Hardy Weinberg Principle

Hardy‐Weinberg Principle • Population genetics ‐ study of properties of  genes in populations • Hardy‐Weinberg ‐ original proportions of   genotypes i...
Author: Osborn Davis
2 downloads 0 Views 2MB Size
Hardy‐Weinberg Principle • Population genetics ‐ study of properties of  genes in populations • Hardy‐Weinberg ‐ original proportions of   genotypes in a population will remain  constant from generation to generation – Sexual reproduction (meiosis and fertilization)  alone will not change allelic (genotypic)  proportions. 1

Hardy‐Weinberg Principle • Necessary assumptions Allelic frequencies would remain constant if… – population size is very large – random mating – no mutation – no gene input from external sources – no selection occurring

2

FREQUENCY OF ALLELES IN THE POPULATIONS ≈ FREQUENCY OF ALLELES IN  GAMETES 

A

a

A

AA

Aa

a

Aa

aa

3

FREQUENCY OF ALLELES IN THE POPULATIONS ≈ FREQUENCY OF ALLELES IN  GAMETES 

A

a 0,9

A

AA 0,9

Aa 0,81

Aa

a 0,1

0,1

0,09 aa

0,09

0,01

4

FREQUENCY OF ALLELES IN THE POPULATIONS ≈ FREQUENCY OF ALLELES IN  GAMETES  

A

a 0,9

0,1 p

A

Aa

AA 0,9

q 0,09

0,81 p2

p a

Aa 0,1

aa 0,09

q

pq 0,01

pq

q2 5

FREQUENCY OF ALLELES IN THE POPULATIONS ≈ FREQUENCY OF ALLELES IN GAMETES  

a

A 0,9

0,1 p

A

Aa

AA 0,9

q 0,09

0,81 p2

p a

Aa 0,1

aa 0,09

q

0,01 pq

AA  2Aa  aa 

pq

0,81  p2 0,18  2pq 0,01  q2

q2

6

Hardy‐Weinberg Equilibrium

Population of cats n=100 16 white and 84 black bb = white B_ = black Can we figure out the allelic frequencies of individuals BB and Bb?

7

Hardy‐Weinberg Principle • Calculate genotype frequencies with a binomial  expansion (p+q)2 = p2 + 2pq + q2 • p2 = individuals homozygous for first allele • 2pq = individuals heterozygous for alleles • q2 = individuals homozygous for second allele

8

Hardy‐Weinberg Principle 2 2 p + 2pq + q and

p+q = 1 (always two alleles) 16 cats white = 16bb then (q2 = 0.16) This we know we can see and count!!!!! If p + q = 1 then we can calculate p from q2 square root of q2  = q          √.16     q=0.4 p + q = 1 then     p=1‐q      p = .6   (.6 +.4 = 1) p2 = .36 All we need now are those that are heterozygous (2pq)  (2 x .6 x .4)=0.48 • .36 + .48 + .16 = 1  

• • • • • • •

9

Hardy‐Weinberg Equilibrium

10

Five Agents of Evolutionary Change • 1‐Mutation – Mutation rates are generally so low they have  little effect on Hardy‐Weinberg proportions of  common alleles. • ultimate source of genetic variation

11

Severe Autosomal Recessive disease

12

• 2‐Gene flow – movement of alleles from one population to  another • tend to homogenize allele frequencies

13

Migrations

14

14

Five Agents of Evolutionary Change • 3‐Nonrandom mating – assortative mating ‐ phenotypically similar  individuals mate • Causes frequencies of particular genotypes to differ  from those predicted by Hardy‐Weinberg.

15

Five Agents of Evolutionary Change • 4‐Genetic drift – statistical accidents. •

Random fluctuations in the frequency of the appearance of a gene in a small  isolated population, presumably owing to chance rather than natural selection.

– Frequencies of particular alleles may change by chance  alone. • important in small populations – founder effect ‐ few individuals found new population (small allelic  pool) – bottleneck effect ‐ drastic reduction in population, and gene pool  size

16

Genetic Drift ‐ Bottleneck Effect

17

5‐Five Agents of Evolutionary Change

• Selection – Only agent that produces adaptive evolutionary change – artificial ‐ breeders exert selection  – natural ‐ nature exerts selection

• variation must exist among individuals • variation must result in differences in numbers of viable  offspring produced • variation must be genetically inherited – natural selection is a process, and evolution is an outcome

18

Five Agents of Evolutionary Change • Selection pressures: – avoiding predators – matching climatic condition – pesticide resistance

19

Natural Selection Biston Betularia

1848

Rare black animals

1900

20

Severe Autosomal Recessive disease

21

Next generation

Severe Autosomal Recessive disease

A

a

A

a

AA

81

162

‐‐

162

Aa

18

18

18

18

‐‐

2  

‐‐

180

20

180

18

180/200

20/200

180/198

18/198

.9

.1

.91

.09

aa

1  lethal 100

AA

.91 x .91

.828

Aa

2 x .91 x .09

.164

aa

.09 x .09

.008

18

22

Heterozygote Advantage • Heterozygote advantage will favor  heterozygotes, and maintain both alleles  instead of removing less successful alleles  from a population.

23

Measuring Fitness • Fitness is defined by evolutionary  biologists as the number of surviving  offspring left in the next generation. – relative measure • Selection favors phenotypes with the greatest fitness.

24

Selection and H-W population analysis • Natural selection is caused by differential fitness • Fitness (w) is a measure of a genotype’s success at contributing to the next generation Survival or viability (v) Reproduction or fecundity (f) Fitness

w = (v)(f)

25

Single locus, 2 alleles Alleles

A1

A2

Genotype

A1A1

A1A2

A2A2

Frequency

p2

2pq

q2

Absolute fitness*

w11

w12

w22

Mean fitness of population

w = p2 w11 + 2pq w12

+ q2 w22

*calculated directly from survival and viability data

26

Result if w11 < w12 > w22 Heterozygous advantage (overdominance)

27

Heterozygous Advantage w11=0.60

w12=1.00

w22=0.60

Intense selection without change in allele frequency!

28

Heterozygote Advantage in man – Sickle cell anemia • Homozygotes exhibit severe anemia,  have abnormal blood cells, and usually  die before reproductive age. • Heterozygotes are less susceptible to  malaria.  29

The Plasmodium life cycle

30

Sickle Cell and Malaria

31

32

Deleterious recessive alleles may, in some cases, provide a small benefit to heterozygotes Phenylketonuria (PKU) autosomal recessive

Heterozygous advantage in PKU seems to operate via protection against mycotoxins produced by Aspergillus and Penicillium that infest stored foods. Mild, wet climate of Ireland and W Scotland encourages mold growth; these areas have suffered repeated famines during which moldy food were eaten. Heterozygous (PKU) women have lower spontaneous abortion rate.

Solution? Test early. Treat w/ low-protein diet. 33

Classic PKU is caused by a complete or near-complete Deficiency of phenylalanine hydroxylase activity; without dietary restriction of phenylalanine, most Children with PKU develop profound and irreversible intellectual disability. PAH deficiency can be diagnosed by newborn screening in virtually 100% of cases based on detection of hyperphenylalaninemia using the Guthrie assay on a blood spot obtained from a heel prick.

34

PKU Diet >> No mental retardation - aa will reproduce 1/10.000 incidence of the disease Aa 1/50 in the population aa x AA >>>>

Aa 100%

Expected phenotype >>> normal, but 35

Aa x AA >>> Aa the Maternal PKU Collaborative Study reports that even at maternal plasma Phe concentrations of 120-360 µmol/L, 6% of infants are born with microcephaly and 4% with postnatal growth retardation. If maternal plasma Phe concentrations are greater than 900 µmol/L, the risk is 85% for microcephaly, 51% for postnatal growth retardation, and 26% for intrauterine growth retardation. The risk for these abnormalities is both dose and time dependent. 36

The abnormalities that result from exposure of a fetus to high maternal plasma Phe concentration are the result of 'maternal HPA/PKU' . The likelihood that the fetus will have congenital heart disease, Intrauterine and postnatal growth retardation, microcephaly, and intellectual disability depends upon the severity of the maternal HPA and the effectiveness of the mother's dietary management.

37

Population

PAH Deficiency in Live Births

Carrier Rate

Citation

Turks

1/2,600

1/26

Ozalp et al [1986]

Irish

1/4,500

1/33

DiLella et al [1986]

Northern European heritage, East Asian

1/10,000

1/50

Scriver & Kaufman [2001]

Japanese

1/143,000

1/200

Aoki & Wada [1988]

Finnish, Ashkenazi Jewish

1/200,000

1/225

Scriver & Kaufman [2001]

African

~1/100,000

?

Anecdotal

38

Cystic fibrosis, (CF), AR disease, affects lungs, sweat glands and digestive system. It is caused by the malfunction of the CFTR protein, which controls intermembrane transport of chloride ions, which is vital to maintaining equilibrium of water in the body. The malfunctioning protein causes viscous mucus to form in the lungs and intestinal tract. In the past children born with CF had a life expectancy of only a few years, now increased to adulthood. However, even in these individuals, male and female, CF typically causes sterility. It is the most common genetic disease among people of European descent. Approximately 1/25 persons of European descent is a carrier, and 1 in 2500 to 3000 children born is affected by cystic fibrosis.

39

In CF carriers, survivorship is influenced in relation to diseases involving loss of body fluid, typically due to diarrhea. The most common of them is cholera, patients often die of dehydration due to intestinal water losses. In a mouse model of CF the heterozygote (carrier) mouse had less secretory diarrhea than normal, non-carrier mice. Thus resistance to cholera explained the selective advantage to being a carrier for CF and why the carrier state was so frequent. A second theory is that CF mutation provides resistance to tuberculosis, which was responsible for 20% of all European deaths between 1600 and 1900, so even partial protection against the disease could account for the current high gene frequency.

40

Aa frequency

Risk for affected children

Incidence of disease

1/30

1/30 x 1/30 x 1/4

1/3,600

1/50

1/50 x 1/50 x 1/4

1/10,000

1/100

1/100 x 1/100 x 1/4 1/40,000

If I know the incidence of the disease, I can calculate easily the number of Aa in the population 41

I I:1

I:2

II II:1

II:2

II:3 II:2

II:3 1/10,000

1 x 1/50 x 1/4

1/200 affected

II:3 II:2  status not known

199/200 unaffected

1/10,000 2/3 x 1/50 x1/4

1/300 affected

299/300 unaffected

42