Mechanical Properties of Fatsin Relation to their Crystallization

Mechanical Properties ofFatsinRelationtotheir Crystallization Promotor: dr.ir.P.Walstra emiritus-hoogleraar indezuivelkunde Co-promotor dr.ir.T.v...
Author: Robert Nichols
0 downloads 4 Views 8MB Size
Mechanical Properties ofFatsinRelationtotheir Crystallization

Promotor:

dr.ir.P.Walstra emiritus-hoogleraar indezuivelkunde

Co-promotor

dr.ir.T.vanVliet universitairhoofddocent levensmiddelennatuurkunde, werkzaambij het departementLevensmiddelentechnologie enVoedingswetenschapen

i\jLC*?r

i 'J ^ -^'-.

W. Kloek

Mechanical Properties ofFatsinRelation totheir Crystallization

Proefschrift terverkrijging vandegraadvandoctor opgezagvanderector magnificus vandeLandbouwuniversiteit Wageningen, dr.C.M. Karssen, inhetopenbaarteverdedigen opdinsdag22september 1998 desnamiddagstevieruurindeAula.

\bH

n-.^a\A

CIP-DataKoninklijke Bibliotheek, DenHaag Kloek,W. Mechanicalpropertiesoffatsinrelationtotheircrystallization/W. Kloek,-[S.I.:s.n.] ThesisWageningen.-Withref.-WithsummaryinDutch ISBN90-5485-947-4 Subjectheadings:fat/crystallization/rheology

Omslagillustratie: JeanineLanen

Thisresearchwasco-financed byTNONutrition andFoodResearchInstitute.

BIBLIOTHEEK LANDBOUWUNIVERSITEIT WAGENINGEN

»i,oli •e x p ^ J

with f (ß',ß) does occur, even with some preference for the ßpolymorph, while after crystallizing in the ß' polymorph no transition to the ß polymorph occurs. This may probably be due to the formation of compound crystals. Extensive compound crystal formation in the a polymorph leads to a large difference in chemical potential difference between the a polymorph and the most stable ß polymorph and therefore to a driving force for recrystallization. Formation of compound crystals in the ß' polymorph is less extensive and therefore the driving force for recrystallization is smaller. Furthermore the Gibbs-activation energyfordissolutionwillbehigherfortheß'polymorphcomparedtothea polymorph

4.3.3 Crystallization kinetics The crystallization kinetics of dispersions, containing 6, 8, 10, 12 or 14 % HP/SF at initial supersaturations rangingfrom2.25 to4.00instepsof0.25,were determined byp-NMR. Figure 4-6 shows the determined crystallization curves of 12 %HP/SF dispersions at various initial Inyo.It is clear that the induction time for crystallization increased with decreasing initial supersaturation. This canbe explained by the strong dependence ofthenucleation rate on supersaturation according to Equations 4-5 and 4-7. The final fraction of solid fat increased with increasing initial supersaturation duetothedecreaseofsolubility asexpectedfromEquations4-2 and4-3. To model crystallization kinetics, one has to know the relation between crystal growth rate and supersaturation. To obtain the supersaturation as function of time we fitted the crystallization curves to a modified Gompertz equation. This fit yields an analytical expression that gives the supersaturation asafunction oftime. TheGompertz equation is often used to described microbial growth but it can also beused to describe the crystallization process asthere are several analogues withbacterial growth: production of bacteria - nucleation and growth of crystals; consumption of nutrients - decrease of supersaturation. Thereparameterized Gompertzequationisgivenby(Zwieteringetal.(1990)):

Crystallization kineticsoffully hydrogenatedpalmoilinsunflower oil solutions

67

fractionsolids (-) 0.12

1000

2000

3000

4000

5000

time (s) Figure4-6. Isothermal crystallization curves of 12 % HP/SF dispersions at various initial supersaturations.Solidlinesarefitted usingtheGompertz equation. Supersaturation: U 2.25,+2.50, * 2.75,0 3.00,A3.25.

s

( 0 =5max-exp

Suggest Documents