∫C ( z − s )k +1

(1.4.2)

k ! L (1 − z , χ ) dz . 2π i ∫C ( z − s )k +1

(1.4.3)

and

L( k ) (1 − s, χ ) = So we obtain

0 ≤ Re ( s ) ≤ 1 ⇒ L( k ) ( s, χ ) = L( k ) (1 − s, χ ) .

(1.4.4)

Lemma 4 is established.

Lemma 5: There exists the inequality, for

χ * ≠ χ 0 , and ρ = β + iγ is non-trivial zero point of

L ( s, χ ) ,

ψ ( x, χ

*

)

⎛ x log 2 ( xqT ) ⎞ xβ + O⎜ ⎟. ∑ T γ ≤T 1 + γ ⎝ ⎠

(1.5.1)

Lemma 6: According to equivalent relation about θ ( x ) and ψ ( x ) , we have

θ ( x; q, l ) − x φ ( q )

∑ θ ( x; q, l ) − x φ ( q )

2≤ q ≤ D

ψ ( x; q, l ) − x φ ( q ) ,

(1.6.1)

∑ ψ ( x; q, l ) − x φ ( q ) ,

(1.6.2)

xb ∑ ψ ( x; b, q, l ) − φ ( q ) .

(1.6.3)

2≤ q ≤ D

and

xb ∑ θ ( x; b, q, l ) − φ ( q )

2≤ q ≤ D

2≤ q ≤ D

Lemma 7: We define a new weighted sieve function

S ( A, z ) =



log p ,

p ≡ l mod a ( a , P( z ) ) =1

where P ( z ) =



2≤ p ≤ z

p , and a ∈ A = {a : 2 ≤ a ≤ x} .

(1.7.1)

Let

ω (d ) =

d , then φ (d ) 0≤

ω ( p) p

=

1 < 1, φ ( p)

and

∑ ω ( p ) log p

p − log ( z w ) ≤ L , ( L is a positive constant).

w≤ p ≤ z

Therefore S ( A, z ) is a line sieve function. According to Rosser sieve method, let 2 ≤ z ≤ y

1

2

and X = θ ( x ) = x , we have

S ( A, z ) ≥ 2C ( N ) f ( u )

e −γ ⎛ ⎛ 1 ⎞ ⎞ ⎜1 + ⎜ ⎟ ⎟ − ∑ rd , log z ⎝ ⎝ log z ⎠ ⎠ d ≤ y

(1.7.2)

S ( A, z ) ≤ 2C ( N ) F ( u )

e−γ ⎛ ⎛ 1 ⎞ ⎞ ⎜1 + ⎜ ⎟ ⎟ − ∑ rd , log z ⎝ ⎝ log z ⎠ ⎠ d ≤ y

(1.7.3)

and

where

rd =

∑ Λ (a) − X

d a∈A

ω (d ) d

,

u = log y log z , f ( u ) = 2eγ u −1 log ( u − 1) , if 2 ≤ u ≤ 4 ,

(1.7.4)

(1.7.5) (1.7.6)

and

F ( u ) = 2eγ u −1 , if 2 ≤ u ≤ 3 .

(1.7.7)

2. Theorems Theorem 1: All of non-trivial zero points of ζ ( s ) have real part equal to 1 2 . Proof: It is well known that all of non-trivial zero points of ζ ( s ) are in complex region

0 ≤ Re ( s ) ≤ 1 . Let ρ = β + iγ is any of k − th order non-trivial zero points of ζ ( s ) , then the

functions ζ ( s ) and ζ (1 − s ) are both equal to zero at complex point

ρ = β + iγ . Namely,

ζ ( ρ ) = ζ (1 − ρ ) = 0 , A( ρ ) =

ζ (ρ) is the indeterminate form of ζ (1 − ρ )

0 0

(2.1.1)

.

According to L’Hospital Rule, we have

A ( ρ ) = Lim s→ρ

ζ (s)

ζ (1 − s )

= Lim s→ρ

ζ (k ) ( s )

ζ ( k ) (1 − s )

.

(2.1.2)

By Lemma 1 and lemma 3, we obtain

ζ

(k )

( s ) = ζ (1 − s ) ⇒ A ( ρ ) = Lim s→ρ (k )

ζ (k ) ( s )

ζ ( k ) (1 − s )

= 1,

(2.1.3)

and

ζ ( ρ ) =0 ⇒ A ( ρ ) = 1 ⇒ Re ( ρ ) = 1 2 .

(2.1.4)

This deduction is suitable for all of non-trivial zero points of ζ ( s ) . Consequently, Theorem 1 is established and RH is true. Theorem 2: All of non-trivial zero points of L ( s, χ ) have real part equal to 1 2 . Proof: All of non-trivial zero points of L ( s, χ ) are in complex region 0 ≤ Re ( s ) ≤ 1 . Let

ρ = β + iγ is any of non-trivial zero points of L ( s, χ ) , then L ( ρ , χ ) = L (1 − ρ , χ ) = 0 ,

(2.2.1)

L (1 − ρ , χ ) = L (1 − ρ , χ ) = 0 .

(2.2.2)

L ( ρ , χ ) = A ( ρ , χ ) L (1 − ρ , χ ) = 0 .

(2.2.3)

and

So we have

According to L’Hospital Rule, Lemma 2 and lemma 4, we have

L ( s, χ ) L( ) ( s, χ ) A ( ρ , χ ) = Lim = Lim ( k ) = 1, s → ρ L (1 − s, χ ) s→ρ L (1 − s, χ ) k

and

(2.2.4)

L ( ρ , χ ) = 0 ⇒ A ( ρ , χ ) = 1 ⇒ Re ( ρ ) =

1

2

.

(2.2.5)

This deduction is suitable for all of non-trivial zero points of L ( s, χ ) . Theorem 2 is proved, and

GRH is true. Theorem 3: There exists a calculable constant for O and

, such that

(

)

ψ ( x; q, l ) = x φ ( q ) + O x log 2 x , 1

2

(2.3.1)

or

E ( x; q, l ) = ψ ( x; q, l ) − x φ ( q ) Proof: Let χ ≠

1

x 2 log 2 x .

(2.3.2)

χ 0 , ( q, l ) = 1 , then

ψ ( x; q, l ) = xφ −1 ( q ) + φ −1 ( q )

∑ χ ( l )ψ ( x, χ ) ,

(2.3.3)

χ mod q

and

E ( x; q, l ) = φ −1 ( q )

φ −1 ( q ) Since

φ −1 ( q )

∑ 1 < 1,

χ mod q

∑ χ ( l )ψ ( x, χ )

χ mod q

∑ χ ( l ) ψ ( x, χ ) .

χ ( n ) = 1 , we have E ( x; q, l )

maxψ ( x, χ )

maxψ ( x, χ * ) + O ( log x log q ) . Let

(2.3.4)

χ mod q

(2.3.5)

ρ = 1 2 + iγ is non-trivial zero point of L ( s, χ ) , we obtain E ( x; q, l )

1 ⎛ x log 2 ( xqT ) ⎞ x2 + O ⎜ ⎟ + O ( log x log q ) . ∑ T γ ≤T 1 + γ ⎝ ⎠

(2.3.6)

Let 2 ≤ q ≤ x , T = x 2 , then 1

E ( x; q, l )

1

x 2 log 2 x .

(2.3.7)

Theorem 3 is true. Theorem 4: There exist positive numbers B ≥ A + 2 , such that



2 ≤ q ≤ x log − B x

E ( x; q, l )

x log − A x .

(2.4.1)

Proof: Let ρ ( q ) =

1

2

+ iγ ( q ) is non-trivial zero point of L ( s, χ mod q ) , then

⎛ xD log 2 ( xDT ) ⎞ +O⎜ ⎟ + O ( D log x log D ) (2.4.2) ∑ ∑ T 2≤ q ≤ D γ ( q ) ≤T 1 + γ ( q ) ⎝ ⎠

x

∑ E ( x; q, l )

2≤ q ≤ D

Since

1

2

χ * ( q1 ) ≠ χ * ( q2 ) ⇒ L ( s, χ * mod q1 ) ≠ L ( s, χ * mod q2 ) , all of non-trivial zero point of

L ( s, χ mod qn ) are different, then

∑ ∑

1

x

2 ≤ q ≤ D γ ( q ) ≤T

x



2

1+ γ (q)

1

1

x2 , ∑ γ ≤T 1 + γ

2

1 + γ ( qn )

γ ( qn ) ≤T

(2.4.3)

where γ ≤ T includes all of the different non-trivial zero points of L ( s, χ mod qn ) . Furthermore we obtain 1

x2 ∑ γ ≤T 1 + γ

x

1

2

1 dt −T 1 + t



T

1

x 2 log T .

(2.4.4)

Therefore we have



E ( x; q, l )

2≤ q ≤ D

Let T = x , D = x log

−B

⎛ xD log 2 ( xDT ) ⎞ 1 x 2 log T + O ⎜ ⎟ + O ( D log x log D ) . T ⎝ ⎠

(2.4.5)

x , B ≥ A + 2 , then

∑ E ( x; q, l )

x log − A x .

(2.4.6)

2≤ q ≤ D

Theorem 4 is established. Theorem 5: there exist positive numbers B ≥ A + 2 , such that



2 ≤ q ≤ x log

−B



x 1≤b ≤ x

1

E ( x; b, q, l )

x log − A x ,

(2.5.1)

2

where

E ( x; b, q, l ) = ψ ( x; b, q, l ) − ( x b ) φ ( q ) . Proof: Let χ ≠

χ 0 , then E ( x; b, q, l ) = φ −1 ( q )

∑ χ (l ) χ (b ) ∑ Λ ( n) χ ( n )

χ mod q

max ∑ Λ ( n ) χ ( n ) bn ≤ x

bn ≤ x

(2.5.2)

maxψ ( x b, χ )

maxψ ( x b, χ * ) + O ( log ( x b ) log q ) .

(2.5.3)

Furthermore, we have

( x b) ∑ γ ( q ) ≤T 1 + γ ( q ) 1

E ( x; b, q, l )

⎛ x b log 2 ( xqT ) ⎞ +O⎜ ⎟ + O ( log ( x b ) log q ) , T ⎝ ⎠

2

(2.5.4)

and

∑ ∑

E ( x; b, q, l )

2 ≤ q ≤ D 1≤ b ≤ x 1 2

⎛ xD log x log 2 ( xDT ) ⎞ 1 2 x 2 log x log T + O ⎜ ⎟ + O ( D log x log D ) . T ⎝ ⎠ Let T = x log x , D = x log

−B

(2.5.5)

x , B ≥ A + 2 , then

∑ ∑

2 ≤ q ≤ D 1≤b ≤ x

1

E ( x; b, q, l )

x log − A x .

(2.5.6)

2

Theorem 5 is proved. Theorem 6: Any large even integer is sum of two primes, and we have



log p > 4 ( 2 log 2 − log 3) C ( N )

p = N − p1

⎛ N ⎞ N + O⎜ ⎟, A log N ⎝ log N ⎠

(2.6.1)

where 2 < p < N . Proof: Let N is any large even integer, A = {a : a = N − p, 2 < p ≤ N } , then



(

log p ≥ S A, x

p = N − p1

1

2

) ≥ S ( A, x ) − ∑ 1

1

ω (d ) =

and

θ ( N; d, N ) −

1

1

3

).

(2.6.2)

2

d , then φ (d )

( )=

W N

rd

1

N 3 ≤ p≤ N p2 p = N − p1

Let X = N , X ( p ) = N p , and

(

S A( p), x

3

3

6C ( N ) , log N

N φ (d )

E ( N; d, N ) ,

(2.6.3)

(2.6.4)

rd ( p )

θ ( N , p, d , N ) −

N p φ (d )

ψ ( N , p, d , N ) −

N p . φ (d )

(2.6.5)

By Theorems 5 and 6, we have



d ≤ N log − B N



rd

E ( N; d, N )

d ≤ N log − B N

N log − A N ,

(2.6.6)

and







rd ( p )

d ≤ N log − B N N 13 ≤ p ≤ N 1 2



d ≤ N log − B N N 13 ≤ p ≤ N 1 2

E ( N ; p, d , N )

N log − A N . (2.6.7)

By Lemma 7,

(

1

S A, N

(

S A( p), N

1

3

) ≥ 6e (1 + o (1) ) f ( 3) C ( N ) logNN + O ⎛⎜⎝ logN N ⎞⎟⎠ , −γ

A

3



N p + O⎜ ∑ ) ≤ 6e (1 + o (1) ) F ( 3) C ( N ) log ⎜ N −γ

⎝ d ≤ N log− B N

(2.6.8)

⎞ rd ( p ) ⎟ , (2.6.9) ⎟ ⎠

and

N

1



(

S A( p), N

1 3 ≤ p≤ N 2

1

3

) ≤ 6e (1 + o (1) ) F ( 3) C ( N ) logNN ∑ −γ

N

1

1 3 ≤ p≤ N 2

⎛ N ⎞ 1 + O⎜ ⎟. A p ⎝ log N ⎠ (2.6.10)

Since

( ) ( ) 1

N

1



1 3 ≤ p≤ N 2

log N 2 ⎛ 1 ⎞ 1 = log + O⎜ ⎟ 1 3 p log N ⎝ log N ⎠ ⎛ 1 ⎞ = log 3 − log 2 + O ⎜ ⎟, ⎝ log N ⎠

(2.6.11)

therefore

N

1



1 3 ≤ p≤ N 2

(

S A( p), N

1

3

) ≤ 6e

−γ

( log 3 − log 2 ) F ( 3) C ( N )

⎛ N ⎞ N + O⎜ ⎟. A log N ⎝ log N ⎠

(2.6.12)

Since f ( 3) = 23 e log 2 , and F ( 3) = 23 e , we obtain γ

γ



p = N − p1

(

log p ≥ S A, x

1

3

)− ∑ N

1

(

S A( p), x 1

1

3

)

3 ≤ p≤ N 2

≥ 4 ( 2 log 2 − log 3) C ( N )

⎛ N ⎞ N + O⎜ ⎟. A log N ⎝ log N ⎠

(2.6.13)

Since





log p > 0 ⇒

p = N − p1

1> 0,

(2.6.14)

N = p + p1

Theorem 6 is proved, and Goldbach Conjecture is true. Theorem 7: Let 2 < p < N , we have



log p > 4 ( 2 log 2 − log 3) C ( N )

p = p1 + 2

⎛ N ⎞ N + O⎜ ⎟. A log N ⎝ log N ⎠

(2.7.1)

Proof: Let A = {a : a = p + 2, 2 < p ≤ N } , then



(

log p ≥ S A, N

p = p1 + 2

1

2

) ≥ S ( A,N ) − ∑ 1

1

N 3 ≤ p≤ N p2 p = p1 + 2

Let X = N , X ( p ) = N p , and

(

S A( p), N

3

1

1

3

).

(2.7.2)

2

d , then φ (d )

ω (d ) =

rd = ψ ( N ; d , 2 ) −

N = E ( N ; d , 2) , φ (d )

(2.7.3)

and

rd ( p )

N

ψ ( N ; p, d , 2 ) −

pφ ( d )

= E ( N ; p, d , 2 ) .

(2.7.4)

By Theorems 5 and 6, we have



d ≤ N log

−B



rd N

d ≤ N log

−B

E ( N ; d , 2)

N log − A N ,

(2.7.5)

N

and



d ≤ N log

−B

N N

1





rd ( p ) 1

3 ≤ p≤ N 2

d ≤ N log

−B

N N

1



E ( N ; p, d , 2 )

N log − A N .

(2.7.6)

1

3 ≤ p≤ N 2

By Lemmas 7, we obtain



log p ≥ 4 ( 2 log 2 − log 3) C ( N )

p = p1 + 2

⎛ N ⎞ N + O⎜ ⎟. A log N ⎝ log N ⎠

(2.7.7)

Theorem 7 is proved. In addition, we have

N →∞⇒



p = p1 + 2

log p → ∞ ⇒



1→ ∞ .

p = p1 + 2

That is to say, the number of twin primes is infinite, and Twin Prime Conjecture is true.

(2.7.8)

In conclusion, all the hypotheses of the Hilbert’s Eighth Problem are proved to be true. Reference [1] C. Bauer. On the sum of a prime and the k-th power of power of a prime. Acta Arith. 85 (1998), 99-118. [2] J. R. Chen. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sin. 17 (1973), 157–176. [3] J. R. Chen, C. D. Pan. The exceptional set of Goldbach numbers. Sci.Sinica, 23 (1980), 416–430. [4] A. Connes. Trace formula in noncommutative geometry and the zeros of the Riemann zetafunction, Selecta Math. (NS) 5 (1999), 29–106. [5] J. B. Conrey. More than two fifths of the Riemann zeta-function are on the critical line. J. Reine Angew. Math. 399 (1989), 1-26. [6] T. Estermann. On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. (2) 44 (1938), 307–314. [7] J. Franel. Les suites de Farey et le problème des nombres premiers. Göttinger Nachrichtem, (1924), 198-201. [8] G. H. Hardy. Sur les zeros de la function ζ ( s ) de Riemann. C.R. Acad. Sci. Paris, 158, (1914), 1012-1024. [9] G. H. Hardy, J. E. Littlewood. The zeros of Riemann’s zeta-function on the critical line. Math. Z. 10 (1921), 283-317. [10] J. I. Hutchinson. On the roots of the Riemann zeta-function. Trans. Amer. Math. Soc. 27 (1925), 49-60. [11] H. Iwaniec. A new form of the error term in the linear sieve. Acta Arith.37 (1980), 307–320. [12] H. Iwaniec. Rosser’s sieve. Acta Arith. 36 (1980), 171–202. [13] H. Iwaniec, P. Sarnak. Perspectives on the analytic theory of L-functions, in Geom. Funct. Analysis, Special Volume, Part II (2000), 705–741. [14] C. H. Jia. Goldbach numbers in a short interval, I. Sci. China Ser. A 38 (1995), 385–406. [15] C. H. Jia. Goldbach numbers in a short interval, II. Sci. China Ser. A 38 (1995), 513–523. [16] S. Kanemitsu, M. Yoshimoto. Farey series and the Riemann hypothesis. ACTA Arithmetica, (1996), 351-374. [17] E. Landau. Bemerkung zu der vorstehenden Arbeit von Herrn Franel. Göttinger Nachrichtem, (1924), 202-206. [18] N. Levinson. More than one third of Riemann zeta-function are on

σ = 1 2 . Adv. Math. 13(1974),

383-436. [19] J. E. Littlewood. On the zeros of Riemann zeta-function. Proc. Cambr. Phyl. Soc. 22 (1924), 295-318. [20] H. L. Montgomery. Zeros of L-functions. Invent. Math.. 8 (1969), 346–354. [21] H. L. Montgomery, R. C. Vaughan. The exceptional set in Goldbach’s problem. Acta. Arith.,27

(1975) 353–370. [22] A. M. Odyzko, H. J. J. te Riele, D. T. Winter. Disproved of Mertens conjecture. J. Reine Angew. Math. 367 (1985), 138-160. [23] C. D. Pan, C. B. Pan. Basic analytic number theory. Science Press, Beijing, 1999. [24] C. T. Pan. On the representation of an even number as the sum of a prime and of an almost prime, Acta Mathematica Sinica. 12 (1962), 95–106. [25] A. Perelli, J. Pintz. On the exceptional set for Goldbach’s problem inshort intervals. J. London Math. Soc. (2) 47 (1993), 41–49. [26] K. Ramachandra. On the number of Goldbach numbers in small intervals. J. Indian Math. Soc. (N.S.) 37 (1973), 157–170. [27] Z. Rudnick, P. Sarnak. Zeros of principal L-functions and random matrix theory. Duke Math. J. 82 (1996), 269–322. [28] A. R´enyi. On the representation of an even number as the sum of a single prime and a single almost-prime number. Dokl. Akad. Nauk SSSR. 56 (1947), 455–458. [29] H. E. Richert. Selberg’s sieve with weights. Mathemetika, 16 (1969), 1–22. [30] B. Riemann. Über die Anzahl der Primzahlen under einer gegebener Grösse. Monatsber. Akad. Berlin, (1859) 671-680. [31] F. Saidak; P.Zvengrowski. On the modulus of Riemann zeta-function in the critical strip. Math. Slovaca 53 No.2 (2003), 145- 172. [32] A. Selberg. On an elementary method in the theory of primes. NorskeVid. Selsk. Forh. Trondhjem 19 (1947), 64–67. [33] A. Selberg. On the zeros of the zeta-function of Riemann. Der Kong. Norske Vidensk. Selsk.Forhand. 15 (1942), 59–62. [34] E. C. Titchmarsh. The zeros of the Riemann zeta-function. Proc. Roy. Soc., Ser. A 151 (1935), 234-255. [35] E. C Titchmarsh. The zeros of the Riemann zeta-function. Proc. Roy. Soc., Ser. A 157 (1936), 261-263. [36] D. I. Tolev. Arithmetic progressions of prime–almost-prime twins. Acta Arith. 88 (1999), 67–98. [37] J. van de Lune, H. J. J. te Riele, D.T. Winter. ON the zeros of the Riemann zeta-function in the critical strip. IV, Math. Com. 46 (1986), 667-681. [38] Y. Wang. On the representation of a large integer as the sum of a prime and of an almost prime. Sci. Sin. 11 (1962), 1033–1054. [39] A. Zaccagnini. On the exceptional set for the sum of a prime and kth power. .Mathematika, 39 (1992), 400–421.