Lanthanides in Organic Synthesis

Lanthanides in Organic Synthesis Heathcock / MacMillan Seminar Feb. 22, 2000 Tristan Lambert I. II. III. IV. V. VI. Properties of the lanthanides Lan...
28 downloads 2 Views 706KB Size
Lanthanides in Organic Synthesis Heathcock / MacMillan Seminar Feb. 22, 2000 Tristan Lambert I. II. III. IV. V. VI.

Properties of the lanthanides Lanthanide metals Divalent lanthanides Trivalent lanthanides Tetravalent lanthanides Enantioselective processes He

H Li

Be

B

C

N

O

F

Ne

Na

Mg

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Rf

Db

Sg

Bh

Hs

Mt

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Ac

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

Reviews: Molander Chem. Rev. 1992, 92, 29 Imamoto, Lanthanides in Organic Synthesis, 1994.

Oxidation States of the Lanthanides Most stable oxidation state of the lanthanides is +3 For dipositive lanthanides

Sm2+

(f6,

nearly

half-filled),

Eu2+

(f7,

half-filled), and

Yb2+ (f14, filled) are known with relative stability in H2O being Eu2+ >> Yb2+ >> Sm2+ Ce4+ (f0) is the only tetrapositive lanthanide stable in water Ionization Energies for Lanthanides 6000

5000

4+

4000

La Ce

5d16s2

Pr

4f36s2

4f15d16s2

Nd

4f46s2

Pm

4f56s2

Sm

4f66s2

Eu

4f76s2

Gd Tb Dy

4f96s2

4f75d16s2

Ho Er

4f106s2 4f116s2 4f126s2

Tm

4f136s2

Yb

4f146s2

Lu

4f145d16s2

Ionization energies reflect relative energies of the 4f, 5d, 6s

KJ/mol

orbitals

3000

6s electrons are removed first, hence first two ionization

2000

3+

energies for all lanthanides are essentially the same

2+

1000

1+ 0 La

Ce

Pr

Nd Pm Sm Eu

Gd

Tb Dy

Ho

Er

Th

Yb

Third ionization usually results from removal of an electron from the 5d orbital

Lu

Fourth ionization energy reflects successive electron occupation of 4f orbitals

Lanthanide Metals: Sm0 Cyclopropanation of Allylic Alcohols

Sm(Hg), ICH2Cl H

THF, -78 oC to rt 98%

OH

Me

OH

Using samarium, only olefin with allylic hydroxyl group is cyclopropanated

Me3C

CH2I2

Me

Me3C

Me

Sm

OH

R1

OH

99%

d.r. >200:1 CH2I2

Me Me3C

R

O

Me

Sm

OH

Me3C

99%

OH

I

SmI

H

OH

Molander J. Org. Chem. 1989, 54, 3525.

d.r. >200:1

OH

R2 H CH2

Exo: Endo

H

Sm / CH3CHI2

Me

5:1

Et2Zn / CH3CHI2

H

1.6:1

Samarium offers enhanced diastereoselectivity over conventional reagents EvansChem. Rev. 1993, 93, 1307.

Lanthanide Metals: Reductions Dissolving Metal Reductions Using Yb OMe

OMe OMe

1. Yb, NH3-THF-tBuOH

O

2. aq. NH4OH 80%

C3H7

C3H7

Yb, NH3-THF-tBuOH

C3H7

85%

C3H7

Similar to Birch reduction with alkali metal, however avoids strongly basic hydroxide upon workup White J. Org. Chem. 1978, 43, 4555.

Hydrogenation Using Lanthanide Alloys CHO

THF-MeOH

S

OH

LaNi5H6

Reduces alkynes, alkenes, aldehydes, ketones S

nitriles, imines, and nitro compounds

93% Not poisoned by amino or halogen containing CHO

LaNi5H6

OH

compounds

THF-MeOH 95%

Imamoto J. Org. Chem. 1987, 52, 5695.

Divalent Lanthanides: Samarium Iodide Reduction of !-Substituted Ketones and Esters H

H MeO

SmI2

OCH2OMe

MeO

OCH2OMe

THF-MeOH, -78

O

oC

Tetrahedron Lett. 1991,32, 6583

O

92%

H Me OH Me

O

Me

THF-tBuOH, 25 oC

H

87%

H

Me

H

SmI2

Me

O

H

Me

White J. Am. Chem. Soc. 1987,109, 4424

!-Halo, sulfoxides, sulfones, and !-oxygenated ketones are reduced Primary iodides, esters, and ketones are unaffected J. Org. Chem. 1986,51, 1135

H C5H11

O

SmI2

COCH3

THF-MeOH, -90 oC

H

H

C5H11

CH2COCH3

HO

94%

J. Org. Chem. 1986,51, 2596

Reduction of optically active epoxy ketones gives "-hydroxy ketones without loss of optical purity

Divalent Lanthanides: Samarium Iodide Intramolecular Barbier Reactions O HO

2 eq. SmI2, cat. Fe(DMB)3

I

O H

H

THF / -78 oC to rt 80%

I

100:0 d.s. O HO

2 eq. SmI2, cat. Fe(DMB)3

I

I O

H

THF / -78 oC to rt 80%

H

1:1 d.s. Method overcomes difficulties associated with using Mg, Li, Na Synthetically useful for substrates which allow for control of diastereoselectivity O

2 eq. SmI2, cat. Fe(DMB)3 Me

THF / -78 I

oC

to rt

OH Me

75% Molander J. Org. Chem. 1991, 56, 4112.

Divalent Lanthanides: Samarium Iodide Intramolecular Reformatsky Reactions O R6 Br

O

R5

R R4 3

-78 oC / THF

R1

R4

R2

2 SmI2

O

R6

O O R5

R3 R2

R2

R1

R6

R3

Sm(III)

O

R1 OH

R4 R5

O

O

R1

R2

R3

R4

R5

R6

yield

d.r.

Ph

H

Me

H

H

H

>200:1

tBu

H

Me

H

H

H

76 85

Et

H

Me

H

H

H

85

3:1

>200:1

Large substituent in the R1 position usually results in high diastereoselectivity O Br

O O

2 SmI2

Me

H

O

Me

n

yield

d.r.

OH

0

73

>200:1 d.r.

1

68

29:1

-78 oC / THF H

O

n

n

Reactions to form bicyclic systems proceed with very high diastereoselectivities although yields are sometimes moderate to low Molander J. Am. Chem. Soc. 1991, 113, 8036.

Divalent Lanthanides: Samarium Iodide Radical Carbonyl-Alkene Couplings Mechanism O R1

O

SmI2 R2

R1

SmI2 EWG R2

R1

EWG = CO2R, CN

EWG

R2

SmI2, ROH

OSmI2

R2

EWG OSmI2

ROSmI2

Fukuzawa J. Chem. Soc., Chem. Comm. 1986, 624.

CO2Me

Me

R1

O

O

CHO

SmI2, iPrOH, THF Me

additive

time

yield

d.r.

none

4h

71%

>20:1

HMPA

1 min

96%

1:1

additive

time

yield

d.r.

none

4h

57%

1.3:1

HMPA

1 min

89%

4.9:1

Me Me

CO2Me

O

O

O

SmI2, iPrOH, THF Me

Me

Inanaga Tetrahedron Lett. 1986, 27, 5763.

HMPA dramatically improves reaction rate and yield. Diastereoselectivity is improved when !-disubstituted lactones are formed

Trivalent Lanthanides: Luche Reduction Selective 1,2 Reduction of !-Enones Mechanism

NaBH4

CeCl3 7H2O

BH-4-n(OR)n

Sodium borohydride is rapidly converted to an alkoxide species

ROH Carbonyl is activated through hydrogen bonding by a MeO-

B- H

C O

H OR

H

C

lanthanide-bound molecule solvent

OH

Hard borohydride preferentially attacks the hard carbonyl carbon

Ln3+

Luche J. Am. Chem. Soc. 1981, 103, 5454.

O

NaBH4

OH

OH

97%

3%

0%

100%

MeOH 5 min. with CeCl3 without

Luche J. Am. Chem. Soc. 1978, 100, 2226.

Me

Me H

O

OH

NaBH4-CeCl3

H

MeOH rt 97%

Me Me

H

Me

Me Me

Me

Paquette J. Am. Chem. Soc. 1987, 109, 3025.

Trivalent Lanthanides: Reduction of Ketones Selective Reduction of Ketones in the Presence of Aldehydes

O

CHO

1.5 eq. NaBH4,CeCl3 6H2O

OH

CHO

1.5:1 EtOH:H2O 78% Eliminates need for three step protection-reduction-deprotection scheme

Rationale LnCl3

O R

H

O R

R

LnCl3

HO

OH

R

H

HO

OH

R

R

In the presence of lanthanide (III) salts aldehydes yield hydrates

Ketones remain unaffected

Hemiketal or Ketal formation is ruled out because similar results (within 5%) were obtained with MeOH and iPrOH

Luche J. Am. Chem. Soc. 1979, 101, 5848.

H

99%

PMBO

O

H Et

OH

Me

Evans J. Org. Chem., 1990, 55, 6260

97% de

Lanthanides: Reduction of Ketones Evans-Tischenko Reduction O

R2CHO 15% SmI2

Me2HC R1

H H

R2

R2

O

OH

Me

O Sm O

R1 Me

anti:syn >99:1

Pr, Ph

c induction by !-hydroxy stereocenter dominates "-methyl stereocenter

OTBS

OH Me

Me

MeCHO 40% SmI2 1.5 h

O

OTBS

Me

Me

89% >99:1

Me

Me

Me

Me

Evans J. Am. Chem. Soc., 1990, 112, 6447.

ction

OBn

Me

CHO O

OBn

cat. SmI2(OtBu) THF, rt

Me

O

Me O

TBDMSO

89%

Me Uenishi Tetrahedron Lett., 1991, 32, 5097.

Trivalent Lanthanides: Hetero-Diels-Alder O

OTMS O

Eu(fod)3, 1.7 mol %

+

OMe

H

O

CH2Cl2, rt, 48 h

Ph

MeO

MeO

84%

Exclusive carbonyl addition

CastellinoTetrahedron Lett., 1984, 25, 4059.

OMe

H O

Me

+

Me

Ph

Me

Eu(fod)3 (0.5 mol %) H

O

TMSO

66%

Me

Me

H

Me

Me

H

Bulky catalyst prefers to occupy exo position

Midland J. Am. Chem. Soc., 1984, 106, 4294.

Inverse Demand

F

O

+

EtO

O

Yb(fod)3 (5 mol %) neat, rt, 2h 60-80%

R

Eu3+

O

Me Me

One isomer

Reactions proceed with high endo selectivity

H

OMe

TMSO

H

CDCl3, rt

TMSO

OMe

H

R = Me, Ph

OEt

F

H

F

O

F

O Me

F

F

F

Me Me

fod = (6,6,7,7,8,8,8-heptafluoro-2,2dimethyl-3,5-octanedionato-

R

endo product

Trivalent Lanthanides: Reduction of Ketones Evans-Tischenko Reduction O OH

O

Me

R2CHO

R1

15% SmI2

Me

Me2HC R1

H H O Sm O

R2

R2

O

OH

Me

R1 Me

anti:syn >99:1

R1 = n-hexyl, iPr; R2 = Me, iPr, Ph

Asymmetric induction by !-hydroxy stereocenter dominates "-methyl stereocenter

OH

O

OTBS

Me

OH Me

Me

Me

Me

Me

MeCHO 40% SmI2 1.5 h

O

OTBS

Me

Me

89% >99:1

Me

Me

Me

Me

Evans J. Am. Chem. Soc., 1990, 112, 6447.

Intramolecular Tischenko Reaction OBn Me CHO

Me

O

TBDMSO Me

OBn

cat. SmI2(OtBu) THF, rt

Me

O

Me O

TBDMSO

89%

Me Uenishi Tetrahedron Lett., 1991, 32, 5097.

Tetravalent Lanthanides: Oxidations O 3N

CAN =

O3N

Selective Secondary Alcohol Oxidation OH

NH4 NO3

Ce

NO3 NH4

Ceric Ammonium Nitrate

O

CAN (10 mol %), NaBrO3 MeCN-H2O, 80 oC, 0.5 h OH

OH

89%

Oshima Bull. Chem. Soc. Jpn., 1986, 59, 105

Oxidation of Phenol Ethers Me

Me

Me

MeO

Me

MeO OR

OMe Me

O OMe

Me

MeO

Me

MeCN-H2O

NH

OR

OMe

CAN 71%

O

O

Me

MeO

R = TBS OMe

O Evans J. Org. Chem, 1992, 57, 1067

Oxidation of Nitro Compounds to Ketones

NO2 R1

TMSO

TMSCl, Li2S 25 oC, 6-8 h

R2

N+

O-

R1

5 min.

R2

R1

O

CAN, 25 oC

R2

Olah Sythesis, 1980, 44

Enantioselective Reactions

Me

Me

CF2CF2CF3 O

Europium(III) Hfc Promoted Hetero-Diels-Alder Me

Eu

*

O

* Eu(hfc)3 OtBu

OtBu

Me

O

Eu(hfc)3, (1 mol %)

+ H

TMSO

Ph

neat, -10 oC

4 steps

Me

TMSO

R

OMe OH

O Ph

O

Ph R

R

Danishefsky, Tetrahedron Lett. 1983, 24, 3451.

R=H

58% ee

Danishefsky, J. Am. Chem. Soc. 1983, 105, 3716.

R = Me 55% ee

Larger C1 alkoxy substituents gave increased ee

OMe

OMe O

Eu(hfc)3 (5 mol %)

+ H

CO2tBu

rt

yield

O CO2tBu

ee

trans 79

cis 39 %

19

64%

Jankowski, J. Chem. Soc. , Chem. Comm. 1987, 676.

Enantioselective Reactions Yb(III) BINOL Hetero-Diels-Alder O

O Me

N

Yb-BINOL-amine catalyst 20 mol %

+

O

Me H

CH2Cl2, -78 to 0 oC

Yb(OTf)3

+

Me

N

1 mmol

+

Me

Me

(R)-BINOL

MS 4Å

1.2 mmol

CH2Cl2 0 oC, 30 min

2.4 mmol

Chiral Catalyst

amine not interacting with metal

Me N O H O O O Yb Me N O TfO H Me OTf Me

Xn

Reaction proceeds only very slowly without BINOL

Me

Me

90% ee

O

94%

endo:exo 86:14

Larger amines typically give higher ee Spectroscopic evidence for amine-BINOL H-bonding

R Kobayashi Tetrahedron Lett. 1993, 34, 4535. Kobayashi J. Org. Chem. 1994, 59, 3758.

Enantioselective Reactions Yb(III) BINOL Hetero-Diels-Alder: Reversal of Enantioselectivity

R

20 mol % catalyst 20 mol % additive

O

O N

O

+

MS 4Å CH2Cl2, 0 oC

Me

additive

2S, 3R

O

O N

R

2R, 3S O

O

Me

O

H

+

Xn

O O

Me Ph

endo:exo 2S, 3R

2R, 3S

R

% yield

endo:exo

2S, 3R

2R, 3S

% yield

Me

77

89:11

98

2

83

93:7

9

91

nPr

81

80:20

93

8

81

91:9

10

90

Kobayashi J. Am. Chem. Soc, 1994, 116, 4083

Kobayashi Tetrahedron Lett., 1994, 35, 6325

Me Me N O H O O Yb O Me N O TfO H Me OTf Me

R H

Me

R

Site A O O

O N Me

Site B

O Me R

Me H O

Me Me N O H O Yb O Me O

N Me

N O

Me Me

Xn

Enantioselective Reactions Heterobimetallic Catalysis Review: Shibasaki ACIE, 1997, 36, 1236.

M O

Nitroaldol +

R1CHO 1 equiv

OH

3-10 mol % cat

R2NO2

THF, -40 oC

Shibasaki J. Org. Chem. 1995, 60, 7388.

Explanation of syn selectivity

syn

H

R1

H

O

anti

H

Catalyst acts as Lewis acid and Lewis Base

H

O

H

O

NO2 OH

H

O N+

O

R2

H

R1

Ln

R1

Li

Li O

O

H

O

R2

O N+

Ln

R1

R2

M = Alkali Metal

R1

Li

N+

H

Ln = Lanthanide

66-97 % ee

R2

O N+

H

78-97 % yield 74:27 to 93:7 syn:anti

Shibasaki J. Org. Chem. 1995, 60, 7388.

Ln

O

M

NO2

Shibasaki Tetrahedron Lett. 1993, 34, 2657.

R2

O O R2

R1

10 equiv

O M

O Ln O

NO2

Li

R1

O Ln

R2 OH

Enantioselective Reactions Heterobimetallic Catalysis O

Michael Reaction

O

=

O O

Na O

MeO

O

Na

O La O

O

O

O O

O

CO2Me

Na

O

CO2Me

MeO

Li and K catalysts gave poor ee Na O

OH

O

O La O

Na

O O

O

M O

OMe

O La O

Metal free La-BINOL complex provides almost no enantioselectivity

O Na

OMe O

O O

O

Na

OH

M

OMe

Shibasaki J. Am. Chem. Soc., 1995, 117, 6195

O OMe

O

O

O

O Ph

CO2Bn Me CO2Bn

Yield % ee

CO2Me

CO2Bn Me

CO2Bn

CO2Me

CO2Me

Ph

CO2Me

89

91

98

93

72

92

83

77

Enantioselective Reactions Miscellaneous Reactions Olefin Hydrogenation

Me Me

H2 (1 atm), catalyst

Me Ph

heptane, -78 oC

Me

Me

catalyst = (Et2O)2Sm

Sm Me

Me

R* = (-)-menthyl

96% ee

Me

Si

Cl

Ph

100%

Me

Cl

R*

Marks, T. J. J. Am. Chem. Soc., 1992, 114, 2761.

Nt (turnover number)

MLn ((C5Me5)2LuH)2 Rh(PPh3)3Cl Ru(H)(Cl)(PPh3)3 Ru(COD)(PPh3)2PF6

120,000 h-1 650

Lanthanide hydrogenation catalysts are highly reactive

h-1

H2

3,000 h-1 4,000

MLn

h-1

Marks, T. J. J. Am. Chem. Soc., 1985, 107, 8111.

H

Ketone Reduction N

O

OH

SmI2 O

quinidine

H

MeO

THF-HMPA, rt, 30 min O

200 mol% quinidine Takeuchi Chem. Lett. 1988, 403.

HO

=

56% ee

Summary Lanthanide metals are useful for reduction of functional groups and for carbon-carbon bond forming reactions

Europium, Samarium, and Ytterbium can form relatively stable divalent states. Europium is stable enough to exist in water. SmI2 is the most widely employed Ln(II) and is used for one electron reductive reactions Trivalent lanthanides are hard Lewis acids with high oxophilicity and as such are employed in several highly selective reactions (Luche reduction, hetero-Diels-Alder)

f-orbital electrons are imperfect shielders and so Ln(III) have their f-orbitals greatly contracted towards the nucleus. This effectively eliminates covalent bonding interactions with ligands and therefore lanthanide-ligand geometries are largely determined by steric considerations. Asymmetric lanthanide promoted processes are therefore less straightforward than those using main group or d-block elements

Ce(IV) is the only tetrapositive lanthanide which is stable in water and to date is the only synthetically useful Ln(IV) with applications in the oxidation of functional groups such as alcohols and phenol ethers.

Note: Scandium (3d1) and Yttrium (4d1) have similar properties to those of the lanthanides and are often treated as lanthanides