Ruthenium in Organic Synthesis

Ruthenium in Organic Synthesis O R1 Ru R2 Ru R2 H O R1 Ru • R1 R1 H R2 • Ru O H O R1 R2 O Ru R2 Ernie Cruz Literature Presentation ...
Author: Alannah Kelley
22 downloads 0 Views 1MB Size
Ruthenium in Organic Synthesis O R1

Ru

R2

Ru

R2

H

O

R1

Ru •

R1

R1 H

R2



Ru

O H

O

R1

R2

O Ru R2

Ernie Cruz Literature Presentation 02 February 2004 147 Noyes

Ruthenium in Organic Synthesis: Outline

I. Regioselective Reductions II. Oxidations III. C-C bonds A. Ruthenacycle Intermediates B. Heteroatom Additions to Alkynes C. C-H Activation D. Diazo Compounds IV. Appendix: Preparation of Ruthenium Catalysts

Trost

Noyori

Ley

Murahashi

Reviews Murahashi Chem. Rev. 1998, 98, 2599. Trost and Toste Chem. Rev. 2001, 101, 2067.

1

Properties of Ruthenium Ruthenium has the widest range of oxidation states of any element Ru(CO)42-2

Ru(CO)5 0

RuO4 +8

Ruthenium complexes can adopt several coordination geometries Oxidation State Ru(0)

Coordination number 5

Geometry

Example

trig. bipy.

Ru(CO)5

Ru(II)

5

trig. bipy.

RuHCl(PPh3)3

6

octahedral

RuCl2CO(PR3)3

Ru(III)

6

octahedral

[Ru(NH3)5Cl]2+

Ru(VI)

4

tetrahedral

RuO42-

Ru(VII)

4

tetrahedral

RuO4-

Ru(VIII)

4

tetrahedral

RuO4

Range of reactivity due to properties of Ru complexes: 1. High electron transfer ability 2. High Lewis acidity 3. Low redox potentials 4. Stabilities of reactive metallic species such as oxometals, metallacycles, and metal carbene complexes

Regioselective Reductions cat. RuHCl(PPh3)3 1 atm H2, 25 °C benzene-ethanol J. Chem. Soc. Chem. Comm. 1967, 305. O

O cat. RuCl2(PPh3)3 100 atm H2, 50 °C benzene (94%)

O

O

Bull. Chem. Soc. Jpn. 1975, 48, 2852. O

O

cat. RuCl3/P(m-C6H4SO3Na)3 H

OH

20 atm H2, 35 °C toluene, buffer

cat. RuCl2(PPh3)3

OH

97% conversion 99% selectivity

Organometallics 1991, 10, 2126.

12 atm H2, 180 °C (99%)

O

O

O

J. Organomet. Chem. 1982, 231, 79. O

O O

cat. RuCl2(PPh3)3 24 atm H2, 100 °C (72%) LAH

O

(70%)

O

O 9:1

O

1:19

J. Chem. Soc. Chem. Comm. 1976, 314.

2

Alcohol Oxidation-Reductive Amination

R1 R2

R3

OH

H N

cat. Ru R4

R1R2CHOH + (Ru)

R1 R2

R4

N

(R1R2C=O)(Ru)(H2) + R3R4NH

(R1R2C=NR3R4)+(Ru)(H)- + H2O

(R1R2C=NR3R4)+(Ru)(H)-

R3

catalyst

(R1R2C=O)(Ru)(H2)

R1R2CHNR3R4

% y ield

product

amine

alcohol

RuH2(PPh3)4

C8H17NH2

C7H15OH

C7H15NHC8H17

92

RuCl2(PPh3)3

PhNH2

C3H7OH

PhN(C3H7)2

88

RuCl3·nH2O· P(OBu)3

CH3OH

99 N

N H Ru(cod)(cot)

C2H5OH N

85

NH2

N

NHC2H5

OH RuCl2(PPh3)3

100 N H

NH2

Murahashi TL 1982, 229.

Tetrapropylammonium Perruthenate (TPAP) Oxidations [RuO4]- is a milder oxidant than RuO4; can cleave some C=C bonds [RuO4]- salts with large organic cations are soluble in organic solvents Water inhibits catalyst turnover; use molecular sieves TPAP catalytic (5 mol %) with suitable co-oxidants; NMO most effective Wide tolerance of functional groups 1. Double bonds, polyenes, enones, halides, cyclopropanes, epoxides, and acetals 2. Esters, amides, lactones, amines, peroxides, and catechols 3. Protecting groups: SEM, MOM, BOM, MEM, trityl, silyl, benzyl, PMB, THP, acetate, and benzoate 4. Piperidines, pyrroles, indoles, furans, thiophenes, and pyridines are unreactive TBDPSO

O H

O

O

H

OTBDPS O

O

85%

88% O O

O

O 98%

OH

OH

OH

O O

Ley Synthesis 1994, 7, 639 and ref. therein.

96%

OH

O 90%

O

OBn

70%

OH

H

H

O

O O

O O

O O

Panek JACS 2002, 124, 12806.

3

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling O

O

Ru catalyst R2



R1

R2

cocatalyst

R1

O R1

O

R1 Ru

R2

O H

Ru

O

R1

R2

Ru •

R1

H R1 H

R2



R2

O Ru R2

JACS 1999, 121, 4068.

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling O

O

O

O

10% CpRu(COD)Cl

AcO •

15% CeCl3 DMF, 60 oC

AcO O

PhH, 80 oC

(81%)

O O

O

H

O

HCl, MeOH

H AcO

H

72% yield 2 steps O

H

CO2H

O H

O

Role of CeCl3 cocatalyst unknown; may activate enone Variety of allenes coupled to methyl or phenyl vinyl ketone in good yields (53-81%)

JACS 1999, 121, 4068.

4

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling O HNu

n

R

O

Nu n

Ru catalyst •

cocatalyst

R

O

Nu n

HNu

O n

R

R

Ru • H+

O

O HNu

Ru

R

Nu n

Ru n

R

Unclear whether nucleophilic addition occurring onto !- or "bound allylruthenium intermediate

O Ru

HNu

H+

n

R

Alcohols: JACS 1999, 121, 10842. Amines: JACS 2000, 122, 12007.

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling Yield

Product

allene

O X



X=O 82% X = NBn 73%

X O



X

X=O 74% X = NBn 67%

X O •

X

X

Ph

X=O 70% X = NBn 62%

H O

• X

H

X

X=O 68% X = NBn 90%

H O • X

H

X

X=O 67% X = NBn 71%

Ru catalyst: 10% CpRu(CH3CN)3PF6 Cocatalyst: -Alcohols require 15% CeCl3 -Amines use 15% TiCl4 or MeAlCl2

5

Ruthenacyclopentene: Alkyne and Alkene Coupling--An Alder-Ene Reaction Ru catalyst

R2

R2

R1

cocatalyst

R1

R1

or

R2

R2

R2

R1 or R1

Ru

R2

R1

R1

Ru

Ru

H R2

R2

R1

R1

Ru

H

Ru R2

R1

R2

H R2 H

Ru

R1

The reaction usually favors formation of the more substitued carbon of the alkyne. H

R2 H

Ru

R1 JACS 1993, 115, 4361; JACS 1995, 117, 615.

Ruthenacyclopentene: Alkyne and Alkene Coupling--An Alder-Ene Reaction OH

OH

OH OH CO2CH3

CO2t-Bu

OH

OH

10% CpRu(COD)Cl

CO2CH3

CO2CH3

20% NH4PF6 MeOH, reflux (65%) 12.5:1, A:B

CO2t-Bu

CO2t-Bu

A

B

OH

n-Bu 10% CpRu(COD)Cl

n-Bu n-Bu

(65%)

OH

1:9.9 A:B A

CH3O2C 4

10% CpRu(COD)Cl

CH3O2C

B

4

acetone, rt (88%) TMS

OH

Isolated as a single regioisomer TMS

JACS 1993, 115, 4361; JACS 1995, 117, 615.

6

Application in Total Synthesis: The Proposed Structure of Amphidinolide A O 1. 10% Cp*Ru(CH3CN)3PF6 O

O O

O O

OFmoc 2. Piperidine

O

OH

O O

O

Cycloisomerization: 76% yield brsm as 3.5:1 mixture of branched and unbranched isomers

O

O HO

O

O

1. 10% CpRu(CH3CN)3PF6

O

O

+

2. H

O

O

HO HO

O

OH

O

Proposed structure of amphidinolide A; 58% yield for cycloisomerization Trost JACS 2002, 124, 12420.

Ruthenacyclopentene: Intramolecular [5+2] Cycloaddition R R

Ru catalyst

R

R

Ru

R

RuCp R

RuCp

R RuCp Ru catalyst: 10 mol % CpRu(CH3CN)3PF6 Solvent: DMF or acetone Mild conditions: conducted at rt Bi- and Tricyclic cycloheptadienes formed in good yields (73-92%)

Trost JACS 2000, 122, 2379.

7

Ruthenacyclopentene: Intramolecular [5+2] Cycloaddition Examples "Complete diastereoselectivity is always observed" (Diastereomers are observed for substitution at other allylic position) MeO2C

10% CpRu(MeCN)3PF6

MeO2C MeO2C

acetone, rt (85%)

H

H

MeO2C H TMS

TMS

Reactions are slower and require higher temperatures and catalyst loadings for formation of [6,7] ring systems

R

15-20% CpRu(MeCN)3PF6

TsN

TsN

acetone, 50 °C

R

H R = H; 87% yield R = CH2OTBS; 79%

Regioselectivity controlled by choice of substituents O H

10% Ru

MeO2C MeO2C

H

R

MeO2C

acetone, rt (80%)

MeO2C

10% Ru

MeO2C H

acetone, rt (85%)

H

OTIPS

MeO2C

H R

MeO2C

10% Ru

MeO2C H

MeO2C

H

acetone, rt

R

MeO2C

R

MeO2C

MeO2C

H

H

3:1 mixture of regioisomers

R = CH2OTIPS

Trost JACS 2000, 122, 2379.

Intramolecular [5+2]: Rationale of Cyclopropane Ring Opening O H

E

E

E

R

R

E

H

MeO2C

H

H

E H

R E

E

R

E H

E

H

E

H

E

Ru

! = 0°

H

R = CH2OTIPS

E

H

R

R Rtrans

Ru H

R

E H Ru

Rcis

R = CH2OTIPS

E

Rtrans

H

H

Rcis

H

H Rcis

E

Rtrans

H

Rcis Rtrans

R E

Ru

H H

Rcis Rtrans

E H

H

R = CH2TIPS O

! = 0°

H Ru

Rtrans Rcis

H E E H

Trost JACS 2000, 122, 2379.

8

Ruthenacyclopentadiene: [2+2+2] cycloaddition R

R Ru catalyst

R1

R1

R Ru R1

Ru

Ru R

R1

Steric interaction between R-group and metal center forces the larger group to be situated in the R1-position.

R Ru

R

R1

R1

Itoh JOC 1998, 63, 9610; Chem. Commun. 2000, 549.

Ruthenacyclopentadiene: [2+2+2] cycloaddition

MeO2C MeO2C

1% Cp*Ru(COD)Cl O

, 40 °C

MeO2C O

Itoh JOC 1998, 63, 9610.

MeO2C

(87%)

MeO2C MeO2C MeO2C

1% Cp*Ru(COD)Cl

MeO2C A

DCE, rt

Itoh Chem. Commun. 2000, 549.

(85%) 93:7, A:B

MeO2C MeO2C B

9

Heteroatom Additions to Alkynes: Addition of Water O R

R'

R

R

Ru catalyst cocatalyst H2O

R' O

O

R' O

R

O H+

Ru

Ru

O Ru R'

O

R H2O

R

H+

Ru R'

O Ru

O

R

R

O Ru O

OH

R R'

Trost JACS 1997, 119, 836.

Heteroatom Additions to Alkynes: Addition of Water O NC

Ph

Role of indium unclear; Cl- scavenger?

NC

NH4PF6, In(OTf)3 DMF/H2O 1:1, 100 °C (93%)

Ph

Trost JACS 1997, 119, 836.

O

OH

O

O

5 mol % CpRu(COD)Cl

O

5 mol % CpRu(COD)Cl O

HO

NH4PF6, In(OTf)3 DMF/H2O 1:1, 100 °C (80%)

HO Trost JACS 1997, 119, 11319.

Intramolecular Variant

MeO2C

O 10 mol % CpRu(MeCN)3PF6

MeO2C

O Ph

CSA, H2O acetone, rt (75%, 2:1 dr)

MeO2C

MeO2C MeO2C

K2CO3

O Ph

MeOH (69%)

H

O

MeO2C H

Ph

single diastereomer Trost JACS 2000, 122, 5877.

An alternative mechanism at work?

10

Heteroatom Additions to Alkynes: Addition of Water (Alternative Mechanism)

1,5-Diketone product may result from hydrolysis of pyran product.

O R O

H2O

R R'

O

R

Ru O R'

O

R' Ru

R O R' R

R

R

OH

Ru

Ru

Ru

O R'

R'

O

O

R'

Trost JACS 2000, 122, 5877.

Heteroatom Additions to Alkynes: Addition of Water (Alternative Mechanism) O 10 mol % CpRu(MeCN)3PF6 MeO2C

CSA, H2O acetone, rt (93%)

O

MeO2C

Ph 5 mol % CpRu(MeCN)3PF6 acetone, rt (60%) 10 mol % CpRu(MeCN)3PF6, 10 mol %CSA, H2O

MeO2C O

MeO2C

Ph

MeO2C O

MeO2C

Ph 5 mol % CpRu(MeCN)3PF6, acetone

O O TsN

O

TsN

70% yield, 2:1 dr

TsN

O 89% yield Ph

Ph

Ph

CHO O

CHO O

O

86%, 10:1

85%, 12:1

O 51%

O

O Ph Ph

Trost JACS 2000, 122, 5877.

11

Aromatic C-H Bond Activation X

X

Ru catalyst

R R'

X

[Ru]

X

R R'

X

X

X Ru H

or

Ru

Ru R'

R

H R' R X

R R

Ru Requires aid of chelation from orthocoordinating functional group (usually ketone)

R'

H R'

Excellent control of regioselectivity for activation of aromtic C-H at the less hindered ortho-position

Reviewed in Murai Pure Appl. Chem. 1997, 589.

Aromatic C-H Bond Activation R

R

O

O

1 mol % RuH2(CO)(PPh3)3 Si(OEt)3 Si(OEt)3

R

N

t-Bu

R

N

R=H (80%) R = CF3 (92%) R = OMe (11%) R = CH3 (100%)

t-Bu

2 mol % Ru3(CO)12 Si(OEt)3 Si(OEt)3

R = H (78%) R = CF3 (75%) R = F (79%) R = CH3 (81%)

Si(OEt)3 O

O Si(OEt)3

1 mol % RuH2(CO)(PPh3)3 toluene, 125 °C (85%)

N

N SiMe3 O

O SiMe3

2 mol % RuH2(CO)(PPh3)3 toluene, 125 °C (85%)

Reviewed in Murai Pure Appl. Chem. 1997, 589.

12

Cyclopropanation Ph

N2

cat. Ru

Ph

CO2Et

A

Ph

CO2Et

B

N Cl Ru N

N

Ru

R

Ln

E

Ln or

Ru

73

91(89):8(78)

5

R=H 93

89(90):11(66)

5

45

7(15):93(97)

0.15

100

95(91):5(27)

O N N N

R

Ln

O

N2

Ln Ru

E

A(%ee):B(%ee)

5

Cl

R

E

Yield R = i-Pr

CO2Et O

R

cat. load (mol %)

catalyst

E

E

Ru O Cl O Ph Ph

Ru N2 R

R Ln

E Ru

N2 R

R

N CO N

R=

Ru

R

R

N

N

R Trost Chem. Rev. 2001, 2067 and ref. therein.

Preparation of Ruthenium Catalysts

4. Encylopedia Reagents Org. Syn. 1996, Vol. 6, 4415. 8. Synthesis 1994, 639; Aldrichimica Acta 1990, 23, 13. 9. J. Organomet. Chem. 1981, 214, 391. 10. J.C.S., Dalton Trans. 1975, 1710. 11. J. Organomet. Chem. 1980, 195, 77. 12. Inorg. Synth. 1970, 12, 237. 13. JACS 1968, 90, 1089. 14. ACIEE 1995, 4, 2039; JACS 1996, 118, 100.

15. Inorg. Synth. 1974, 15, 45. 16. JCS Dalton Trans. 1980, 1961. 17. JCS Chem. Comm. 1982, 1388. 18. JCS Dalton Trans. 1974, 233. 19. Chem. Lett. 1984, 1161. 20. Organometallics 1988, 7, 2243. 21. J. Organomet. Chem. 1986, 314, C46.

13

Conclusion

Wide scope of reactions catalyzed or mediated by Ruthenium complexes Relatively new area in C-C bond formation; 50% literature cited in Trost's review was published in 1997 or later "Prospects are clearly bright for more reactions to be discovered." --Trost

14