Principles of Green Engineering Design

  Syllabus   ENV  6932       Principles  of  Green   Engineering  Design     William  A.  Wallace     Adjunct  Lecturer   University  of  Flori...
Author: Horace Ira Wade
0 downloads 4 Views 273KB Size
 

Syllabus   ENV  6932    

  Principles  of  Green   Engineering  Design    

William  A.  Wallace  

  Adjunct  Lecturer   University  of  Florida   College  of  Engineering,  Department  of   Environmental  Engineering  Sciences

Bill Wallace

Page 1

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

ENV  6932   PRINCIPLES  OF  GREEN  ENGINEERING  DESIGN     The  University  of  Florida   Department  of  Environmental  Engineering  Sciences  

Professor:    William  A.  Wallace           Adjunct  Lecturer   Department  of  Environmental  Engineering   Sciences   1400  Overlook  Drive   Steamboat  Springs,  CO    80487   PHONE:      (970)  879-­‐1122         MOBILE:    (970)  819-­‐2188   EMAIL:  [email protected]     Office  Hours:    Email  me  or  call    (8:00  AM  to   5:00  PM  MT)  

Teaching  Assistant:    To  be   announced  (TBA)   Department  of  Environmental   Engineering  Sciences     EMAIL:  TBA   Office  Hours:  TBA  

OVERVIEW  

Over   the   last   decade,   the   notion   that   society’s   current   model   for   economic   development  is  not  sustainable  has  moved  from  extremist  thinking  into  mainstream   opinion.     Resources,   once   thought   of   as   effectively   inexhaustible,   are   now   seen   as   finite   and   increasingly   scarce.     Ecological   carrying   capacity,   once   thought   of   as   essentially  boundless  and  infinitely  self-­‐repairing,  is  now  seen  as  limited  and  subject   to   significant   damage   by   human   activity,   perhaps   irreversibly.     In   response,   engineering  design  approaches  for  products,  processes,  facilities  and  infrastructure   are   changing   and   expanding,   bringing   in   broad   resource,   ecological   and   social   considerations  in  addition  to  the  traditional  economic  concerns.       This   course,   “Principles   of   Green   Engineering   Design,”   offers   a   new   paradigm   for   sustainable  engineering  design.    Today’s  challenge  is  not  only  how  to  become  more   sustainable,   but   rather   how   to   deal   effectively   with   the   serious   and   urgent   consequences  of  non-­‐sustainability  that  are  now  starting  to  appear.    Spiking  energy   prices,   floods,   droughts,   heat   waves,   water   scarcity,   warming   temperatures   are   a   few   examples   of   the   trends   and   events   that   are   forcing   changes   to   the   practice   of   engineering.      

Under   this   new   paradigm,   sustainable   engineering   design   is   not   treated   as   how   to   place   so-­‐called   “green”   add-­‐ons   onto   traditional   designs.     Instead,   sustainable   engineering   design   is   seen   as   the   management   of   change.     Conditions   of   non-­‐ sustainability  are  creating  in  effect  a  “New  Normal”  in  terms  of  operating  conditions   and   performance   requirements.     Traditional   assumptions   about   averages,   variances   and  possible  extremes  for  design  variables  can  no  longer  be  counted  on  as  adequate.     In  addition,  new  variables  must  now  be  taken  into  account.    This  course  will  identify   and   assess   these   areas   of   change   and   offer   a   corresponding   engineering   design   approaches  to  effectively  manage  this  change.  

ENV6932 Syllabus

2

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

Aimed   at   upper-­‐level   undergraduate   and   entry-­‐level   graduate   students,   the   course   is   designed   to   help   students   understand   how   to   incorporate   the   principles   of   sustainability  into  engineering  design  practices.    The  overall  goal  of  the  course  is  to   reach   a   high   level   of   understanding   of   what   it   will   really   take   to   become   a   sustainable   society   and   the   role   engineers   need   to   play   in   achieving   the   requisite   conditions.    Achieving  sustainability  will  be  a  long  journey,  requiring  close  attention   not   only   to   improving   sustainable   performance   but   to   the   chosen   technological   pathways.   This   course   is   geared   to   help   students   navigate   a   rational   path   through   that  confusion,  guiding  them  to  the  appropriate  design  criteria  and  tools  needed  to   create   the   new   and   more   sustainable   products,   facilities,   processes   and   infrastructure.  

The   effects   and   consequences   of   non-­‐sustainable   behavior   on   nations   (developed,   developing,   and   underdeveloped)   are   also   presented   along   with   their   respective   challenges  and  considerations  in  engineering  design.    How  industry  and  government   sectors   have   responded   will   also   be   addressed,   as   these   institutions   have   and   continue  to  drive  changes  in  engineering  design  and  performance  criteria  associates   with   sustainability.     Their   responses   and   accomplishments   will   be   presented   in   a   business   context,   showing   how   these   changes   relate   to   competitiveness   and   improved  economic  performance.  

Tools   such   as   sustainability   metrics,   life   cycle   assessment,   sustainability   auditing   and   carbon   footprinting   will   be   demonstrated.     Finally,   new   techniques   for   delivering  projects  that  maximize  contributions  to  sustainable  performance  will  be   introduced  along  with  methodologies  for  whole  systems  design.      

OBJECTIVES  OF  THIS  COURSE:   •









Introduce   the   concepts   of   sustainable   development   and   sustainability   in   its   proper   form,   separating   them   from   the   popularized   and   largely   inaccurate   notions  about  being  “green”  to  ones  that  have  a  scientific  and  engineering  basis.   Convey   an   understanding   of   what   is   really   required   to   achieve   conditions   sustainability   through   principles   such   as   The   Natural   Step,   and   Herman   Daly’s   thermodynamic   definitions   of   sustainability.     Introduce   the   production-­‐ consumption   flow   model   and   the   Five   Capitals   model   as   a   way   of   thinking   about   sustainability.   Learn   about   the   trends   and   forces   shaping   our   world   instigated   by   our   non-­‐ sustainable   economic   model   for   growth   and   development.     Offer   a   view   the   salient  events  in  the  development  of  our  current  concepts  of  sustainability.   Learn   about   the   causes,   effects,   consequences   and   controversies   surrounding   global   climate   change.     Understand   the   mechanisms   that   are   causing   global   warming.     Learn   about   approaches   for   addressing   climate   change:     mitigation   and  adaptation.    Learn  about  some  of  the  solutions  being  proposed,  including  the   ones  categorized  as  geoengineering.   See   the   effects   of   non-­‐sustainability   on   the   developed,   developing   and   underdeveloped   nations   and   learn   about   the   engineering   challenges   specific   to   each.  

ENV6932 Syllabus

3

Bill Wallace

• •

• • • •



• •

ENV6932 Principles of Green Engineering Design

Spring 2014

Characterize   the   trends   and   drivers   that   are   shaping   industry   and   governmental   responses  to  the  consequences  of  non-­‐sustainability.   Learn  about  the  degree  to  which  various  industry  and  government  sectors,  cities   and   communities   understand   the   issues   and   consequences   of   non-­‐sustainable   behavior  and  how  they  are  responding.   Define   and   explore   the   principles   of   industrial   ecology   and   by-­‐product   synergy   and  see  how  they  are  being  applied.   Survey  the  current  laws,  regulations  and  standards  that  are  being  conceived  and   put  in  place  to  address  the  various  dimensions  of  sustainability.   Learn   and   place   in   context   the   various   systems   for   measuring   sustainable   performance.   Gain  experience  in  using  the  various  tools  and  techniques  available  for  designing   and   implementing   energy   conservation   measures,   conducting   life   cycle   assessments,  calculating  carbon  footprints,  and  more.   Learn  a  new  paradigm  for  achieving  improvements  in  sustainable  performance,   i.e.,   the   importance   of   addressing   both   performance   contribution   (doing   things   right)   and   pathway   contribution   (doing   the   right   thing)   for   moving   society   towards   conditions   of   sustainability.     To   learn   how   to   increase   opportunities   for   performance   improvement.     To   understand   the   importance   of   setting   performance  objectives  that  are  restorative,  not  just  “less  bad.”   Learn   how   industries   in   various   sectors   are   incorporating   sustainability   principles  into  their  strategies  and  operations.   Apply  whole  systems  design  methodologies  to  sustainable  engineering  projects.  

WHAT  YOU  ARE  EXPECTED  TO  KNOW  COMING  INTO  THIS  CLASS  

This   course   will   be   taught   at   a   level   that   will   require   a   modest   level   of   understanding  of  the  concepts  and  issues  surrounding  sustainable  development.    I   will   present   the   facts   and   figures   that   make   a   case   that   our   current   model   of   economic   development   is   not   sustainable   in   its   current   form.     Many   charts   and   graphs  of  varying  complexities  will  be  used  to  illustrate  these  points,  so  basic  math   skills  are  required.      

I   will   also   be   presenting   a   business   case   for   sustainable   development   through   discussions   of   how   incorporating   sustainability   policies   and   practices   can   improve   performance,   reduce   costs   and   otherwise   make   organizations   more   competitive.     Therefore   some   understanding   of   how   business   and   governmental   organizations   operate  will  be  helpful.       Incorporating  the  principles  of  sustainability  into  engineering  design  is  a  principle   focus   of   this   course.     Therefore   students   will   benefit   from   having   a   basic   understanding  of  the  engineering  design  process.      

That   said,   there   is   significant   leeway   in   achieving   success   in   this   course.       Recognizing   that   sustainability   is   a   relatively   new   field   and   students   will   come   from   a  wide  variety  of  disciplines,  the  project  topics  will  be  designed  to  accommodate  an   ENV6932 Syllabus

4

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

equally   wide   variety   of   interests,   ranging   from   public   and   corporate   policy   and   strategy  to  project  planning  and  design  .   If   you   are   unsure   if   your   qualifications   will   enable   you   to   be   successful   in   this   course,   feel   free   to   contact   me   to   discuss.     Telephone:   (970)   879-­‐1122;     Mobile:   (970)  819-­‐2188;    email:    [email protected]  

TEXTBOOK  FOR  THE  CLASS  

The  textbook  for  the  class  is:       Peter   Senge,   et   al.,   The   Necessary   Revolution:     How   Individuals   And   Organizations   Are   Working   Together   to   Create   a   Sustainable   World,   Doubleday,   New   York   (2008,   2010).     This   book   is   available   in   hard   cover,   paperback,  and  e-­‐book  format.   Recognizing  the  changing  nature  of  this  field,  I  will  provide  students  with  additional   materials   such   as   papers,   articles   and   reports   to   supplement   the   textbook   and   to   expand  their  libraries  of  relevant  reference  materials.  

COURSE  DELIVERY  

The   course   will   be   delivered   as   a   series   of   65   short,   prerecorded   lectures   averaging   30   minutes   each.     They   are   available   on   the   University’s   E-­‐Learning   website,   through   the   Sakai   System.    I  intend  to  make  all  65   lectures   are   available   for   viewing   at   the   beginning   of   the   semester.     If   they   are   not   all   available,   it   is   because   I   am   in   the   process   of   updating   the   lectures.     In   any   event,   a   large   portion   of   the   lectures  will  be  available  when  the  semester  starts.   This  format  is  a  change  from  the  previous  version  of  this  course  which  consisted  of   40  lectures,  50-­‐60  minutes  in  length.    While  the  course  length  and  content  has  not   changed   (actually,   the   overall   course   length   is   shorter),   I   decided   to   reduce   the   lecture   time   to   give   students   more   flexibility   for   viewing.     This   format   also   allows   me  to  update  the  lecture  materials  more  frequently.  

Students  should  plan  to  view  the  course  lectures  at  a  pace  that  will  enable  them  to   complete  the  course  within  the  semester  timeframe.  For  the  16-­‐week  spring  and  fall   semesters,   students   should   plan   on   viewing   4   or   more   lectures   per   week.     For   the   more   compressed   summer   schedule   of   12   weeks,   the   viewing   pace   should   to   6   or   more  lectures  per  week.  

COURSE  FORMAT  

I   have   created   handouts   of   the   lecture   presentations   in   “PDF”   format   so   that   students   can   print   out   the   handouts   to   take   notes   without   having   to   copy   information  from  the  slides.    Yes,  this  means  that  paper  will  be  used.    However,  your   negative   impacts   on   the   environment   will   be   negligible   compared   to   the   learning   benefits.    If  you  find  that  you  still  have  pangs  of  guilt  after  printing  the  handouts,  feel   free  to  plant  one  or  more  trees  as  compensation.      

ENV6932 Syllabus

5

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

These  files  will  be  available  on  ENV  6617  E-­‐Learning  site.    If  you  use  these  handouts,   make   sure   you’re   using   the   latest   version   of   Adobe   Reader   or   a   suitable   “PDF”   file   reader.  

INSTRUCTOR  AVAILABILITY  

If  you  have  questions  or  need  help  regarding  the  course  or  any  of  the  assignments,   please  contact  me.    Email  is  preferable,  but  telephone  calls  are  also  welcome.    I  will   provide  you  feedback  as  soon  as  possible.    Please  avoid  doing  this  just  before  project   report  due  dates!   Students   are   encouraged   to   ask   questions   at   any   time.     A   student’s   goal   should   be   to   learn   the   course   material   and   to   take   advantage   of   every   opportunity   to   do   so.     If   you   have   questions   or   just   want   to   discuss   the   course,   please   call   (8   AM   –   5   PM   MT)   or  send  me  an  email.    Telephone:    (970)  879-­‐1122;  email:    [email protected]    

EXAMS  

There   are   no   examinations   for   this   course.     Your   final   grade   will   be   based   on   your   delivery   and   achievements   on   three   papers   (75%)   and   the   homework   assignments   (25%).     They   are   judged   on  the   quality   of   the   content   and   timeliness   of   delivery.    

HOMEWORK    

As   a   homework   assignment   after   viewing   a   lecture,   I   will   ask   you   to   answer   a   specific   question   associated   with   the   lecture.     These   answers   should   be   a   few   sentences  in  length,  approximately  100  words.      

The   purpose   of   this   homework   task   is   to   convey   to   me   your   understanding   of   the   lecture  as  well  as  to  provide  you  with  some  food  for  thought  related  to  the  lecture   content.        

Homework  requirements  and  grading  criteria  

Homework  submissions  will  be  graded  on  a  scale  of  0  to  10  based  on  a  reasonable   response  to  the  question  posed  and  timeliness  of  delivery.        

It   is   not   necessary   to   spend   a   lot   of   time   completing   the   homework   assignments.     Bottom  line:    If  you  submit  an  answer  to  a  homework  question  that  is  coherent  and   responds   reasonably   to   the   question,   you   will   get   the   full   credit   of   10   points   on   that   assignment.  

PAPERS  

Once   the   course   starts,   the   students   will   be   asked   to   prepare   three   (3)   papers   on   subjects   selected   by   the   student   from   the   Paper   Topics   List.     The   topics   are   designed   to   test   the   student’s   grasp   of   the   subject   matter   and   his/her   ability   to   extend   that   learning   into   related   areas   and   provide   additional   detail.     The   Paper   Topics   List  is  found  in  the  Syllabus  section  of  the  ENV6932  E-­‐Learning  site.    A  list   and  description  of  topics  for  these  reports  is  provided  on  the  course  website.     There   ENV6932 Syllabus

6

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

are   about   60   topics   broken   out   into   three   (3)   groups,   with   each   group   reflecting   the   level  of  progress  through  the  course.    

If  a  student  has  a  specific  interest  in  a  particular  sustainability-­‐related  topic,  which   relates   to   the   course   material   but   does   not   appear   on   the   topic   list,   he/she   can   create   their   own   topic   and   submit   a   short   description   of   that   topic   to   me   for   approval.    Students  should  not  begin  work  on  their  self-­‐designed  topics  without  my   approval,   since   the   absence   of   my   approval   disqualifies   the   student’s   paper   from   being  considered  in  his/her  course  grade.    A  standard  report  format  is  also  provided   which  can  be  used  as  a  template  for  your  report.        

Paper  requirements  and  grading  criteria  

Guidance   for   preparing   project   papers   are   presented   in   a   document   called   Paper   Preparation  Guidelines   located   on   the   course   E-­‐Learning   website.     This   document   contains   a   detailed   description   of   what   I   expect   to   see   in   your   project   report   submissions   and   criteria   for   how   they   will   be   graded.   Each   report   should   be   at   least   5000  words,  not  including  references.     Papers  containing  less  than  5000  words  will   be  downgraded  accordingly.  

Paper  Grading  Criteria  

Grade Criteria Researched  the  topic  extensively.    Paper  is  well  organized  and  written,  as  well  as   A   interesting   and   thought-­‐provoking.    New   knowledge   and   ideas   offered.    More   or     B  

C  

D  

E  

 

less  ready  for  submission  to  a  popular  trade  journal  or  presented  at  a  meeting  or   conference.    No  spelling  or  grammatical  errors.   A+  (100-­‐97)      A  (96-­‐93)    A-­‐    (92-­‐90)   Got   the   work   done   and   met   the   specifications   for   the   report.    Good   writing.    Readable   and   somewhat   interesting.     Content   is   reasonably   convincing,   backed   up   by   good   material.     Organization   of   the   paper   could   use   some   improvement.    Hard  to  follow  the  logic.    Minor  spelling  and  grammatical  errors.   B+    (98-­‐86)    B    (85-­‐82)    B-­‐    (81-­‐78)   Wrote   on   the   topic   specified   but   missed   the   specifications   for   the   paper.     Barely   sufficient   research   to   support   the   arguments   and   conclusions.    Writing   style   is   awkward   and   hard   to   follow.     Organizationally   OK   but   frequently   hard   to   determine   what   points   are   being   made.    Arguments   are   weak.     Proof   is   slim   to   none.    Some  spelling  and  grammatical  errors.     C+    (77-­‐74)    C    (73-­‐70)    C-­‐    (69-­‐66)   What   is   written   is   generally   not   on   point.    Hard   to   determine   what   the   person   is   writing  about.    Content  is  marginal.    Mostly  stream-­‐of-­‐consciousness  writing.    Not   well   researched.    Does   not   meet   the   5000   word   minimum.     Many   spelling   and   grammatical  errors.     D+    (65-­‐62)    D    (61-­‐58)    D-­‐    (57-­‐56)   Missed   the   point   of   the   topic.    Content   has   multiple   inaccuracies.    Statements   not   supported.   Organization   of   the   report   is   hard   to   follow.    Conclusions   don’t   follow   the  content.    Poorly  edited.    Does  not  meet  the  5000  word  minimum.      Spelling  and   grammatical  errors  abound.       E    (≤  55)  

ENV6932 Syllabus

7

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

Papers  will  be  graded  based  on  the  quality  of  the  content  and  timeliness  of  delivery.     The  due  dates  for  these  papers  are  listed  in  the  class  schedule.      

ACADEMIC  HONESTY  

All  students  are  expected  to  exhibit  academic  honesty  and  abide  by  the  University’s   Honor   Code.     All   papers   must   represent   a   student’s   own   individual   work   unless   otherwise   directed   by   the   instructor.     Plagiarism   in   writing   assignments   is   not   acceptable  and  violates  the  Honor  Code.  

Please  note  that  the  University  has  provided  me  with  software  that  does  a  very  good   job   in   uncovering   instances   of   plagiarism.     I   have   used   the   software   in   previous   courses  and  have  penalized  students  upon  discovery  that  they  had  copied  the  work   of  others  without  proper  citation.  

DUES  DATES  FOR  HOMEWORK  AND  PAPERS  

All   homework   assignments   and   reports   are   due   on   or   before   the   date   and   time   specified  in  the  Assignments  section  in  the  e-­‐Learning  system.        

COURSE  GRADING  

The  final  grade  will  be  determined  by  an  absolute  method  of  grading  to  allow  you  to   obtain   a   grade   based   on   your   individual   performance   without   having   to   compete   with   each   other.     Under   this   scheme   it   is   possible   for   the   whole   class   to   get   an   A   grade  or,  in  the  extreme  case,  for  the  whole  class  to  get  an  E  grade.    I,  of  course,  hope   that  you  will  work  hard  to  earn  an  A.      

COURSE  CONTENT  

#  

Mod  

Description  

L1.    INTRODUCTION   1

L1.01

2

L1.02

3

L1.03

4

L1.04

Course  Introduction  and  Overview   Why  You  Should  Take  This  Course   What  this  course  is  about.    Why  take  this  course.    What  is  happening  and  why  should  I  be   concerned.  Course  B.H.A.G.     Course  Structure   Organization,  content  and  requirements   Course  outline  and  content  summary.    How  the  course  will  be  run.    Access  to  the  course   instructor  (me).    How  to  get  the  most  out  of  this  course.    How  to  be  successful  in  this   course.    Stories  from  the  built  environment.   A  Short  History  of  Oil   A  harbinger  of  things  to  come?   Birth  of  the  modern  oil  industry.    U.S.  oil  production.    Hubbert’s  Peak.    Who  produces/uses   oil.    Oil  supply  as  a  strategic  issue.    New  technologies.    What  does  this  all  mean  to   sustainable  engineering.   Are  We  Sustainable?     And  just  what  does  it  mean  to  be  sustainable?     Important  concepts  in  sustainability.    What  makes  our  development  sustainable.     Definitions  of  sustainability.    The  production-­‐consumption  model.  

ENV6932 Syllabus

8

Bill Wallace #  

Mod  

5

L1.05

6

L1.06

ENV6932 Principles of Green Engineering Design

Description   The  Production-­‐Consumption  Model:       Visualizing  sustainable  and  unsustainable  systems   How  society  establishes  and  supports  its  quality  of  life.    Relationship  of  natural  capital  and   produced  capital.    Management  of  renewable  and  non-­‐renewable  resources:    the  drivers.     What  it  means  to  be  sustainable  or  unsustainable.   Other  Sustainability  Models   Other  useful  models  and  concepts   Other  sustainability  models  and  concepts  that  you  should  know  about.    Eco-­‐Efficiency.     Eco-­‐Effectiveness.  The  Natural  Step.    Herman  E.  Daly’s  ecological  definition.    The  Five   Capitals  Model.  

L2.    UNDERSTANDING  THE  SITUATION   7

L2.01

8

L2.02

9

L2.03

10

L2.04

11

L2.05

12

L2.06

13

L2.07

14

L2.08

15

L2.09

Spring 2014

Symptoms  of  Non-­‐Sustainability   The  warning  signs  of  change   How  issues  emerge.  Warning  signs:    symptoms  of  non-­‐sustainability.    The  Millennium   Ecosystem  Assessment:    origins,  structure  and  relationship  to  societal  well-­‐being.     The  Consequences  of  Non-­‐sustainability   Relevance  and  importance  to  infrastructure       The  important  findings  and  conclusions  of  the  Millennium  Ecosystem  Assessment.    The   problems  with  non-­‐linear  change.    Relevance  and  importance  of  these  ecosystem   conditions  to  infrastructure.    Ecological  overshoot.   Global  Climate  Change  I   Working  in  the  “New  Normal”   What  is  past  is  no  longer  prologue,  at  least  for  projects  in  the  built  environment.    Non-­‐ sustainability  and  its  effects  on  climate  regulating  services.    Examples.     Global  Climate  Change  II   What  we  know  and  what  we  don't  know   A  climate  change  framework.    The  greenhouse  effect.    What  we  know  and  don't  know   about  climate  change.    Expected  changes.    Confidence  levels.     Global  Climate  Change  III   What  are  the  impacts   What  are  the  impacts  of  climate  change:    ecological,  range  shifts,  timing  of  biological   activity,  arctic  impacts,  local  and  regional.    The  global  climate  change  controversy.   Global  Climate  Change  IV   Infrastructure  impacts   What  are  the  impacts  of  climate  change  specific  to  infrastructure.    Water  cycle.    Energy   supply  and  use.    Transportation.    Interrelationships  of  energy,  land  and  water.    Regional   impacts  for  the  U.S.    Risks  from  extreme  events.   The  Sustainability  Quadrant   Defining  conditions  of  sustainability   Moving  towards  conditions  of  sustainability.    Setting  a  sustainability  objective.    Conditions   of  sustainability.    Two  rough  indicators:    Human  Development  Index  and  the  Ecological   Footprint.    Conditions  for  sustainability:    The  Sustainability  Quadrant.    Where  do  we   stand?  Strategies  and  challenges.   Sustainability  in  the  Developed  Nations   Not  living  within  our  means  (and  loving  it!)   The  world  we  live  in:    characteristics  of  nations  by  level  of  development.    Situation  for  the   developed  nations.    Trends  and  drivers.    Engineering  needs.    Pathway  choices  and   sustainable  design  challenges.   Sustainability  in  the  Developing  Nations   Economic  growth  is  what  matters   Situation  for  the  developing  nations.    Trends  and  drivers.    Engineering  needs.    Pathway   choices  and  sustainable  design  challenges.    Response  of  the  developing  nations.  

ENV6932 Syllabus

9

Bill Wallace #  

16

Mod  

L2.10

ENV6932 Principles of Green Engineering Design

Description   Sustainability  in  the  Underdeveloped  Nations       Survival!   Situation  for  the  underdeveloped  nations.    Trends  and  drivers.    Engineering  needs.     Pathway  choices  and  sustainable  design  challenges.    Actions  to  assist:    Millennium   Development  Goals.    Unconventional  allies  and  collaborations.  

L3.  BECOMING  A  SUSTAINABLE  SOCIETY   17

L3.01

18

L3.02

19

L3.03

20

L3.04

21

L3.05

22

L3.06

23

L3.07

24

L3.08

25

L3.09

Spring 2014

Moving  Towards  Conditions  of  Sustainability     The  Six  Degrees  of  Recognition     How  are  the  concepts,  issues  and  consequences  of  our  unsustainable  form  of  economic   development  being  accepted  and  assimilated?    What  is  the  level  of  comprehension  and   concern?    The  Tragedy  of  the  Commons.   The  Tipping  Point   What  will  it  take  to  become  a  sustainable  society?   What  elements  need  to  be  in  place  and  working  for  us  to  become  a  sustainable  society?     What  is  the  tipping  point  that  when  exceeded  will  allow  significant  progress  to  be  made?   Views  from  the  Skeptics   Is  sustainable  development  a  dubious  solution  in  search  of  a  problem?   Views  from  sustainability  skeptics  and  the  political  right  regarding  sustainable   development.    Bjørn  Lomborg’s  book,  The  Skeptical  Environmentalist.    Response  by  the   experts.   Climate  Change  Scenarios   What  might  the  future  hold?     Definitions  of  mitigation  and  adaptation.    Climate  change  scenario  storylines  and   representative  concentration  pathways  (RCPs).    Temperature  and  moisture  projections.       Climate  Change  Mitigation   Taking  on  the  causes  of  climate  change   Why  mitigation  is  important.    What  happens  if  we  don't.  Key  mitigation  technologies  and   practices  by  sector.    Many  mitigation  strategies  are  “no-­‐brainers.”    Mitigation  through   carbon  sequestration.   Climate  Change  Adaptation   Accommodating  the  changes  in  environmental  and  operating  conditions   Climate  change  adaptation  framework.    Climate  change  adaptation  strategies:    protect,   retreat,  accommodate.    Industry  sector  examples.   Climate  Change  Mitigation  Through  Geoengineering   Can  technology  save  the  day?   Copenhagen  Consensus  takes  aim  at  climate  change.    What  is  geoengineering  (also  known   as  climate  engineering)?    What  are  the  possibilities?    The  promise  and  perils  of   geoengineering  (climate  engineering).    “Plan  B.”   Making  Progress  Towards  Sustainability       Goals,  Objectives  and  Metrics   Sustainability  indicators  development  timeline.    Millennium  Development  Goals:  progress?     Sustainability  rating  systems:    products  and  projects.  Overview  of  the  various   sustainability  measuring  and  rating  systems.    Understanding  of  their  purpose  and  context.   Product  sustainability  measuring  and  rating  systems:      Cradle  to  Cradle  Certification,   Green  Seal,  others.    Project  sustainability  measuring  and  rating  systems:  LEED,  ASPIRE,   CEEQUAL,  Envision™,  others.   Achieving  Conditions  of  Sustainability       What’s  Required?    What  Laws,  Tools  and  Incentives  Are  Available?   Needs  and  choices  for  nations.    Strategies  for  changing  the  trajectories  and  improving   performance.    Laws,  regulations,  policies  and  other  incentives.    Trends,  markets  and   technology  developments  that  are  driving  change.    Assessment  of  the  U.S.  response.  

ENV6932 Syllabus

10

Bill Wallace #  

Mod  

26

L3.10

27

L3.11

ENV6932 Principles of Green Engineering Design

Description   Managing  Extraordinary  Change       Accounting  for  extraordinary  change  in  the  built  environment     Delivering  infrastructure  projects  in  a  changing  operating  environment  requires  a   different  approach.    Need  to  account  for  changes  in  standard  design  variables,  new   design  variables,  secondary  and  tertiary  effects,  many  of  which  are  significant  and  not   necessarily  intuitive.    Case  examples:    Flooding  in  the  Tokyo  subways.    The  future  of   downtown  Olympia,  Washington.   Ethics,  Roles  and  Responsibilities     What  are  the  roles  and  responsibilities  of  the  engineer  in  sustainable  design?       Sustainability  and  engineering  ethics.  How  are  we  doing  so  far?    To  what  extent  are  they   different  from  the  normal  roles  and  responsibilities?  Seven  important  roles  that  engineers   can  and  should  play  on  projects  in  the  built  environment.    The  engineer  as  a  technological   gatekeeper.    

L4.  ACTIONS  BY  INDUSTRY  AND  GOVERNMENT   28

L4.01

29

L4.02

30

L4.03

31

L4.04

32

L4.05

33

L4.06

34

L4.07

Spring 2014

Sustainability  Market  Drivers   What  is  industry  doing  and  why  are  they  doing  it?   Five  emerging  trends  and  forces  shaping  Industry.  How  industry  is  responding.    The  three   industry  drivers  for  sustainability:    reputation,  opportunity  and  necessity.    Examples.   The  Sustainable  Value  Framework   How  companies  are  embracing  sustainability  and  creating  shareholder  value   The  virtue  matrix:    enhancing  brand  and  reputation  and  creating  strategic  advantage.  The   four  elements  of  shareholder  value.    Responding  to  the  five  emerging  trends  and  forces   shaping  Industry.   Companies  Embracing  Sustainability  I     Eight  companies  for  which  sustainability  is  an  element  of  their  corporate  strategy   The  Corporate  Knights  Global  100  most  sustainable  corporations.    How  they  are  ranked.     Additional  companies  and  their  approach  to  sustainability:    Royal  Phillips  Electronics  (The   Netherlands),  HCL  Technologies  Ltd.  (India),  Ford  Motor  Company  (USA),  General  Electric   (USA),  BT  plc.  (UK),  Interface  Carpet  Corporation  (USA),  Walmart  (USA),  New  Belgium   Brewing  (USA).   Companies  Embracing  Sustainability  II   Spotlight  on  New  Belgium   New  Belgium  Brewing  Company  and  Its  commitment  to  sustainability.    Policies  and   practices.    Its  culture.  Advocacy.  Relation  to  the  community.    Is  this  a  recipe  for  success,  or   is  it  greenwashing  on  steroids!    Videos  of  New  Belgium  news  stories,  employees  and   company  activities.       Corporate  Social  Responsibility   Doing  well  by  doing  good   Corporate  Social  responsibility  (CSR)  definition  and  characteristics.    ISO  26000.    Trends   and  drivers  for  CSR.  Expansion  of  an  organization's  responsibilities.  Valuing  CSR   programs.    The  business  case  for  CSR.    Examples.   Environmental  Justice   Requirements  for  fair  treatment  and  meaningful  involvement  of  communities   What  is  environmental  justice?    What  are  its  goals?    Timeline  of  civil  rights  and   environmental  justice  legislation.    Relationship  to  infrastructure  in  the  built  environment.     Tools  for  issue  analysis.   Structural  Change   Raising  industry  standards  for  sustainable  performance   Structural  change:    revisiting  the  Virtue  Matrix.    How  various  industry  groups  are  forming   alliances  to  improve  industry  practice  regarding  sustainability.    Examples  of  what  these   groups  are  doing  and  why.    Chemical  Manufacturing:    Responsible  Care®.    Sustainable   Forestry  Initiative.  

ENV6932 Syllabus

11

Bill Wallace #  

Mod  

35

L4.08

36

L4.09

37

L4.10

38

L4.11

39

L4.12

40

L4.13

41

L4.14

ENV6932 Principles of Green Engineering Design

Spring 2014

Description   Green  Buildings   Improving  the  sustainability  performance  of  buildings   What  is  a  green  building.    Impacts  of  buildings  on  resources  and  the  environment.   Opportunities  for  performance  improvement.  Barriers  to  green  buildings.   Considerations  in  Green  Building  Design   Ways  to  improve  operational  performance   Design  considerations:    Energy  efficiency  and  renewable  energy,  direct  and  indirect   environmental  impacts,  resource  conservation  and  recycling,  indoor  environmental   quality,  community  issues.    Eco-­‐effectiveness.    Benefits  of  commissioning.    Building   information  modeling  (BIM).         Conserving  Water  Resources   Setting  the  scale  of  the  issue   Global  water  footprint.    Water  usage  by  sector.    Stress  on  blue  water  resources.    Global   water  scarcity:    physical  and  economic.    Consequences.    Water  issues  in  the  U.S.:    problems   and  responses.    Impacts  from  climate  change.    Global  vulnerabilities.   Sustainable  Urban  Water  Management     Managing  water  as  a  system   Sustainable  urban  water  resource  goals.    Dealing  with  urban  water  infrastructure  as  a   system.    Advanced  water  and  wastewater  technologies.   Making  Transportation  Systems  Effective   Providing  efficient  mobility  and  access   The  Denver  light  rail  system:    my  story.    Evolution  of  transportation  technology.     Importance  of  transportation  systems.    Problems  in  access  and  mobility.    Impacts  of   transportation  systems.   Addressing  the  Issues  of  Sustainable  Transportation   Reducing  the  impacts  and  increasing  resiliency   Addressing  the  issues  of  sustainable  transportation.    Transportation  and  GHG  reduction:    a   four-­‐legged  stool.    Context-­‐sensitive  solutions.  Rethinking  transportation.   Improving  Our  Energy  Systems   Addressing  climate  change  and  energy  security     U.S.  energy:    sources,  supplies,  consumption.    Prospects  for  the  future.    What  will  the  21st   century  bring?    Energy  as  a  critical  issue  for  the  U.S.  and  the  world.    What  is  required.  

L5.  INNOVATION  IN  SUSTAINABLE  ENGINEERING   42

L5.01

43

L5.02

44

L5.03

Innovation  and  Sustainable  Development     Changing  operating  conditions  as  a  disruptive  anomaly   What  is  innovation?    What  innovations  are  needed  in  sustainable  design?    Innovation   processes  and  outcomes.    Creating  an  environment  for  innovation.    Examples:  Amory   Lovins:    tunneling  through  the  cost  barrier.    Paul  Polak:    designing  for  the  other  90%.   Industrial  Ecology  and  By-­‐Product  Synergy   Innovations  in  industry       Industrial  ecology  definition.    Evolution  of  industrial  systems:    Types  I,  II  and  III.     Kalundborg  Park.    By-­‐product  Synergy  (BPS):  history,  example  applications,  process.   Biomimicry   Innovation  inspired  by  living  systems       Biomimicry:    definition,  taxonomy.    Nature’s  design  criteria.    Examples:    products,  process   and  infrastructure  designs  based  on  designs  from  nature.  

L6.  APPROACHES,  TOOLS  AND  TECHNIQUES   45

L6.01

Sustainable  Engineering  Design  Tools   A  survey   Overview  of  the  range  of  tools  available  in  the  context  of  the  required  sustainable   engineering  services.    Examples  of  several  design  tools,  e.g.,  life  cycle  analysis,  carbon   footprinting.    Examples  of  several  personal  tools.    How  and  where  to  get  more  information.  

ENV6932 Syllabus

12

Bill Wallace #  

Mod  

46

L6.02

47

L6.03

48

L6.04

49

L6.05

50

L6.06

51

L6.07

52

L6.08

53

L6.09

54

L6.10

55

L6.11

ENV6932 Principles of Green Engineering Design

Description   Environmental  Life  Cycle  Assessments  I   Four  phases  and  three  types     What  is  a  life  cycle  assessment  (LCA).  Stages  of  analysis.    Evolution  of  LCAs.    Conducting  an   environmental  LCA.    The  four  phases:    goal  and  scope  definition,  inventory  analysis,  impact   assessment  and  interpretation.    Types  of  LCA’s:  baseline,  comparative,  streamlined.   Environmental  Life  Cycle  Assessments  II   LCA  inventory  analysis   LCA  inventory  analysis:    process  or  input-­‐output.    Hybrid  inventory  analysis.    Examples.     Available  LCA  software  tools.   Social  Life  Cycle  Assessments   Systematically  assessing  the  social  impacts     Definition  of  social  LCAs.    What  are  social  impacts.  Differences  between  environmental   LCAs  and  social  LCAs.  What  aspects  to  assess.    Social  “hot  spots.”    Conducting  an  inventory   analysis.    Impact  assessment  and  interpretation.   Sustainable  Product  Design   Applying  the  principles  of  whole  systems  design  to  products     Sustainable  Product  Design.  Whole  systems  design.    Lightweighting  and  materials   reduction.  Designing  for  a  lifetime.    Design  for  durability,  repair  and  upgrade,  disassembly   and  recycling.  Energy  use  in  design.  Reducing  energy  losses  in  design.   Leadership  in  Energy  and  Environmental  Design  (LEED)   A  sustainability  rating  system  for  buildings   The  U.S.  Green  Building  Council.    Evolution  of  green  building  design.    Why  buildings?    Why   LEED?    Architecture:    the  2030  Challenge.    Green  building  benefits.       The  LEED  Certification  System   How  it  works   Description  of  LEED.    LEED  3.0  certification.    Achieving  LEED  credits.    Project  examples.     LEED  certification  process.    LEED  pros  and  cons.   Performing  Sustainability  Audits   Five  types  of  audits  and  their  application     What  is  a  sustainability  audit.    Five  types  of  sustainable  audits:    their  purpose  and   application.     Greenhouse  Gas  Emissions  Reporting   Conventions  and  inventories  and  protocols,  oh  my!   GHG  protocols  and  treaties.    International  GHG  emissions  reporting.    U.S.  GHG  inventory   reporting  rules  and  registries.    California’s  cap  and  trade  program.    Rules  and  targets.     Results.   Carbon  Footprinting   Conducting  a  GHG  inventory  using  the  GHG  Protocol   GHG  Protocol  standards.    GHG  accounting  and  reporting  principles.    Setting  operational   boundaries.  Steps  in  identifying  and  calculating  GHG  emissions.    Sources  of  information.     Tools  for  calculating  your  personal  carbon  footprint.   Sustainability  Performance  Reporting   The  GRI  Guidelines   The  Global  Reporting  Initiative  (GRI).    Why  report  on  sustainable  performance.    Evolution   of  sustainable  reporting.    The  CERES  Principles.    The  GRI  guidelines.    An  evaluation  of  an   organization’s  contribution  to  sustainability.  

L7.  CHANGING  THE  ENGINEERING  DESIGN  PARADIGM   56

L7.01

Spring 2014

Sustainable  Design  for  a  Changing  Operating  Environment  I   The  sustainable  infrastructure  project  challenge   The  sustainable  infrastructure  project  challenge:    3  components:    meet  the  project  owner’s   needs,  requirements  and  specifications,  contribute  to  improved  sustainable  performance,   account  for  a  changing  operating  environment.  

ENV6932 Syllabus

13

Bill Wallace #  

Mod  

57

L7.02

58

L7.03

59

L7.04

ENV6932 Principles of Green Engineering Design

Description   Sustainable  Design  for  a  Changing  Operating  Environment  II   Handling  changing  operating  conditions   Account  for  a  changing  operating  environment,  considerations.    Identify  and  address   significant  changes  in  operating  conditions.    Adapt  to  new  operating  conditions  in  the   design.    Observe  and  adjust  to  actual  conditions.    Improve  overall  system  performance.   Sustainable  Project  Management   Managing  projects  to  improve  sustainable  performance     What’s  a  project.    How  to  deliver  projects  that  address  new  and  changing  operating   conditions  in  the  built  environment.    Standard  project  management  vs.  sustainable  project   management.    Use  of  stage  gate  reviews.   Envision™  Sustainable  Infrastructure  Rating  System   Recognizing  infrastructure  projects  for  their  contribution  to  sustainability     Envision™  scope  and  purpose.    Design  basis.    Organization  and  structure.    System   components.    Project  sustainability  assessment,  verification  and  recognition.  

L8.  PROSPECTS  FOR  A  SUSTAINABLE  FUTURE   60

L8.01

61

L8.02

62

L8.03

63

L8.04

64

L8.05

65

L8.06

Spring 2014

Renewable  Energy  deployment   The  three  challenges  to  solve…  simultaneously   What  is  the  expected  energy  mix  in  2040?    How  much  will  be  renewable  energy?    What  is   needed  to  increase  the  mix.    Renewable  energy  taxonomy.  Prospects  for  wind,  solar,  others.     Energy  storage.    Energy  efficiency.   Creating  Sustainable  Cities  I   The  city  as  an  efficient  form  of  human  habitat     What  is  a  city?.    Increasing  global  urbanization.    Importance  of  cities.    Elements  of  a   sustainable  city.   Creating  Sustainable  Cities  II     The  challenges   Four  challenges  in  creating  sustainable  cities:    technical,  financial,  organizational  and   public  policy.   Green  City  Development   Sectorial  strategies  for  sustainable  growth  and  development     New  opportunities  for  cities  created  by  a  shift  to  sustainability.    Sectorial  strategies:  How   cities  are  taking  advantage  of  these  opportunities.    Types  of  sectorial  strategies.    City   response  to  climate  change.    Ranking  cities  based  on  sustainability  criteria.   Becoming  a  Sustainable  Society   A  business-­‐focused  roadmap  to  2050   A  business  as  usual  outlook  to  2050.    WBCSD’s  Vision  2050:    directions  to  a  sustainable   world.    The  pathway  to  2050:    nine  elements.    “Must  haves”  by  2020.    Moving  from  vision  to   action.    Risks  to  achieving  vision  2050.   Course  Wrap  Up   Brief  summary  of  the  course   Here’s  what  we  covered  in  the  course..  Here’s  what  we  didn’t  cover.    The  B.H.A.G.  revisited.     Best  10  books  on  sustainability  (my  nominations).    Goodbye  and  good  luck!  

END  OF  THE  COURSE  

 

ENV6932 Syllabus

 

14

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

OTHER  REFERENCES  YOU  MAY  FIND  HELPFUL  (ordered  by  publication   date)  

Bill  McKibben,  Eaarth:  Making  a  Life  on  a  Tough  New  Planet,  Henry  Holt  and   Company,  LLC,  New  York,  2010.   Al  Gore,  Our  Choice:    A  Plan  to  Solve  the  Climate  Crisis,  Rodale,  Emmaus,  PA  (2009).   Ernst  von  Weizsäcker,  et  al.,  Factor  Five:    Transforming  the  Global  Economy  Through   80%  Improvements  in  Resource  Productivity,  Earthscan,  London  (2009)   Daniel  Goleman,  Ecological  Intelligence,  Broadway  Books,  New  York  (2009)   Alden  Schendler,  Getting  Green  Done,  Perseus  Group,  New  York  (2009)   Thomas  L.  Friedman,  Hot,  Flat,  and  Crowded:  Why  We  Need  a  Green  Revolution-­‐-­‐and   How  It  Can  Renew  America,  Farrar,  Straus  and  Giroux,  New  York  (2008)   Daniel  Esty  &  Andrew  Winston,  Green  to  Gold:  How  Smart  Companies  Use   Environmental  Strategy  to  Innovate,  Create  Value,  and  Build  Competitive  Advantage,   John  Wiley  &  Sons,  Hoboken,  NJ  (2006)   Tim  Flannery,  The  Weather  Makers:  How  Man  Is  Changing  the  Climate  and  What  It   Means  for  Life  on  Earth,  Text  Publishing  Company,  Melbourne,  Australia  (2005)   Bill  Wallace,  Becoming  Part  of  the  Solution:    The  Engineer’s  Guide  to  Sustainable   Development,  American  Council  of  Engineering  Companies,  Washington,  DC(2005)     Kent  Portney,  Taking  Sustainable  Cities  Seriously,  Massachusetts  Institutes  of   Technology,  Cambridge,  MA  (2003)   J.  F.  Rischard,  High  Noon:    20  Global  Problems;    20  years  to  Solve  Them,  Basic  Books,   New  York,  2002   William  McDonough  &  Michael  Braungart,  Cradle  to  Cradle,  North  Point  Press,  New   York  (2002)   Natural  Capitalism,  Paul  Hawken,  Amory  Lovins,  &  L.  Hunter  Lovins,  Little,  Brown  &   Company,  Boston  (1999)   Janine  M.  Benyus,  Biomimicry:  Innovation  Inspired  by  Nature,    William  Morrow,  New   York  (1997)  

 

ENV6932 Syllabus

 

15

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

INSTRUCTOR  BIO   William  A.  Wallace,  M.  ASCE,  ENV  SP   1400  Overlook  Drive,  Steamboat  Springs,  Colorado,  USA  80487   Tel  +1(970)879-­‐1122,  Fax  +1(970)871-­‐7923,  Mobile  +1(970)819-­‐2188   Email:      [email protected]  |  [email protected]     Website:    http://wallacefutures.com    

William  A.  (Bill)  Wallace  is  a  recognized  leader  in  the  field   of  sustainability,  serving  on  several  national  and   international  professional  society  committees,  and   operating  a  successful  consulting  practice  in  sustainable   engineering.    His  book,  Becoming  Part  of  the  Solution:    The   Engineer’s  Guide  to  Sustainable  Development,  has  been  a   “best  seller”  for  the  American  Council  of  Engineering   Companies  (ACEC).    Currently,  he  is  the  lead  designer  for   Envision™,  a  sustainable  infrastructure  rating  system,   sponsored  by  the  Institute  for  Sustainable  Infrastructure   (ISI)  and  the  Zofnass  Program  for  Sustainable   Infrastructure  at  the  Harvard  University  Graduate  School  of  Design.    Bill’s  work  has   been  nominated  by  the  American  Society  of  Civil  Engineers  (ASCE)  for  the  U.S.   National  Medal  for  Technology  and  Innovation.  

Bill  served  as  a  Liaison  Delegate  to  the  World  Business  Council  for  Sustainable   Development,  an  international  organization  of  over  200  multi-­‐national  companies,   all  with  a  shared  commitment  to  sustainability.    He  currently  is  a  member  of  the   board  of  GeoEngineers,  Inc.,  and  a  member  of  the  Board  of  the  International  Society   of  Sustainability  Professionals  (ISSP).    He  also  served  as  the  President  and  Member   the  Governing  Board  of  Engineers  Without  Borders-­‐USA,  and  a  Member  of  the  Board   of  Engineers  Without  Borders-­‐International.   Bill  is  a  frequent  lecturer  on  sustainable  development  engineering  at  leading   universities  and  professional  associations.    He  has  been  an  invited  lecturer  at  the   University  of  Florida  (Ohanian  Lecture  Series),  Carnegie-­‐Mellon  University   (Distinguished  Lecturer  Series)  and  Clarkson  University.      Bill  is  currently  an   instructor  for  the  University  of  Florida’s  Electronic  Delivery  of  Graduate   Engineering  (EDGE)  program,  teaching  “Principles  of  Green  Engineering  Design  and   Sustainability.”    This  is  a  “gateway”  course  leading  to  a  sustainable  engineering   certificate.    Bill  has  also  designed  and  delivered  other  popular  sustainable   engineering  courses  including  ACEC’s  4-­‐day  “Green  Infrastructure  and  Sustainable   Communities”  course,  and  the  ISI  accreditation  courses  for  Envision™  Sustainability   Professionals  (ENV  SP)  and  ISI  Verifiers.    Bill  is  currently  designing  and  delivering  a   new  on-­‐line  course,  “Fundamentals  of  Sustainable  Engineering,”  an  ASCE  course   leading  to  a  certification,  Certified  in  Sustainable  Infrastructure  Practices  (CSIP).   Bill  has  over  40  years  of  professional  experience,  including  30  years  in  the  field  of   environmental  engineering  and  management.    He  spent  21  years  at  CH2M  HILL   holding  various  senior  management  positions  including  a  three-­‐year  term  on  the  

ENV6932 Syllabus

16

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

board  of  directors.    Bill  directed  the  firm’s  hazardous  waste  management  group  and   assisted  in  its  development  into  national  leader  in  hazardous  waste  site   remediation.    On  multiple  occasions,  he  was  invited  to  give  testimony  to  U.S.   Congressional  committees  on  the  use  of  innovative  technologies  in  hazardous  waste   site  cleanup.    He  also  pioneered  the  use  of  the  observational  method  in  expediting   the  site  cleanup.    Bill  also  started  the  firm’s  sustainable  engineering  practice  and  led   the  company’s  foray  into  the  Olympic  Games,  providing  environmental  and  support   services  to  Atlanta,  Sydney,  Salt  Lake  City  and  Beijing.  

Bill  received  a  B.S.  degree  in  Chemical  Engineering  from  Clarkson  University  and  has   served  on  the  University’s  Engineering  Advisory  Council  for  over  10  years.    He   received  an  M.S.  in  Management  from  Rensselaer  Polytechnic  Institute  and   completed  the  Harvard  Business  School  Advanced  Management  Program  (AMP104).   Clarkson  University   Potsdam,  New  York   BS,  Chemical  Engineering  

Education   Rensselaer  Polytechnic  Institute   Troy,  New  York   MS,  Management  

Harvard  Business  School   Cambridge,  Massachusetts   Advanced  Management  Program  (AMP  104)  

Papers,  Presentations   Authored  over  60  technical  papers,  presentations  and  invited  Congressional   testimony  covering  subjects  such  as  hazardous  waste  management,  environmental   technology,  engineering  standards,  and  sustainable  development.   • • • • • • • •

Professional  Memberships   GeoEngineers,  Inc.,  Seattle,  Washington,  Member  of  the  Board  of  Directors   International  Society  of  Sustainability  Professionals,  Member  of  the  Board  of   Directors   World  Business  Council  for  Sustainable  Development,  Past  Liaison  Delegate   International  Federation  of  Consulting  Engineers  (FIDIC),  Past  Chairman  of  the   Sustainable  Development  Committee   American  Society  of  Civil  Engineers,  member  of  the  Committee  on  Sustainability   Environmental  Business  Action  Coalition,  Past  President     Engineers  Without  Borders-­‐USA,  Past  President     Engineers  Without  Borders-­‐International,  former  member  of  the  Board  

Community  Activities   • Clarkson  University,  Former  member  of  the  Engineering  Advisory  Committee   • Member  of  the  Yampa  Valley  Sustainability  Council   • Member  of  the  Steamboat  Springs  Stormwater  Task  Force  

Awards  Received   • Colorado  Association  of  Black  Professional  Engineers  and  Scientists  (CABPES)   Recognition  Award  (Helped  the  organization  prepare  their  first  strategic  plan).   ENV6932 Syllabus

17

Bill Wallace

ENV6932 Principles of Green Engineering Design

Spring 2014

• Colorado  Law  Enforcement  Association  Meritorious  Citizenship  Award  (Came  to   the  rescue  of  a  woman  who  was  being  assaulted).     • Hazardous  Waste  Action  Coalition  Service  Award  (President)   • U.S.  Environmental  Protection  Agency,  Bronze  Medal  (Branch  Chief  of  RCRA   Enforcement  Program,  development  of  enforcement  policies  and  programs)   • George  A.  Hogaboom  Best  Paper  Award,  American  Electroplaters’  Society  

ENV6932 Syllabus

18