Pathological Cardiac Hypertrophy and Failure: Redox Mechanisms

Pathological Cardiac Hypertrophy and Failure: Redox Mechanisms George J. Rozanski, Ph.D. Department of Cellular and Integrative Physiology University...
Author: Edwin Neal
0 downloads 0 Views 3MB Size
Pathological Cardiac Hypertrophy and Failure: Redox Mechanisms

George J. Rozanski, Ph.D. Department of Cellular and Integrative Physiology University of Nebraska Medical Center

Learning objectives • Distinguish between physiological and pathological hypertrophy of the heart • Identify major sources of ROS in the heart that underlie hypertrophy and failure • Identify redox-sensitive targets of ROS that mediate pathological hypertrophic signaling • Define the anti-hypertrophic roles of thioredoxin (Trx) and glutaredoxin (Grx)

What is cardiac hypertrophy? • Adaptive/maladaptive enlargement of the heart in response to increased hemodynamic stress.

Dorn GW, Hypertension 49:962-970, 2007

Physiological vs pathological hypertrophy

Hypertrophic cardiomyopathy

Barry SP, Biochem Cell Biol 40:2023-2039, 2008

Myocardial infarction (MI)

Multiple factors underlying hypertrophy

Dorn GW, Hypertension 49:962-970, 2007

Oxidative stress and heart hypertrophy/failure

Rozanski GJ, In: Redox Biochemistry, Wiley Interscience, pp 204-211, 2008

ROS and GSH in myocytes from hypertrophied hearts A

30

B

Sham Post-MI

5

*

4

[GSH] (amol/ m )

3

Fluorescence (counts/ m )

TEMPO-9-AC 3

20

10

B

Sham Post-MI

5

0 Sham Post-MI

10

3

20

4

[GSH] (amol/ m )

3

Fluorescence (counts/ m )

mBCl *

3

2

1

0

2

1

0

A 30 ; Post-MI

3

0

*

Sham Post-MI

Physiological vs pathological hypertrophy: signaling

PIP2 , phosphatidylinositol bisphosphate DAG, diacylglycerol PKC, protein kinase C

Modified from Dorn GW, Hypertension 49:962-970, 2007

Pathological signaling; redox-sensitive steps

JNK/p38/NF-κB

Gene expression

Modified from Sirker A, et al., Am J Nephrol 27:649-660, 2007

Ang II, Angiotensin II ET-1, Edothelin-1 Nox, NAD(P)H oxidase ASK-1, Apoptosis signal regulating kinase-1 JNK, c-Jun N-terminal kinase NF-κB, Nuclear factor-κB NFAT, Nuclear factor of activated T-cells

NADPH oxidase (NOX) generation of ROS

JNK/p38/NF-κB

Gene expression

Wu S, et al., Free Radic Biol Med 39:1601-1610, 2005

NOX isoforms

- Nox1, vascular smooth muscle - Nox2, cardiomyocytes, endothelial cells, fibroblasts and inflammatory cells - Nox3, not reported in the cardiovascular system - Nox4, all cardiovascular cell types - Nox5, human endothelial cells/vascular smooth muscle

Sirker A, et al., Am J Nephrol 27:649-660, 2007

Chronic Ang II vs aortic banding (pressure overload)

Hu P, et al., Am J Physiol Heart Circ Physiol 285:H1261-H1269, 2003

NOX2-/-

Byrne JA, et al., Circ Res 93:802-805, 2003

NOX4 up-regulated by aortic banding

Byrne JA ,et al., Circ Res 93:802-805, 2003

ROS activation of Ras

JNK/p38/NF-κB

Gene expression

Cys 118 in Ras / / / / /

Elk-1

NFAT

MEF2

Hypertrophy Mallis RJ, et al., Biochem J 355:145-153, 2001

Thiol oxidation of Ras by α-adrenergic agonist A

B

Kuster GM, et al., Circulation 111:1192-1198, 2005

Inhibition of cell hypertrophy by Trx1

Kuster GM, et al., Circulation 111:1192-1198, 2005

Ras activation by mechanical stretch (strain)

Pimentel DR, et al., J Mol Cell Cardiol 41:613-622, 2006

Inhibition of Ras activation by Grx1 over-expression

Pimentel DR, et al., J Mol Cell Cardiol 41:613-622, 2006

Strain, Ras and hypertrophy

ROS activation of ASK1

JNK/p38/NF-κB

Gene expression

Thioredoxin system in hypertrophied LV NADPH → TrxR1 → Trx1 → Protein

B

Sham (5) Post-MI (6)

0.4

C

Sham (4) Post-MI (3)

12 0.3

10

*

8 6 4

* 0.2

0.1

2 0

0.0

Activity

Li X ,et al., Am J Physiol Heart Circ Physiol 295: H416-H424, 2008

mRNA Relative Expression

14

TrxR/GAPDH

TrxR Activity (U/mg protein)

A

1.2

Sham (3) Post-MI (4)

1.0 0.8 0.6 0.4

*

0.2 0.0

Protein

mRNA

ASK1-Trx1 binding A

B B 1.2

SE

1.0

Sham Post-MI Sham Post-MI ASK1 IP: ASK1 WB: Trx1

O.D. (Relative to Sham)

LV

Sham (4) Post-MI (4) Post-MI + IGF-1 (4) Post-MI + AF + IGF-1 (4)

0.8

* 0.6

*

0.4 0.2 0.0 IGF-1, Insulin-like growth factor-1 AF, Auranofin (TrxR inhibitor)

Tang K, et al., Antiox Redox Signal 14: 25-35, 2011

Effect of IGF-1 on JNK and p38 activity B

A

Post-MI

Sham NT

IGF

Sham

Post-MI NT

AF + IGF

IGF

AF + IGF

p-ATF-2

p-c-Jun Jun

* 3

2

8

6

*

4

**

1

2

0

0

Tang K, et al., Antiox Redox Signal 14: 25-35, 2011

Sham (6) Post-MI (6) Post-MI + IGF-1 (6) Post-MI + AF + IGF-1 (6)

*

*

4

Relative JNK Activity

10

Relative p38 Activity

5

Sham (4) Post-MI (4) Post-MI + IGF-1 (4) Post-MI + AF + IGF-1 (4)

Redox regulation of ASK1-JNK-p38 signaling

NF-κB and hypertrophy

JNK/p38/NF-κB

Gene expression Hall G, et al., J Mol Cell Cardiol 41:580-591, 2006

Redox-sensitive step(s) in NF-κB activation

ROS

PP2A

Kinases

ASK-1 NIK MEKK-1

Phosphatases

NIK, NF-κB inducing kinase MEKK-1, MAP kinase kinase-1 IKK, IκB kinase IκB, Inhibitory protein

Role of TRP14 in hypertrophy?

Jeong W, et al., Free Radic Biol Med 47:1294-1303, 2009

TRP14, Thioredoxin-related protein 14 LC8, Dynein light chain 8 DPI, Diphenyleneiodonium BHA, Butylated hydroxyanisol

Redox control of gene repressors/activators

JNK/p38/NF-κB

HAT, histone acetyltransferase HDAC, histone deacetylase TF, transcription factor

Gene expression Backs J, et al., Circ Res 98:15-24, 2006

Redox active Cys667/669 in HDAC4

NLS, Nuclear localization signal NES, Nuclear export sequence PE, Phenylephrine (α-adrenergic agonist)

Ago T, et al., Cell 133:978-993, 2008

Nuclear export of HDAC4 stimulated by CaMKII

Backs J, et al., J Clin Invest 116:1853-1864, 2006

Redox-sensitive Met 281/282 in CaMKII

Erickson JR, et al., Cell 133:462-74, 2008

Oxidation/phosphorylation of HDAC4

Ago T, et al., Cell 133:978-993, 2008

Summary

Cys 118 Trx1 (Ang II) Grx1 (stretch) Trx1

JNK/p38/NF-κB

HDAC4 (Cys 667/669) Trx1/TBP-2 HDAC4 (Thr 287) CaMKII (Met 281/282) MsrA (Trx1)

Kinases/Phosphatases (IKK) TRP14 (LC8) Gene expression

References • Dorn GW. The fuzzy logic of physiological hypertrophy. Hypertension 49:962-970, 2007. • Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Biochem Cell Biol 40:2023-2039, 2008. • Rozanski GJ. Role of Oxidative Stress in Chronic Heart Failure. In: Redox Biochemistry, Banerjee R ed., Wiley Interscience, pp 204-211, 2008. • Sirker A, Zhang M, Murdoch C, Shah AM. Involvement of NADPH oxidase in cardiac remodeling and heart failure. Am J Nephrol 27:649660, 2007. • Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gebner R. Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39:1601-1610, 2005. • Byrne JA, Grieve DJ, Bendall JK, Li J-M, Gove C, Lambeth JD, Cave A, Shah AM. Contrasting roles of NADPH oxidase isoforms in pressureoverload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802-804, 2003. • Mallis RJ, Buss JE, Thomas JA. Oxidative modification of H-ras: S-thiolation and S-nitrosation of reactive cysteines. Biochem J 355:145153, 2001. • Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS. α-Adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192-1198, 2005. • Pimentel DR, Adachi T, Ido Y, Heibeck T, Jiang B, Lee Y, Melendez JA, Cohen RA, Colucci WS, Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 41:613-622, 2006. • Li X, Tang K, Xie B, Li S, Rozanski GJ. Regulation of Kv4 channel expression in failing rat heart by the thioredoxin system. Am J Physiol Heart Circ Physiol 295:H416-H424, 2008. • Hall G, Hasday JD, Rogers TB. Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol 41:580-91, 2006. • Jeong W, Jung Y, Kim H, Park SJ, Rhee SG. Thioredoxin-related protein 14, a new member of the thioredoxin family with disulfide reductase activity: Implication in the redox regulation of TNF-α signaling. Free Radic Biol Med 47:1294-1303, 2009. • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15-24, 2006. • Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest:1853-1864, 2006. • Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978-993, 2008. • Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME. A dynamic pathway for calciumindependent activation of CaMKII by methionine oxidation. Cell 133:462-74, 2008.

Suggest Documents