Space Robotics SRC Operational Grants COMPET :Space Robotics Technologies (PERASPERA)

Funded by the European Union Space Robotics SRC Operational Grants COMPET-4-2016:Space Robotics Technologies (PERASPERA) CDTI, Madrid 20 Octubre 201...
Author: Beryl Goodman
1 downloads 1 Views 2MB Size
Funded by the European Union

Space Robotics SRC Operational Grants COMPET-4-2016:Space Robotics Technologies (PERASPERA)

CDTI, Madrid 20 Octubre 2015 Javier Rodriguez - CDTI – PERASPERA Partner

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No [Number] This presentation reflects only the Consortium’s view. The EC/REA are not responsible for any use that may be made of the information it contains.

Funded by the European Union

Presentation Outline

1. Objetivos del SRC y el Roadmap de PERASPERA 2. Escenarios de Demonstración Call 2016 3. Lógica de trabajo 4. La Call 2016: Módulos Robóticos Fundamentales 5. Conclusiones y Remarks

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No [Number] This presentation reflects only the Consortium’s view. The EC/REA are not responsible for any use that may be made of the information it contains.

Funded by the European Union

Roadmap development Future

2016 Call

1) 6 OGs (Common Building Blocks) 2) Opciones para segunda Call 3) Consecución de objetivos para ambos escenarios Orbital y Exploración

Future Call 1) 1ª Call OGs completados (Resultados compartidos SRC) 2) Proyectos 2018 Call KO’d 3) Metas y objetivos finales definidos

2018 Call 1) Ogs de Call 2016 KO’d 2) Topics para call 2018 definidos 3) End-goals preliminares

Funded by the European Union

Demonstration Scenarios Validación y Verificación – Escenarios de Demostración

Objetivos Generales • Los escenarios abordan los objetivos de las líneas de robótica orbital y planetaria del Roadmap del SRC. • Papel clave en la maduración de las estrategias del SRC • Diseñados para verificar el funcionamiento integrado de todos los common building blocks pero también para validación de cada OG independientemente. Fases de validación •

Primero cada OG debe realiza una validación independiente



Validación en las plataformas de test comunes (Orbitales & Planetarias, OG6)



Validación OGs completamente integrados (siguiente fase, call 2018)

Funded by the European Union

Demonstration Scenarios Escenario de demostración Planetaria Martian Long Range Autonomous Scientist consiste en: • Un Rover recorre de forma autónoma 1km en la superficie de Marte. • Con capacidades muy precisas de posicionamiento y navegación de forma que sea capaz de alcanzar el objetivo de forma precisa y sin comunicaciones exteriores. • Como preparación de la misión Sample Return: El Rover realizará ciencia oportunista, volverá al Lander y transferirá la muestra al Lander usando un brazo robótico.

TEST

• • • •

long daily traverses (1 km range) autonomously Map building/Path planning in accordance with on-board resources Module/sample handling and storage by manipulator arm with standard interfaces Opportunistic science: Autonomous detection of scientific interesting sites, task planning and execution of science activities

Escenario de demostración Orbital ModSatServicing consist of: • Pequeño satélite en LEO con APM (Active Payload Module) conectado por interfaces estándar y que ha sido dañado por Debris. • Otro Satélite de servicios (SS) orbitales con un brazo robótico se acerca para quitar APM. • El SS debe ser capaz de realizar operaciones de rendevous y campo cercano. • El SS debe cambiar el APM y configurarlo para operación.

TEST

• •

• •

Distributed data handling/processing by the plugged APMs and the system bus via standard interfaces Rendezvous and capturing of cooperative/uncooperative target spacecraft (20m): 3D spacecraft reconstruction and pose. Autonomous rendezvous operation with different levels of autonomy and collision avoidance,. Docking/interlock mechanism/end effector/grasping Exchange of payload module and reconfiguration of the target system

Funded by the European Union

System Integration & Common Work Logic Operational Grant Projects OG1: RCOS System (3-3,5M€) Sense

OG2: Autonomy Framework (3-3,5M€) Plan

OG3: Common Data Fusion (3-3,5M€)

OG4: Inspection Sensor Suite (3-3,5M€)

OG5: Manipulator Interfaces (3-3,5M€) OBC

OG6: Validation Platforms (1M€)

React

Funded by the European Union

Call 2016 Operational Grants OG1: Open Source Robot Control Operating System (3-3,5M€) Sense

RCOS System Plan

General Functions

RCOS Target

• Enable creation of robot controllers • Support the following robot controller engineering processes: • Architecture engineering • design and implementation, • verification, • validation, • management, • operation and maintenance • Support the following processes • Modelling • Generation of code skeletons • Modelling of hardware & equipment • Model verification • Building the robot controller and downloading it to hardware • Monitoring and interaction with controller at runtime

• • • • • • • • • • •

Hardware abstraction; Low-level device control; Scheduling of hard/soft real-time tasks; Task comms and sync Runtime-configuration management & monitoring; FDIR File system access & management Networking Consistent data types across operation; Logging/telemetry generation and command processing Application Programming Interface

React

RDEV • Develop robot control applications within the RCOS target; • Test robot control applications within the RCOS target; • Maintain the robot control applications within the RCOS target; • Validate the robot control applications within the RCOS target by characterising its Reliability, Availability and Safety.

Funded by the European Union

Call 2016 Operational Grants OG1: Open Source Robot Control Operating System Sense

RCOS System

Plan

Ref Implementation 1:

OG1 Deliverables: • • •

Lab Quality RCOS High-Rel Quality Space Quality

Ref Implementation 2:

React

Funded by the European Union

Call 2016 Operational Grants OG2: Autonomy Framework: Time/Space/Resources Planning & Scheduling (3-3,5M€)

Autonomy Framework Sense

Functional Layer

Executive Layer

Deliberative Layer

Controls onboard capabilities

Interface between Functional and Deliberative Layers

“Thinks” and takes decisions aligned with mission goals

Plan

• Control of all robot subsystems • Implement basic motion, movement and manipulation capabilities • Have resource usage indicators monitoring & estimating state & resource

• Execute decisions • Control & coordinate execution • Model & monitor overall system state • Ensure decisions taken are aligned with state & resource

• Execute decisions • Control & coordinate execution • Model & monitor overall system state • Ensure decisions taken are aligned with state & resource

React

Funded by the European Union

Call 2016 Operational Grants OG2: Autonomy Framework: Time/Space/Resources Planning & Scheduling Autonomy Framework

Sense

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG3: Common Data Fusion Framework (3-3,5M€) Common Data Fusion Sense

Perception • Convert raw data into refined measurements, • Extract or track features from dense data sets (images, point clouds) • Detect and identify or track an object from a set of features • Build a 3D model of the environment, • Perform a characterization of the environment (i.e. build a map)

Navigation • Provides geometric state of robot respectful of frames of reference • Provides series of estimates based upon: • processed data from relative and/or absolute sensors • A priori info (models etc) • Can deliver states of several machines where system comprises several robotic agents

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG3: Common Data Fusion Framework Common Data Fusion

Sense Functionalities (Orbital Track)

Functionalities (Planetary Track)

• Long range orbital object detection • Object localisation in robot FoR • Unexpected object detection and localisation • Object 3D model reconstruction • Estimation of object’s orbital parameters after long-range detection • Estimation of robot relative state

• Construction of panoramic images • Incremental construction of terrain 3D models • Detection and tracking of environmental objects • Detection of structured objects ie assets, artefact, payloads • Unexpected object identification • Rover localisation • Rover / manipulator localisation • Map building

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG4: Inspection Sensor Suite (3-3,5M€) Sense

Inspection Sensor Suite

Exteroceptive

Proprioceptive

Looking at the outside world

Looking at internal status

Stereo Camera imaging systems Close-Up Hi-Res Camera Laser range finder Narrow / wide angle radar Ultrasound distance sensors for lab applications • Contact sensors / mechanisms

• Inertial Measurement Unit (IMU) • A sun sensor and / or star tracker • Force / Torque sensors

• • • • •

Plan

React

Funded by the European Union

2016-17 Operational Grants OG4: Inspection Sensor Suite Inspection Sensor Suite

Cooperative Scenarios

Uncooperative Scenarios

Orbital: on-orbit servicing of cooperative / operational satellites

Both orbital and planetary scenarios in unstructured environments

• Optical markers • Retro-reflectors or LEDs mounted onto target • Combination of instruments on the inspector spacecraft (cameras, infrared detector) to help estimate attitude, relative position

• Autonomous target identification, using: • Illumination Devices (lasers, LIDAR, LEDs, structured light) • Combination of instruments: • Cameras, stereo cameras, LIDARs for environment mapping, surface characterisation, feature ID, IR detectors, ultrasound sonars

Sense

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG5: Modular Interfaces for Robotic Handling of Payloads (3-3,5M€) Standard Interfaces for APM, Modules & Manipulators • • • •

Standard Interface Supporting: Mechanical Loads Electrical Signals Data Thermal Signals

Sense

Plan

• • • • • • •

Interface Criteria: Scalability Internal redundancy Compatibility to robot servicing Low complexity, mass and volume Rotation of axis and symmetry Reusability Connection of nearly arbitrary modules without restriction on the relative module orientation

React

Funded by the European Union

Call 2016 Operational Grants OG5: Modular Interfaces for Robotic Handling of Payloads Functionalities Standard Interfaces for APM, Modules & Manipulators General: • Connect APMs with each other, spacecraft, and bus • Couple with compatible robotic manipulator • Exchange data through manipulator between servicer and client robots Mechanical: • Androgynous design • Absorption of loads arising through operations • Absorption of launch loads • Requires only energy to undock • Can be opened and closed multiple times • Operates in space environment conditions • High position tolerance for docking

Data: • High Data rate • Can be opened and closed multiple times • Operates in space environment conditions • Bi-directional transfer of info

Electrical: • Short circuit protection • Surge protection • Electro-magnetic compatibility w/coupled modules • Transfer of power in both directions • Can be opened and closed multiple times • Operates in Space Environment conditions • Withstands launch loads • High positioning tolerance for docking

Thermal: • High data rate • Can be opened and closed multiple times • Operates in space environment conditions

Sense

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG6: Validation Platforms and Field Tests (1M€) Validation Platforms General Objectives • • • •

Sense

Both scenarios address the planetary and orbital track objectives of the SRC Roadmap Demonstration Scenarios designed to test all OG and its interactions Designed to provide ultimate proof of the Good-Working of the common building blocks Valid for independent validation and verification and also for testing of the integrated OGs

Support to validation task: • Providing testing platforms & Earth analogues • Providing Models for Simulation • Providing datasets • Providing monitoring, measuring & recording • Providing Support to validation and integration (The validation activity is outside this OG)

Plan

React

Funded by the European Union

Call 2016 Operational Grants OG6: Planetary Validation Scenario Scenario

Equipment

Rover will allow

• Short-range scenario (Terrain sand-box) with different sand & orography • Long-range scenario (Earth analogue like desert) • Specialized measurement systems (indoor/outdoor)

• Rover Platform • Space representative avionics • Standard interfaces (HW/SW) • Necessary sensors

• • • • •

OG1: locomotion controlled by RCOS OG2: Implementation of navigation OG3: Provide sensory data to CDFF OG4: Necessary interfaces to host ISS OG5: provide manipulation for the end-effector & APM

OG6: Orbital Validation Scenario Scenario

Equipment

Robot will allow

• Reproduce in-orbit servicing (rendezvous & capture) • Simulate robotic servicer tracking • Space-like controllable conditions • Hardware-in-the-loop

• Al least 2 robotic arms (6DoF) • High precision calibration system • Controllable illumination system • Sensor representative proximity operations • Truth position/attitude measurement • Scaled Mockup for target satellite

• OG1: Robot Arm controlled by RCOS • OG2: Implementation manipulation motion as commanded by AF • OG3: Provide sensory data to CDFF • OG4: Necessary interfaces to host ISS • OG5: provide manipulation for the end-effector & APM

Funded by the European Union

Conclusion & Remarks CONSEJOS •

Solo una propuesta seleccionada por OG (propuesta 15/15)



Comprensión del Work Logic y las interacciones entre los diferentes OG



Ajuste al Roadmap, objetivos del SRC y escenarios de misión.



Los resultados previstos han de ser aplicables tanto a orbital como planetary y con TRL final cercano al 5



Posibilidades Spin-off y aplicaciones en otros campos serán valorados



LEERSE bien Documentos de la Call 2016 y Guidelines.

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2241-compet-42016.html http://ec.europa.eu/research/participants/portal/doc/call/h2020/compet-4-2016/1682608src_guidelines_space_robotics_technologies_(compet-4-2016)_en.pdf

Funded by the European Union

THANKS!

Javier Rodriguez SRC Project Partner CDTI [email protected] Peraspera Website: www.h2020-peraspera.eu