RF & Optoelectronic applications of semiconductor Thales Dr Jean CHAZELAS Scientific Director Thales Defence Mission Systems Jean

RF & Optoelectronic applications of semiconductor compounds @ Thales Dr Jean CHAZELAS Scientific Director Thales Defence Mission Systems Jean. Chazela...
10 downloads 0 Views 1MB Size
RF & Optoelectronic applications of semiconductor compounds @ Thales Dr Jean CHAZELAS Scientific Director Thales Defence Mission Systems Jean. [email protected]

1 J. CHAZELAS SEMICON EUROPA OCT 2010

Outline Introduction New semiconductors for high power devices RF-MEMS Optoelectronic devices Conclusions

2 J. CHAZELAS SEMICON EUROPA OCT 2010

Ground based, spatial, airborne and Naval applications ™

Wideband signal generation and analysis

™

Multibeam multifrequency antenna

™

Wide band signal remoting

™

Digital signal transmission

™

Signal processing

™

Remote decoy

™

Hydrophone sensor arrays

™

High frequency wireless comms

™

Free space optical comms. 3

J. CHAZELAS SEMICON EUROPA OCT 2010

T/R Modules Architecture

Brick

Tile

4 J. CHAZELAS SEMICON EUROPA OCT 2010

T/R Modules Architecture Critical functions

5 J. CHAZELAS SEMICON EUROPA OCT 2010

New semiconductors for high power devices 2009 THALES Airborne Systems Involved in: • X-band HPA MMIC • Thermal management • X-band Front-End T/R module • Systems aspects

INTEGRATION -thermal management -assembly -packaging -FE modules MMIC -system impact -design -fabrication (2 runs) -demonstrators (HPA, LNA, switches)

DEVICES -device processing -high voltage passives -device models -design guide -reliability & robustness evaluation EPITAXY -parasitic effects -GaN HEMT epi wafer growth GaN road map -advanced materials -commercial sources

2005

SUBSTRATES -material selection : SiC, Si, Sapphire -SiC material quality -diameter expansion 2’’ to 3’’ J. CHAZELAS SEMICON EUROPA OCT 2010

under Korrigan project 6

Packaging and Modules trends X band TRMs

C band space TRM

wideband TRMs X band space tile TRM

wideband tile TRMs

Brick

28 and 38 GHz telecom modules

2D

Tile

Thick film multilayers ceramic

J. CHAZELAS SEMICON EUROPA OCT 2010

HTCC / LTCC

Interconnections

PCBs + SMT assembly Silicon substrate

HDI

years

7

MEMS for Radar Front end T/R modules

8 J. CHAZELAS SEMICON EUROPA OCT 2010

MEMS for Radar Front end T/R modules ƒ Multi-octave BW ƒ Power consumption/size of function ƒ Perfs vs PIN diodes

MEMS SWITCHES ƒ ƒ

• High power… • To replace circulator

Medium power To replace circulator

PHASE SHIFTERS and DELAYS using MEMS C,L. ƒ Higher Q for L vs PIN diode ƒ Lower expected RL ƒ Moderate non linear distortions

• ƒ ƒ ƒ

ƒ ƒ ƒ

MEMS TUNABLE C, L Tunable filter bank ƒ Miniaturize the filters Agility over an increased BW

ƒ Between antenna elements ƒ Freq. and spatial agility

MEMS POWER LIMITER To protect the receptor Developed and patented by THALES / ESIEE Increase Incident powers vs PIN diodes 9

J. CHAZELAS SEMICON EUROPA OCT 2010

Current approaches MEMS based T/R modules Low Power switching True Time Delay For Wideband Wide angle beam steering TX RX

High Power switching Tx HPA

True Time Delay

Frequency Agile Narrow Band Filter

Filter for reducing Mutual Interference Receiver Dynamic Range and Increasing ECCM

LNA Rx

New T/R modules based on MEMS technology and devices This includes the replacement of the antenna matching circuit, the circulators and the limiters by MEMS based components such as: ™MEMS based circulators, ™MEMS based antenna matching circuit, ™MEMS based tunable filters, ™MEMS based RF Power limiters 10 J. CHAZELAS SEMICON EUROPA OCT 2010

Thales Research & Technology shunt capacitive switch Electrostatic actuation

Membrane

Dielectric

Coplanar lines

Equivalent electrical model C1 : Dielectric capacitance C2 : Air capacitance R : Membrane intrinsic resistance L : Membrane intrinsic inductance ISOLATION

Æ

CDOWN

INSERTION LOSSES

Æ

CUP 11

J. CHAZELAS SEMICON EUROPA OCT 2010

-25

• Evolution of TRT switch performances in time

Isolation (dB)

-26 -27 -28 -29 -30 -31 -32 1,E+00

1,E+02

1,E+04

1,E+06

1,E+08

1,E+10

Insertion Loss (dB)

Cycles

up to 1010 cycles

-0,14

Isolation < - 26dB

-0,16

IL > - 0,24 dB

-0,18 -0,2 -0,22 -0,24 -0,26 1,E+00

1,E+02

1,E+04

1,E+06

Cycles J. CHAZELAS SEMICON EUROPA OCT 2010

1,E+08

1,E+10

•Test conditions •f =10GHz •PIN = 30 dBm •Cold switching

12

REALIZATION TRT MEMS based SPNTs switches such as the SP8T

13 J. CHAZELAS SEMICON EUROPA OCT 2010

PHASE SHIFTER FP6 Aeronautics and Space STREP RETINA

Agile beamsteering in Ku- or Ka-band

data link seeker antennas battle field radar etc..

• Application • Passive antenna reflect array

Schematic of a typical Reflect array antenna

Actual low cost solution based on PIN diodes phase shifters

solution based on MEMS phase shifter + lower loss / lower consumption/ reduced parasitics J. CHAZELAS SEMICON EUROPA OCT 2010

Packaged switches (EADS Deutschland GmbH)

Thales-EADSESIEE-EPFL-JSI 2 bit Phase shifter cell designed using 4 MEMS switches

14

FILTERING • 2 types of filters usually required ¾ Bandpass filters to process signals ¾ Rejecting filters to suppress unwanted signals

Future multifonctionnal active antenna needs extended tuning range for increasing radar BW (up to 20 GHz) and frequency agility

15 J. CHAZELAS SEMICON EUROPA OCT 2010

BANDPASS FILTER DMTL tunable bandpass filter in the X-band Independent Center frequency and bandwidth tuning Use of analogue-series and digital-shunt MEMS capacitors

Tunability ¾ f : 10 to 14GHz

Presented by

EPFL - Thales

¾ 4 pre-selected bands and with a BW tunability of 70% (0,5 -1GHz) 16 J. CHAZELAS SEMICON EUROPA OCT 2010

REJECTING FILTER Solutions for frequency agile rejecting filters under study in Thales-EPFL

¾

Specific distributed MEMS Structures

¾

Preliminary simulation results based on UMC 0,18µm CMOS process give rejection factors over 60 dB

17 J. CHAZELAS SEMICON EUROPA OCT 2010

True Time Delay lines a1, φ1 φ φ φ φ

MEMS tunable TTD lines an, φn

THALES active antenna applications

3 approaches : ¾ MEMS Switchable delay lines ¾ Tunable series MEMS L-C cells ¾ Distributed MEMS Transmissions Lines (DMTL) 18 J. CHAZELAS SEMICON EUROPA OCT 2010

Microwave Photonics Technologies

19 J. CHAZELAS SEMICON EUROPA OCT 2010

Photonic processing of RF signals Analogue

Optoelectronics can perform :

™ Accurate delay control ™ Amplitude and Phase control of microwave signals ™ RF-Memory of wideband RF signals (optical waveguides)

Digital

Local oscillator and clock signal generation

™ ps synchronization ™ High speed sampling of wideband RF signals for A/D conversion ™ Parallel or multi-channel processing Photonic technologies enable the implementation of complex signal processing functions at the analogue / digital interface. 20

J. CHAZELAS SEMICON EUROPA OCT 2010

Main stakes : next generation of systems MILITARY APPLICATIONS (Ground, naval, airborne,space)

Next generations of active aperture antennas should ECM & SATELLITE LINKS have: ™ significant cost and weight reductions ™ better integration within carrier equipment ™ better maintenance and redundancy ™ fault tolerance improvement RADARS & ECM & CNI ™ expanded frequency bands or multi-band capabilities ™ multi-beam and multi-function implementation In this domain Photonics & microwaves technologies must be merged and have a strategic role to play. J. CHAZELAS SEMICON EUROPA OCT 2010

21

From components and devices to critical functions

22 J. CHAZELAS SEMICON EUROPA OCT 2010

Photodiodes From microwaves……………….…..to mmW

23 J. CHAZELAS SEMICON EUROPA OCT 2010

Electro-optic converters RF modulation in excess of 20GHz

-21 -24

S21 (dB)

-27 -30 -33 -36 -39

50mA

70mA

-42

100mA

120mA

-45

150mA

-48 0

5

10

15

20 25 22.5 GHz

Frequency (GHz)

With 80mW high power laser 24 J. CHAZELAS SEMICON EUROPA OCT 2010

Lasers for digital transmissions From Butterfly

to SFP /SFF or very integrated packages

Size 8% of a butterfly

25 J. CHAZELAS SEMICON EUROPA OCT 2010

Pulsed sources lasers Optical generation of very stable clock

900

AC Trace Lorentz fit

ACT (L. a. u.)

800 700 600 500 400 300 0

10

20

30

40

50

Time (ps)

FHWM = 4.5ps

Project Tonics

26 J. CHAZELAS SEMICON EUROPA OCT 2010

Direct modulation above 20 GHz • Bandwidth: 22.5 GHz • RIN < 150dB/Hz à 150mA -21 -24 -30 -33 -36 -39

50mA

70mA

-42

100mA

120mA

-45

150mA

-48 0

5

10

15

Frequency (GHz)

20 25 22.5 GHz

RIN (dB/Hz)

S21 (dB)

-27

-120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 0

5

RIN 50m A

RIN 100m A

RIN 150m A

RIN 200m A

10

15

20

Fréquence (GHz) 27 J. CHAZELAS SEMICON EUROPA OCT 2010

Fixed frequency Opto-Electronic Oscillators optical output

modulated optical source

ampli.

photodiode

fibre delay or micro-sphere(s) or micro-disk(s)

RF splitter

RF output

• operating directly at microwave frequencies: potentially up to 110 GHz (and over, upon component availability) • high spectral purity • output RF power: typ. ~ 10 dBm 28 J. CHAZELAS SEMICON EUROPA OCT 2010

LO generation: heterodyning Solid-state Dual Frequency Laser Er:Yb:Glass

LiTaO3 filter

mirror

ν1

SC dual-frequency laser

ν2

output laser beam

pump diode

beatnote = RF to mmW frequency

Frequency difference (GHz)

extended cavity

450 400 350 300 250 200 150 100 50 0 -50 -100

I1=50mA I1=75mA I1=100mA

0

50

100

150

200

250

I2 (mA)

Tunability from 0 to 300 GHz demonstrated Research and Technology J. CHAZELAS SEMICON EUROPA OCT 2010

29

Local oscillator distribution LO distribution of airborne radars:

1

LO

Coupler 1>4

2

1

Optical Amplifier

Coupler 1>4

optical transmitter

2

3

Switch 1>2

1

1J16 elements

4 3

2

photoreceiver

4

Rotary Joint

RF phase Optique non distribuée + RXbanc Optique + Distri + EDFA+ RXbanc noise

-40 -50 -60

Plancher

Bruit de phase (dBc/Hz)

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

Fréquence (/porteuse) (Hz)

¾ No degradation of the spectral purity

¾ No degradation of the radar pulse shape 30

J. CHAZELAS SEMICON EUROPA OCT 2010

Switched delay lines using InP switching matrixes True Time Delay Synthesis by using optical matrixes

Sorties: 1

2

3

4

Guides intermédiaires

n bits synoptic

τ



((nn−1) −1)

2

τ

2τ nn

entrée

base 4 synoptic ns switching time demonstrated

4 x 4 InP Optical switching matrixes 31 J. CHAZELAS SEMICON EUROPA OCT 2010

Conclusions and perspectives

32 J. CHAZELAS SEMICON EUROPA OCT 2010

Conclusion: prospectives for Thales applications GaN, RF-MEMS & Photonic technology are critical for Defence industry and are under integration for the following functions : ¾

Miniaturised T/R modules

¾

Distribution of RF signals in wideband systems

¾

Widebandwidth receiver and TTD beamforming functions

Future systems will require some breakthroughs : - Low NF and low loss optical links - Reduction of power consumption, - Integration for cost reduction - Microwave Photonics on Si and Dense optical interconnects

33 J. CHAZELAS SEMICON EUROPA OCT 2010

Impact of RF Nanotechnologies on antennas Future 2D Wideband antennas based on Nanowaveguides and nano devices integrated with nanophotonic ‘slow light’ waveguides

CONFORMAL ARRAY 1 2

11 2

3 44

Antenna T/R switch

Tuneable filter or channel bandpass filters with transistor switches

Low Noise Amplifier

Subsampling A/D converter Including mixer

Digital input/output

Digital Demod

11 3

Ref. Osc.

Power Amplifier

High Q Res.

22 CN antenna CN based NEMS CNFET

4

Integrated laser source

« slow light » in a photonic crystal membrane

Main Lobe

θ 3

side-lobes

4

A bottom-up approach shows that nano technologies open new opportunities for oversampled active antennas τ

τ

τ

τ

τ

time delays

Interests for New radar & EW capabilities to be elaborated by system designers 34 J. CHAZELAS SEMICON EUROPA OCT 2010