Energy efficient transfer of carbon dioxide from flue gases to microalgal systems

Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016 Energy efficient tr...
Author: Victoria Lloyd
3 downloads 0 Views 482KB Size
Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

Energy efficient transfer of carbon dioxide from flue gases to microalgal systems Qi Zheng,a,b Gregory J. O. Martin,b and Sandra E. Kentish*a a.

Peter Cook Centre for CCS Research, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. E-mail: [email protected] b. Algal Processing Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.

SUPPLEMENTARY INFORMATION

Table S1 Specifications of the PDMS membrane contactors Membrane Material Supplier Membrane type Supporting layer Fibre inside diameter (µm) Fibre outside diameter (µm) Fibre Wall Thickness (µm) Number of fibres per flask (n) Membrane surface area per flask (m2) Membrane Length (m)

din dout l A

PDMS (Silicone) Airrane Composite membrane Polysulfone 300 450 PDMS layer 0.5µm 40 0.0226 0.4

Table S2 Microalgae growth rates reported in the literature. Microalgae species

This study

References

Reactor types

Gas transfer type

Chlorella sp.

500 mL conical flask

CO2 loaded solvent through PDMS membrane

Microalgae species

Reactor types

Gas transfer type

Scenedesmus obliquus SJTU-31

modified Erlenmeyer flask

200 mL min-1, gas distributor

Scenedesmus obliquus2

2L conical flask photobioreactor

540 mL min-1

Scenedesmus sp.3

Bioreactor

flue gas

Chlorella pyrenoidosa SJTU-21

modified Erlenmeyer flask

200 mL min-1, gas distributor

Chlorella kessleri2

2L conical flask photobioreactor

540 mL min-1

Chlorella vulgaris LEB-1044 Chlorella vulgaris3 Chlorella vulgaris5 Botryococcus braunii SAG-30.814 Spirulina platensis LEB-524 Dunaliella tertiolecta SAG-13.864 Botryococcus braunii3

11L BioFlo Fermenter Bioreactor vertical tubular photobioreactor 11L BioFlo Fermenter 11L BioFlo Fermenter 11L BioFlo Fermenter Bioreactor

a ring sparger flue gas porous stone sparger a ring sparger a ring sparger a ring sparger flue gas

CO2 loading

Max. biomass concentration (g L-1)

Maximum dry weight biomass productivity (Pmax) (g L-1·d-1)

0 0.2 0.5 0.7

0.16 0.9 1.63 1.77

0.021±0.01 0.11±0.01 0.38±0.01 0.39±0.02

CO2 concentration (%)

Max. biomass concentration (g L-1)

Maximum dry weight biomass productivity (Pmax) (g L-1·d-1)

0.03 5 10 20 30 50 0.038 6 12 18 10 0.03 5 10 20 30 50 0.038 6 12 18 5 10 6 5 5 5 10

1.05 1.8 1.84 1.65 1.03 0.82 1.11 1.1 1.14 1.12 3.13 0.87 1.44 1.55 1.22 0.95 0.69 1.45 0.98 0.8 0.88 1.94 not reported 1.31 3.11 2.18 2.15 3.13

0.083 0.158 0.155 0.134 0.081 0.056 0.064 0.085 0.076 0.074 0.217 0.065 0.133 0.144 0.121 0.075 0.054 0.090 0.087 0.086 0.061 0.31 0.104 0.14 not reported 0.73 0.42 0.026

Fig. S1 The factors influencing microalgae growth in different loadings (a) control, (b) 0.2 loading, (c) 0.5 loading, (d) 0.7 loading. Different shading indicates different growth phases. Lag phase (grey shadow), ‘unlimited’ (no shading), carbon limited (backslash), nitrogen limited (grey shadow with slash), nitrogen and light limited (diamond line). Results are the mean of duplicate experiments and error bars show the range of the duplicates.

Fig. S2 Images of a hollow fibre membrane (a) unused; (b) after exposure to algal growth for 16 days, with potassium carbonate 0.5 loading on the lumen side; (c) after algal growth and then washing with water

Table S3 Life cycle energy and greenhouse gas emission in other published studies. Fuel source

Authors

Fossil energy requirement (MJ/MJ diesel)

Fossil energy requirement (GJ/ton diesel)

GHG emission (gCO2e/MJ diesel)

GHG emission (ton CO2-e/ ton diesel )

0.17

6.5

19.3

0.713

Open pond, anaerobic digestion of residual algal biomass

5.4

199.5

320

11.919

Air lift Tubular Bioreactor, anaerobic digestion of residual algal biomass

1.3

48.4

80

2.98

Open ponds, anaerobic digestion of residual algal biomass

0.7

26

33

1.23

Open pond, hydrothermal liquefaction of residual algal biomass

0.37-1.83

13.6-68.2

60.8-129

2.26-4.8

Stephenson et al.6

Algae derived biodiesel

Gao et al.7

Liu et al.8

Notes

Open pond, using virgin CO2 from reforming of hydrocarbons Anaerobic digestion of residual algal biomass

Biodiesel high heat value 37.2MJ/kg6 was used in the table to normalize the functional unit 1. 2. 3. 4. 5. 6. 7. 8.

D. H. Tang, W. Han, P. L. Li, X. L. Miao and J. J. Zhong, Bioresource Technol, 2011, 102, 3071-3076. M. G. de Morais and J. A. V. Costa, Energ Convers Manage, 2007, 48, 2169-2173. C. Yoo, S. Y. Jun, J. Y. Lee, C. Y. Ahn and H. M. Oh, Bioresource Technol, 2010, 101, S71-S74. E. B. Sydney, W. Sturm, J. C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey and C. R. Soccol, Bioresource Technol, 2010, 101, 5892-5896. M. G. De Morais and J. A. V. Costa, Biotechnology letters, 2007, 29, 1349-1352. A. L. Stephenson, E. Kazamia, J. S. Dennis, C. J. Howe, S. A. Scott and A. G. Smith, Energ Fuel, 2010, 24, 4062-4077. X. Gao, Y. Yu and H. Wu, ACS Sustainable Chemistry & Engineering, 2013, 1, 1371-1380. X. Liu, A. F. Clarens and L. M. Colosi, Bioresource Technol, 2012, 104, 803-806.