Mass Analyzers Lecture Notes Trapping Analyzers

Mass Analyzers Trapping analyzers

Quadrupole ion trap

Fourier transform ion cyclotron resonance

Orbitrap

1

Mass Analyzers Quadrupole ion trap (3D trap)

Quadrupole ion trap Detector

r0

z0

Ion Source

2

Quadrupole ion trap

“Infinite” hyperbolic electrodes

Actual electrodes

3

Quadrupolar Field and Equations for Ion Trap Φx,y,z = [U + V cos(Ωt)]

x2 + y2 – 2z2 r02 + 2z02

Quadrupolar Field and Equations for Ion Trap Φx,y,z = [U + V cos(Ωt)]

x2 + y2 – 2z2 r02 + 2z02

use cylindrical coordinate system: x = r cosθ; y = r sinθ; z = z

Φr,z = [U + V cos(Ωt)]

r2cos2θ + r2sin2θ – 2z2 r02 + 2z02

Φr,z = [U + V cos(Ωt)]

r2 – 2z2 r02 + 2z02

. . .

4

Quadrupolar Field and Equations for Ion Trap d2u + [ax – 2qxcos(2ξ)]u= 0 dξ2 ξ=

Ωt 2

az =

-16eU m (r02 +2z02)Ω2

Mathieu equation

qz =

u = r, z

8eV m (r0 +2z02)Ω2 2

Regions of z motion stability – curve down Regions of r motion stability – curve up Regions of ion stability – intersection of curves

Quadrupole ion trap Mathieu Stability Diagram 0.3 0.2 0.1

q = 0.908 (when a=0)

βr = 0

0.0 -0.1

az

βz = 1

-0.2 -0.3

βz = 0

-0.4 -0.5 -0.6

βr = 1

-0.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

qz

5

Quadrupole ion trap Ion Secular Frequency (ω)

iso β lines

qz = - 2qr =

8eV m (r02 +2z02)Ω2

ω = βΩ 2

• Ion’s secular frequency is m/z dependent and is dependent on main drive rf voltage

Quadrupole ion trap Ion Secular Frequency (ω)

2

6

2

ω = βΩ 2

6

Quadrupole ion trap Ion Secular Frequency (ω)

Example

q = 0.4; a = 0 Ω = 1.1 MHz ω = 154 kHz

Quadrupole ion trap Ion Secular Frequency (ω) Ion Excitation/Ejection • Excitation or ejection of ions can be accomplished by applying single frequencies or broadband waveforms that are in resonance with an ion’s secular frequency

A single m/z is excited by the application of a single frequency

Multiple m/z’s are excited by the application of a broadband signal

7

Quadrupole ion trap Mass Selective Instability Scan az

q = 0.908 qz

Scan rf

az

q = 0.908

Scan rf

qz

Quadrupole ion trap Mass Selective Instability Scan Effect of He

no helium

helium

8

Quadrupole ion trap Mass Selective Instability Scan Resonance Ejection az |rf Amplitude|

qz

Scan rf

6 – 15 Vp-p frequency depends on instrument

Quadrupole ion trap Mass Selective Instability Scan Resolution 100000

40000 Ion Abundance

Ion Abundance

80000 60000 40000 20000 0

30000 20000 10000 0

646

648

650

m/z

652

Scan rate = 52,000 Da/s

654

646

648

650 m/z

652

654

Scan rate = 8,100 Da/s

9

Quadrupole ion trap (2D trap) y DC 1

DC 2

DC 3

DC 1

DC 2

DC 3

z

Axial Trapping DC1, DC3 ~ 130 V DC2 ~ 3 V

y

y

RF +

x

x

RF -

y

r0

RF -

x

RF +

x rods = +V cos(Ωt) y rods = -V cos(Ωt)

Radial Quadrupolar Trapping 1.2 MHz 5 KV0-P

Quadrupole ion trap (2D trap)

10

Quadrupole ion trap (2D trap) Great trapping capacity

Quadrupole ion trap (2D trap) Great trapping capacity 3D Trap

Phase Window for Successful Trapping of Injected Ions

2D Trap

11

Mass Analyzers Fourier Transform Ion Cyclotron Resonance (FTICR)

Magnetic field influences ions in 2 dimensions B Ion‘s initial velocity

+

vp vo ion spirals out unimpeded

12

Magnetic field influences ions in 2 dimensions TRAPPING PLATE

B

Vt

vp

+

vo

Vt TRAPPING PLATE

Magnetic field influences ions in 2 dimensions use of trapping plates introduce magnetron motion

Magnetron motion

B

Magnetic field Cyclotron motion

Trapping motion

13

FTICR – Ion Detection Image Current

+ Amplifier

-

FTICR – Ion Detection Image Current

+ Amplifier

Excitation

-

14

FTICR – Ion Detection Excitation

Power Spectrum

Amplitude

Amplitude

Frequency Sweep

FFT

Frequency

Time

SWIFT

FTICR – Ion Detection Fourier Transform of Image Current Transient signal

T

frequency spectrum

time-to-frequency conversion (FT) frequency-to-m/z conversion

Frequency, Hz

�~

� �

��

m/z

15

FTICR Ion Flight Paths For radius .01 m

250 m/z

500 m/z

1000 m/z

9.4 T

81000 mi/hr 22.5 mi/s

40577 mi/hr 11.3 mi/s

20289 mi/hr 5.6 mi/s

7T

60435 mi/hr 16.8 mi/s

30218 mi/hr 8.4 mi/s

15108 mi/hr 4.2 mi/s

40578 mi/hr 11.3 mi/s

20289 mi/hr 5.6 mi/s

10145 mi/hr 2.8 mi/s

4.7 T

FTICR High vacuum needed Good Performance

Performance Reduction

Experiment not Possible

Stable Confinement

Severe Line Broadening

Unstable Trapping Condition

10-10 10-8 -9 10-2 -3 10

Pressure (Torr) 4 mm

.5 meters

.5 football fields

5 football fields

3 miles

300 miles

Mean free path

16

Mass Analyzers Orbitrap r z

dc

Filter and ADC

FFT

Preamp

Orbitrap Electrostatic Field and Equation

17

Orbitrap Electrostatic Trapping

(r,φ)

(r,z)

Orbitrap Ion Detection

ω=

k m/ z

18

Orbitrap – Ion Detection Fourier Transform of Image Current Transient signal

T

frequency spectrum

time-to-frequency conversion (FT) frequency-to-m/z conversion

Frequency, Hz

� �~ �

��.�

m/z

Orbitrap vs. FTICR Resolution comparison

19

Hybrid Mass Analyzers

Quadrupole – Time-of-flight (QTOF)

20

3D Quadrupole ion trap – Time-of-flight Shimadzu IT-TOF

Quadrupole – Linear (2D) Quadrupole Ion Trap Q0

Q1

Q2

Q3 LIT

SCIEX QTRAP 5500

• can act as regular quadrupole mass analyzer or linear ion trap • linear ion trap is operated with axial ejection of ions instead of radial ejection (as we talked about with the 2D quadrupole ion trap)

21

Quadrupole – Orbitrap

Thermo Q‐Exactive

Linear (2D) Quadrupole Ion Trap – Orbitrap

Thermo Orbitrap Velos

1

Linear (2D) Quadrupole Ion Trap – Orbitrap

Thermo Orbitrap Fusion

Linear (2D) Quadrupole Ion Trap – FTICR

Thermo LTQ-FT

23

Quadupole – FTICR

Bruker Solarix

24