PROJECT #2 SPACE VECTOR PWM INVERTER

PROJECT #2 SPACE VECTOR PWM INVERTER JIN-WOO JUNG, PH.D STUDENT E-mail: [email protected] Tel.: (614) 292-3633 ADVISOR: PROF. ALI KEYHANI DATE: FEBR...
Author: Francis Stewart
135 downloads 0 Views 439KB Size
PROJECT #2 SPACE VECTOR PWM INVERTER

JIN-WOO JUNG, PH.D STUDENT E-mail: [email protected] Tel.: (614) 292-3633

ADVISOR: PROF. ALI KEYHANI

DATE: FEBRUARY 20, 2005

MECHATRONIC SYSTEMS LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING THE OHIO STATE UNIVERSITY

1. Problem Description In this simulation, we will study Space Vector Pulse Width Modulation (SVPWM) technique. We will use the SEMIKRON® IGBT Flexible Power Converter for this purpose. The system configuration is given below:

Fig. 1 Circuit model of three-phase PWM inverter with a center-taped grounded DC bus. The system parameters for this converter are as follows: ƒ

IGBTs: SEMIKRON SKM 50 GB 123D, Max ratings: VCES = 600 V, IC = 80 A

ƒ

DC- link voltage: Vdc = 400 V

ƒ

Fundamental frequency: f = 60 Hz

ƒ

PWM (carrier) frequency: fz = 3 kHz

ƒ

Modulation index: a = 0.6

ƒ

Output filter: Lf = 800 µH and Cf = 400 µF

ƒ

Load: Lload = 2 mH and Rload = 5 Ω

Using Matlab/Simulink, simulate the circuit model described in Fig. 1 and plot the waveforms of Vi (= [ViAB ViBC ViCA]), Ii (= [iiA iiB iiC]), VL (= [VLAB VLBC VLCA]), and IL (= [iLA iLB iLC]).

2

2. Space Vector PWM 2.1 Principle of Pulse Width Modulation (PWM) Fig. 2 shows circuit model of a single-phase inverter with a center-taped grounded DC bus, and Fig 3 illustrates principle of pulse width modulation.

Fig. 2 Circuit model of a single-phase inverter.

Fig. 3 Pulse width modulation. As depicted in Fig. 3, the inverter output voltage is determined in the following: ƒ

When Vcontrol > Vtri, VA0 = Vdc/2

ƒ

When Vcontrol < Vtri, VA0 = −Vdc/2

3

Also, the inverter output voltage has the following features: ƒ

PWM frequency is the same as the frequency of Vtri

ƒ

Amplitude is controlled by the peak value of Vcontrol

ƒ

Fundamental frequency is controlled by the frequency of Vcontrol

Modulation index (m) is defined as:

∴m =

vcontrol peak of (V A0 )1 = , vtri Vdc / 2

where, (VA0 )1 : fundamental frequecny component of

VA0

2.2 Principle of Space Vector PWM The circuit model of a typical three-phase voltage source PWM inverter is shown in Fig. 4. S1 to S6 are the six power switches that shape the output, which are controlled by the switching variables a, a′, b, b′, c and c′. When an upper transistor is switched on, i.e., when a, b or c is 1, the corresponding lower transistor is switched off, i.e., the corresponding a′, b′ or c′ is 0. Therefore, the on and off states of the upper transistors S1, S3 and S5 can be used to determine the output voltage.

Fig. 4 Three-phase voltage source PWM Inverter.

4

The relationship between the switching variable vector [a, b, c]t and the line-to-line voltage vector [Vab Vbc Vca]t is given by (2.1) in the following: ⎡Vab ⎤ ⎡ 1 − 1 0 ⎤ ⎡a ⎤ ⎢V ⎥ = V ⎢ 0 1 − 1⎥ ⎢b ⎥ . dc ⎢ ⎢ bc ⎥ ⎥⎢ ⎥ ⎢⎣Vca ⎥⎦ ⎢⎣− 1 0 1 ⎥⎦ ⎢⎣ c ⎥⎦

(2.1)

Also, the relationship between the switching variable vector [a, b, c]t and the phase voltage vector [Va Vb Vc]t can be expressed below. ⎡Van ⎤ ⎢V ⎥ = Vdc ⎢ bn ⎥ 3 ⎢⎣Vcn ⎥⎦

⎡ 2 − 1 − 1⎤ ⎡a ⎤ ⎢− 1 2 − 1⎥ ⎢b ⎥ . ⎢ ⎥⎢ ⎥ ⎢⎣− 1 − 1 2 ⎥⎦ ⎢⎣ c ⎥⎦

(2.2)

As illustrated in Fig. 4, there are eight possible combinations of on and off patterns for the three upper power switches. The on and off states of the lower power devices are opposite to the upper one and so are easily determined once the states of the upper power transistors are determined. According to equations (2.1) and (2.2), the eight switching vectors, output line to neutral voltage (phase voltage), and output line-to-line voltages in terms of DC-link Vdc, are given in Table1 and Fig. 5 shows the eight inverter voltage vectors (V0 to V7).

Table 1. Switching vectors, phase voltages and output line to line voltages

5

Fig. 5 The eight inverter voltage vectors (V0 to V7). Space Vector PWM (SVPWM) refers to a special switching sequence of the upper three power transistors of a three-phase power inverter. It has been shown to generate less harmonic distortion in the output voltages and or currents applied to the phases of an AC motor and to 6

provide more efficient use of supply voltage compared with sinusoidal modulation technique as shown in Fig. 6.

Fig. 6 Locus comparison of maximum linear control voltage in Sine PWM and SVPWM.

To implement the space vector PWM, the voltage equations in the abc reference frame can be transformed into the stationary dq reference frame that consists of the horizontal (d) and vertical (q) axes as depicted in Fig. 7.

7

Fig. 7 The relationship of abc reference frame and stationary dq reference frame.

From this figure, the relation between these two reference frames is below

f dq 0 = K sf abc

(2.3)

⎡ 1 − 1/ 2 − 1/ 2 ⎤ 2⎢ T T where, K s = 0 3 2 − 3 2⎥⎥ , fdq0=[fd fq f0] , fabc=[fa fb fc] , and f denotes either a voltage ⎢ 3 ⎢⎣1 / 2 1 / 2 1 / 2 ⎥⎦

or a current variable.

As described in Fig. 7, this transformation is equivalent to an orthogonal projection of [a, b, c]t onto the two-dimensional perpendicular to the vector [1, 1, 1]t (the equivalent d-q plane) in a three-dimensional coordinate system. As a result, six non-zero vectors and two zero vectors are possible. Six nonzero vectors (V1 - V6) shape the axes of a hexagonal as depicted in Fig. 8, and feed electric power to the load. The angle between any adjacent two non-zero vectors is 60 degrees. Meanwhile, two zero vectors (V0 and V7) are at the origin and apply zero voltage to the load. The eight vectors are called the basic space vectors and are denoted by V0, V1, V2, V3, V4,

8

V5, V6, and V7. The same transformation can be applied to the desired output voltage to get the desired reference voltage vector Vref in the d-q plane. The objective of space vector PWM technique is to approximate the reference voltage vector Vref using the eight switching patterns. One simple method of approximation is to generate the average output of the inverter in a small period, T to be the same as that of Vref in the same period.

Fig. 8 Basic switching vectors and sectors. Therefore, space vector PWM can be implemented by the following steps: ƒ

Step 1. Determine Vd, Vq, Vref, and angle (α)

ƒ

Step 2. Determine time duration T1, T2, T0

ƒ

Step 3. Determine the switching time of each transistor (S1 to S6)

2.2.1 Step 1: Determine Vd, Vq, Vref, and angle (α) From Fig. 9, the Vd, Vq, Vref, and angle (α) can be determined as follows:

9

Vd = Van − Vbn ⋅ cos60 − Vcn ⋅ cos60 1 1 = Van − Vbn − Vcn 2 2

Vq = 0 + Vbn ⋅ cos30 − Vcn ⋅ cos30 = Van +

3 3 Vbn − Vcn 2 2

1 ⎡ − 1 ⎢ V ⎡ d⎤ 2 2 ∴⎢ ⎥ = ⎢ V 3 3 ⎣ q⎦ ⎢0 2 ⎣⎢

2

∴ Vref = Vd + Vq

⎛ Vq ∴ α = tan −1 ⎜⎜ ⎝ Vd

1 ⎤ ⎡V ⎤ an 2 ⎥ ⎢V ⎥ ⎥ 3 ⎥ ⎢ bn ⎥ − ⎢V ⎥ 2 ⎦⎥ ⎣ cn ⎦ −

2

⎞ ⎟ = ωt = 2πft , where f = fundamental frequency ⎟ ⎠

Fig. 9 Voltage Space Vector and its components in (d, q).

2.2.2 Step 2: Determine time duration T1, T2, T0

From Fig. 10, the switching time duration can be calculated as follows:

10

ƒ

Switching time duration at Sector 1

Tz

T1

T1 + T2

Tz

0

0

T1

T1 + T2

∫ V ref = ∫ V1dt + ∫ V 2 dt + ∫ V 0

∴ Tz ⋅ V ref = (T1 ⋅ V1 + T2 ⋅ V 2 ) ⎡cos (α )⎤ ⎡1 ⎤ ⎡cos (π / 3)⎤ 2 2 ⇒ Tz ⋅ V ref ⋅ ⎢ = T1 ⋅ ⋅ Vdc ⋅ ⎢ ⎥ + T2 ⋅ ⋅ Vdc ⋅ ⎢ ⎥ ⎥ 3 3 ⎣sin (α ) ⎦ ⎣0 ⎦ ⎣sin (π / 3) ⎦ (where, 0 ≤ α ≤ 60°)

∴ T1 = Tz ⋅ a ⋅

sin (π / 3 − α ) sin (π / 3)

∴ T2 = Tz ⋅ a ⋅

sin (α ) sin (π / 3)

⎛ ⎜ 1 ∴ T0 = Tz − (T1 + T2 ), ⎜ where, Tz = fz ⎜ ⎜ ⎝

ƒ

⎞ V ref ⎟ ⎟ and a = 2 ⎟ Vdc ⎟ 3 ⎠

Switching time duration at any Sector 3 ⋅ Tz ⋅ V ref ⎛ ⎛ π n −1 ⎞⎞ ⎜ sin ⎜ − α + π ⎟ ⎟⎟ ⎜ 3 Vdc ⎠⎠ ⎝ ⎝3

∴ T1 = =

3 ⋅ Tz ⋅ V ref ⎛ n ⎞ ⎜ sin π − α ⎟ 3 Vdc ⎝ ⎠

=

3 ⋅ Tz ⋅ V ref ⎛ n n ⎞ ⎜ sin π cos α − cos π sin α ⎟ 3 3 Vdc ⎝ ⎠

∴ T2 = =

3 ⋅ Tz ⋅ V ref ⎛ ⎛ n −1 ⎞⎞ ⎜⎜ sin ⎜ α − π ⎟ ⎟⎟ 3 Vdc ⎠⎠ ⎝ ⎝

3 ⋅ Tz V ref ⎛ n −1 n −1 ⎞ π + sin α ⋅ cos π⎟ ⎜ − cos α ⋅ sin 3 3 Vdc ⎝ ⎠

⎛ where, n = 1 through 6 (that is, Sector1 to 6) ⎞ ⎟⎟ ∴ T0 = Tz − T1 − T2 , ⎜⎜ 0 ≤ α ≤ 60° ⎝ ⎠

11

Fig. 10 Reference vector as a combination of adjacent vectors at sector 1.

2.2.3 Step 3: Determine the switching time of each transistor (S1 to S6)

Fig. 11 shows space vector PWM switching patterns at each sector.

(a) Sector 1.

(b) Sector 2.

12

(c) Sector 3.

(d) Sector 4.

(e) Sector 5.

(f) Sector 6.

Fig. 11 Space Vector PWM switching patterns at each sector.

Based on Fig. 11, the switching time at each sector is summarized in Table 2, and it will be built in Simulink model to implement SVPWM.

13

Table 2. Switching Time Calculation at Each Sector

14

3. State-Space Model Fig. 12 shows L-C output filter to obtain current and voltage equations.

Fig. 12 L-C output filter for current/voltage equations. By applying Kirchoff’s current law to nodes a, b, and c, respectively, the following current equations are derived: c node “a”:

iiA + ica = i ab + i LA

⇒ iiA + C f

dV LCA dV LAB =Cf + i LA . dt dt

(3.1)

iiB + i ab = ibc + i LB

⇒ iiB + C f

dV LBC dV LAB =Cf + i LB . dt dt

(3.2)

d node “b”:

e node “c”:

15

iiC + ibc = ica + i LC

where, iab = C f

⇒ iiC + C f

dV LBC dV LCA =Cf + i LC . dt dt

(3.2)

dVLBC dVLCA dVLAB , ibc = C f , ica = C f . dt dt dt

Also, (3.1) to (3.3) can be rewritten as the following equations, respectively: c subtracting (3.2) from (3.1): dV ⎞ dV ⎞ ⎛ dV ⎛ dV iiA − iiB + C f ⎜ LCA − LAB ⎟ = C f ⎜ LAB − LBC ⎟ + i LA − i LB dt ⎠ dt ⎠ ⎝ dt ⎝ dt dV dV ⎞ ⎛ dV ⇒ C f ⎜ LCA + LBC − 2 ⋅ LAB ⎟ = −iiA + iiB + i LA − i LB dt dt ⎠ ⎝ dt

.

(3.4)

d subtracting (3.3) from (3.2): dV ⎞ dV ⎞ ⎛ dV ⎛ dV iiB − iiC + C f ⎜ LAB − LBC ⎟ = C f ⎜ LBC − LCA ⎟ + i LB − i LC dt ⎠ dt ⎠ ⎝ dt ⎝ dt dV dV ⎞ ⎛ dV ⇒ C f ⎜ LAB + LCA − 2 ⋅ LBC ⎟ = −iiB + iiC + i LB − i LC dt dt ⎠ ⎝ dt

.

(3.5)

e subtracting (3.1) from (3.3): dV ⎞ dV ⎞ ⎛ dV ⎛ dV iiC − iiA + C f ⎜ LBC − LCA ⎟ = C f ⎜ LCA − LAB ⎟ + i LC − i LA dt ⎠ dt ⎠ ⎝ dt ⎝ dt dV dV ⎞ ⎛ dV ⇒ C f ⎜ LAB + LBC − 2 ⋅ LCA ⎟ = −iiC + iiA + i LC − i LA dt dt ⎠ ⎝ dt

.

(3.6)

To simplify (3.4) to (3.6), we use the following relationship that an algebraic sum of line to line load voltages is equal to zero: VLAB + VLBC + VLCA = 0. 16

(3.7)

Based on (3.7), the (3.4) to (3.6) can be modified to a first-order differential equation, respectively: ⎧ dV LAB 1 1 (i LAB ) iiAB − = ⎪ 3C f 3C f ⎪ dt ⎪ dV LBC 1 1 iiBC − (i LB C ) , = ⎨ dt 3 C 3 C f f ⎪ ⎪ dV LCA 1 1 (i LCA ) iiCA − = ⎪ 3 3 dt C C f f ⎩

(3.8)

where, iiAB = iiA ─ iiB, iiBC = iiB ─ iiC, iiCA = iiC ─ iiA and iLAB = iLA ─ iLB, iLBC = iLB ─ iLC, iLCA = iLC ─ iLA.

By applying Kirchoff’s voltage law on the side of inverter output, the following voltage equations can be derived: ⎧ diiAB 1 1 V LAB + ViAB =− ⎪ Lf Lf ⎪ dt ⎪ diiBC 1 1 V LBC + ViBC . =− ⎨ Lf Lf ⎪ dt ⎪ diiCA 1 1 ⎪ dt = − L V LCA + L ViCA f f ⎩

(3.9)

By applying Kirchoff’s voltage law on the load side, the following voltage equations can be derived: ⎧ ⎪V LAB = Lload ⎪ ⎪ ⎨V LBC = Lload ⎪ ⎪ ⎪V LCA = Lload ⎩

di LA di + Rload i LA − Lload LB − Rload i LB dt dt di LC di LB + Rload i LB − Lload − Rload i LC . dt dt di LC di + Rload i LC − Lload LA − Rload i LA dt dt

17

(3.10)

Equation (3.10) can be rewritten as: ⎧ di LAB R 1 V LAB = − load i LAB + ⎪ Lload Lload ⎪ dt ⎪⎪ di LBC R 1 V LBC . = − load i LBC + ⎨ Lload Lload ⎪ dt ⎪ di LCA R 1 V LCA = − load i LCA + ⎪ ⎪⎩ dt Lload Lload

(3.11)

Therefore, we can rewrite (3.8), (3.9) and (3.11) into a matrix form, respectively: dVL 1 1 = Ii − IL 3C f 3C f dt dI i 1 1 =− VL + Vi dt Lf Lf

,

(3.12)

R dI L 1 = VL − load I L dt Lload Lload where, VL = [VLAB VLBC VLCA]T , Ii = [iiAB iiBC iiCA]T = [iiA-iiB iiB-iiC iiC-iiA]T , Vi = [ViAB ViBC ViCA]T , IL = = [iLAB iLBC iLCA]T = [iLA-iLB iLB-iLC iLC-iLA]T. Finally, the given plant model (3.12) can be expressed as the following continuous-time state space equation & (t ) = AX(t ) + Bu(t ) , X

⎡ ⎢ 0 3×3 ⎢ V ⎡ L⎤ 1 ⎢ ⎥ , A = ⎢⎢− where, X = I i I 3×3 ⎢ ⎥ Lf I ⎢ ⎣⎢ L ⎦⎥ 9×1 ⎢ 1 I 3×3 ⎢L ⎣ load

1 I 3×3 3C f 0 3×3 0 3×3

(3.13)

⎤ 1 I 3×3 ⎥ ⎡ 0 3×3 ⎤ 3C f ⎥ ⎢ ⎥ ⎥ , B = ⎢ 1 I 3×3 ⎥ , u = [V ] . 0 3×3 i 3×1 ⎥ ⎢Lf ⎥ ⎥ ⎢0 ⎥ Rload ⎥ ⎣ 3×3 ⎦ 9×3 − I 3×3 ⎥ Lload ⎦ 9×9 −

18

Note that load line to line voltage VL, inverter output current Ii, and the load current IL are the state variables of the system, and the inverter output line-to-line voltage Vi is the control input (u).

4. Simulation Steps 1). Initialize system parameters using Matlab 2). Build Simulink Model ƒ

Determine sector

ƒ

Determine time duration T1, T2, T0

ƒ

Determine the switching time (Ta, Tb, and Tc) of each transistor (S1 to S6)

ƒ

Generate the inverter output voltages (ViAB, ViBC, ViCA,) for control input (u)

ƒ

Send data to Workspace

3). Plot simulation results using Matlab

19

5. Simulation results

Inverter output line to line voltages (ViAB, ViBC, ViCA)

ViAB [V]

500

0

-500 0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95 Time [Sec]

0.96

0.97

0.98

0.99

1

ViBC [V]

500

0

-500 0.9

ViCA [V]

500

0

-500 0.9

Fig. 13 Simulation results of inverter output line to line voltages (ViAB, ViBC, ViCA)

20

Inverter output currents (iiA, iiB, iiC) 100

iiA [A]

50 0 -50 -100 0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95 Time [Sec]

0.96

0.97

0.98

0.99

1

100

iiB [A]

50 0 -50 -100 0.9 100

iiC [A]

50 0 -50 -100 0.9

Fig. 14 Simulation results of inverter output currents (iiA, iiB, iiC)

21

Load line to line voltages (VLAB, VLBC, VLCA) 400

VLAB [V]

200 0 -200 -400 0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95 Time [Sec]

0.96

0.97

0.98

0.99

1

400

VLBC [V]

200 0 -200 -400 0.9 400

VLCA [V]

200 0 -200 -400 0.9

Fig. 15 Simulation results of load line to line voltages (VLAB, VLBC, VLCA)

22

Load phase currents (iLA, iLB, iLC)

iLA [A]

50

0

-50 0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.91

0.92

0.93

0.94

0.95 Time [Sec]

0.96

0.97

0.98

0.99

1

iLB [A]

50

0

-50 0.9

iLC [A]

50

0

-50 0.9

Fig. 16 Simulation results of load phase currents (iLA, iLB, iLC)

23

ViAB [V]

500

0

iLA, iLB, iLC [A]

VLAB, VLBC, VLCA [V]

iiA, iiB, iiC [A]

-500 0.9 100

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 iiA iiB

0

-100 0.9 400

iiC 0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

200

VLAB

0

VLBC VLCA

-200 -400 0.9 50

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 iLA iLB

0

-50 0.9

iLC 0.91

0.92

0.93

0.94

0.95 Time [Sec]

0.96

0.97

Fig. 17 Simulation waveforms. (a) Inverter output line to line voltage (ViAB) (b) Inverter output current (iiA) (c) Load line to line voltage (VLAB) (d) Load phase current (iLA)

24

0.98

0.99

1

Appendix Matlab/Simulink Codes

25

A.1 Matlab Code for System Parameters % Written by Jin Woo Jung % Date: 02/20/05 % ECE743, Simulation Project #2 (Space Vector PWM Inverter) % Matlab program for Parameter Initialization clear all % clear workspace % Input data Vdc= 400; % DC-link voltage Lf= 800e-6;% Inductance for output filter Cf= 400e-6; % Capacitance for output filter Lload = 2e-3; %Load inductance Rload= 5; % Load resistance f= 60; % Fundamental frequency fz = 3e3; % Switching frequency a= 0.6;% Modulation index w= 2*pi*60; %angular frequency Tz= 1/fz; % Sampling time V_ref= (2/3)*a*Vdc; % Reference voltage

% Coefficients for State-Space Model A=[zeros(3,3) -eye(3)/Lf

eye(3)/(3*Cf) zeros(3,3)

eye(3,3)/Lload zeros(3,3)

-eye(3)/(3*Cf)

zeros(3,3) -eye(3)*Rload/Lload]; % system matrix

B=[zeros(3,3) eye(3)/Lf zeros(3,3)]; % coefficient for the control variable u

26

C=[eye(9)]; % coefficient for the output y D=[zeros(9,3)]; % coefficient for the output y Ks = 1/3*[-1 0 1; 1 -1 0; 0 1 -1]; % Conversion matrix to transform [iiAB iiBC iiCA] to [iiA iiB iiC]

27

A.2 Matlab Code for Plotting the Simulation Results % Written by Jin Woo Jung % Date: 02/20/05 % ECE743, Simulation Project #2 (Space Vector PWM) % Matlab program for plotting Simulation Results % using Simulink ViAB = Vi(:,1); ViBC = Vi(:,2); ViCA = Vi(:,3); VLAB= VL(:,1); VLBC= VL(:,2); VLCA= VL(:,3); iiA= IiABC(:,1); iiB= IiABC(:,2); iiC= IiABC(:,3); iLA= ILABC(:,1); iLB= ILABC(:,2); iLC= ILABC(:,3);

figure(1) subplot(3,1,1) plot(t,ViAB) axis([0.9 1 -500 500]) ylabel('V_i_A_B [V]') title('Inverter output line to line voltages (V_i_A_B, V_i_B_C, V_i_C_A)')

28

grid subplot(3,1,2) plot(t,ViBC) axis([0.9 1 -500 500]) ylabel('V_i_B_C [V]') grid subplot(3,1,3) plot(t,ViCA) axis([0.9 1 -500 500]) ylabel('V_i_C_A [V]') xlabel('Time [Sec]') grid

figure(2) subplot(3,1,1) plot(t,iiA) axis([0.9 1 -100 100]) ylabel('i_i_A [A]') title('Inverter output currents (i_i_A, i_i_B, i_i_C)') grid subplot(3,1,2) plot(t,iiB) axis([0.9 1 -100 100]) ylabel('i_i_B [A]') grid subplot(3,1,3)

29

plot(t,iiC) axis([0.9 1 -100 100]) ylabel('i_i_C [A]') xlabel('Time [Sec]') grid figure(3) subplot(3,1,1) plot(t,VLAB) axis([0.9 1 -400 400]) ylabel('V_L_A_B [V]') title('Load line to line voltages (V_L_A_B, V_L_B_C, V_L_C_A)') grid subplot(3,1,2) plot(t,VLBC) axis([0.9 1 -400 400]) ylabel('V_L_B_C [V]') grid subplot(3,1,3) plot(t,VLCA) axis([0.9 1 -400 400]) ylabel('V_L_C_A [V]') xlabel('Time [Sec]') grid figure(4) subplot(3,1,1) plot(t,iLA) axis([0.9 1 -50 50])

30

ylabel('i_L_A [A]') title('Load phase currents (i_L_A, i_L_B, i_L_C)') grid subplot(3,1,2) plot(t,iLB) axis([0.9 1 -50 50]) ylabel('i_L_B [A]') grid subplot(3,1,3) plot(t,iLC) axis([0.9 1 -50 50]) ylabel('i_L_C [A]') xlabel('Time [Sec]') grid figure(5) subplot(4,1,1) plot(t,ViAB) axis([0.9 1 -500 500]) ylabel('V_i_A_B [V]') grid subplot(4,1,2) plot(t,iiA,'-', t,iiB,'-.',t,iiC,':') axis([0.9 1 -100 100]) ylabel('i_i_A, i_i_B, i_i_C [A]') legend('i_i_A', 'i_i_B', 'i_i_C') grid

31

subplot(4,1,3) plot(t,VLAB,'-', t,VLBC,'-.',t,VLCA,':') axis([0.9 1 -400 400]) ylabel('V_L_A_B, V_L_B_C, V_L_C_A [V]') legend('V_L_A_B', 'V_L_B_C', 'V_L_C_A') grid subplot(4,1,4) plot(t,iLA,'-', t,iLB,'-.',t,iLC,':') axis([0.9 1 -50 50]) ylabel('i_L_A, i_L_B, i_L_C [A]') legend('i_L_A', 'i_L_B', 'i_L_C') xlabel('Time [Sec]') grid

32

A.3 Simulink Code

Simulink Model for Overall System

33

Subsystem Simulink Model for “Space Vector PWM Generator”

34

Subsystem Simulink Model for “Making Switching Time”

1). T1 = u[1]*(sin(u[3]*pi/3)*cos(u[2])-cos(u[3]*pi/3)*sin(u[2])) 2). T2 = u[1]*(cos((u[3]-1)*(pi/3))*sin(u[2])-sin((u[3]-1)*(pi/3))*cos(u[2])) 3). Ta = (u[4]==1)*(u[1]+u[2]+u[3])+(u[4]==2)*(u[1]+u[2]+u[3]) + (u[4]==3)*(u[1]+u[3]) + (u[4]==4)*(u[1])+ (u[4]==5)*(u[1])+ (u[4]==6)*(u[1]+u[2])

4). Tb = (u[4]==1)*(u[1])+(u[4]==2)*(u[1]+u[2]) + (u[4]==3)*(u[1]+u[2]+u[3]) + (u[4]==4)*(u[1]+u[2]+u[3])+ (u[4]==5)*(u[1]+u[3])+ (u[4]==6)*(u[1])

5). Tc = (u[4]==1)*(u[1]+u[3])+(u[4]==2)*(u[1]) + (u[4]==3)*(u[1]) + (u[4]==4)*(u[1]+u[2])+ (u[4]==5)*(u[1]+u[2]+u[3])+ (u[4]==6)*(u[1]+u[2]+u[3])

35

Suggest Documents