ECE 342 Solid State Devices & Circuits. 17. Differential Amplifiers

ECE 342 Solid‐State Devices & Circuits 17. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschu...
Author: Noreen Daniels
1 downloads 1 Views 2MB Size
ECE 342 Solid‐State Devices & Circuits 17. Differential Amplifiers

Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

ECE 342 – Jose Schutt‐Aine

1

Background • Differential Amplifiers – The input stage of every op amp is a differential amplifier – Immunity to temperature effects – Ability to amplify dc signals – Well-suited for IC fabrication because – (a) they depend on matching of elements – (b) they use more components

– Less sensitive to noise and interference – Enable to bias amplifier and connect to other stage without the use of coupling capacitors

ECE 342 – Jose Schutt‐Aine

2

Differential Amplifiers • Practical Considerations – Both inputs to a differential amplifier may have different voltages applied to them – In the ideal situation with perfectly symmetric stages, the common-mode input would lead to zero output – Temperature drifts in each stage are often common-mode signals – Power supply noise is a common-mode signal and has little effect on the output signal

ECE 342 – Jose Schutt‐Aine

3

MOS Differential Pair  Assume current  source is ideal  Transistors  should not enter  triode region

ECE 442 – Jose Schutt‐Aine

4

Common-Mode Operation

 Input voltage  vcm to both gates  Difference in  voltage between  the two drains is  zero

ECE 442 – Jose Schutt‐Aine

5

Differential Input Voltage

 Differential pair  responds to  differntial input  signals by providing  corresponding  differential output  signal between the  two drains.

ECE 442 – Jose Schutt‐Aine

6

MOS Differential Pair Assume current source is ideal vID=vgs1-vgs2 Output is collected as vD2-vD1

ECE 342 – Jose Schutt‐Aine

7

MOS Differential Pair - If vID is positive, vD2-vD1 is positive vID>0  vgs1>vgs2 ID1 > ID2 vD1 lower voltage point than vD2 For proper operation, MOSFETS should not enter triode region

ECE 342 – Jose Schutt‐Aine

8

DC Analysis IRD VD1  VDD  2 ID 

VGS

CoxW 2L

VGS  VT 

LI  VT  CoxW

2

IRD VD 2  VDD  2 I ID  2

VSQ

ECE 342 – Jose Schutt‐Aine

 LI    VT   CoxW  

9

Incremental Analysis 1 1 vg 2  vcm  vid vg1  vcm  vid 2 2 Neglecting the body effect

vin vo1   g m R 2

vin vo 2  g m R 2

R  RD || rout

vo 2  vo1 AD   g m RD' vin

' D

' D

' D

ECE 342 – Jose Schutt‐Aine

10

Frequency Response

When driven by a low-impedance signal source, the upper corner frequency is determined by the output circuit

f high

1  2 Cout RD'

ECE 342 – Jose Schutt‐Aine

11

Common-Mode Rejection Ratio

vo1 vo 2 RD   1 vicm vicm  2 RSS gm

Assume RSS >> 1/gm

ECE 342 – Jose Schutt‐Aine

12

Common-Mode Rejection Ratio (a) For single-ended output:

vo1 vo 2 RD   vicm vicm 2 RSS Acm

RD 1  , Ad  g m RD 2 RSS 2

Ad CMRR   g m RSS Acm ECE 342 – Jose Schutt‐Aine

13

Common-Mode Rejection Ratio (b) For differential output:

vo 2  vo1 Acm  0 vicm vo 2  vo1  g m RD Ad  vid CMRR   ECE 342 – Jose Schutt‐Aine

14

BJT Differential Pair

Assume perfect match between the devices and symmetry in the circuit

ECE 342 – Jose Schutt‐Aine

15

BJT Differential Pair Rin  2r Base currents:

vin iin  2r vin ib1  2r

R  rout1 || Rc1  rout 2 || Rc 2 ' C

Rc1  Rc 2  RC vin ib 2  2r

ECE 342 – Jose Schutt‐Aine

16

BJT Differential Pair – Incremental Model ' v r g R vo1   g m v 1RC'   g m RC' in    m C vin 2 r ' v r g R vo 2  g m v 2 RC'  g m RC' in   m C vin 2 r ' Single-ended gain of first stage: AS 1   g m RC Double-ended differential gain (with vout=vo2-vo1): ' C

gm R AD  2

g  

' C

mR

2

g

ECE 342 – Jose Schutt‐Aine

m

R  ' C

R

' C

r 17

BJT Differential Pair – General RB1  RB 2  RB RC1  RC 2  RC

Rin  2 RB  2 RE    1  2r AD 

 RC'

RE    1  r  RB

ECE 342 – Jose Schutt‐Aine

18

Differential Amplifiers - Observations • Observations – The differential pair attenuates the input signal of each stage by a factor of one-half cutting the gain of each stage by one-half – The double-ended output causes the two singleended gains to be additive – Thus, the voltage gain of a perfectly matched differential stage is equal to that of a single stage

ECE 342 – Jose Schutt‐Aine

19

Remarks on Differential Amplifiers 1. In many applications, the differential amplifier is not fed in a complementary fashion 2. Rather, the input signal may be applied to one of the input terminals while the other terminal is grounded 3. In this case, the signal voltage at the emitters will not be zero and thus the resistor REE will have an effect on the operation 4. However, if REE is large (REE >> re) as is usually the case, vid will still divide equally between the 2 junctions 5. The operation of the differential amplifier will still be almost identical to that of the symmetrical feed and the CE equivalence can still be employed ECE 342 – Jose Schutt‐Aine

20

Common Mode RC 2  RC  RC RC1  RC Can show that

vc1  vicm

vc 2  vicm ECE 342 – Jose Schutt‐Aine

 RC 2 REE  re

  RC  RC  2 REE  re 21

BJT Diff Pair - Common Mode vo  vc1  vc 2  vicm

Acm 

RC 2 REE  re

Acm 

RC 2 REE  re



RC 2 REE

 RC RC 2 REE



RC

ECE 342 – Jose Schutt‐Aine

22

Example - I

=100 Collector resistance accurate within 1% Early voltage = 100V

ECE 342 – Jose Schutt‐Aine

23

Example – I (cont’) Emitter current in both transistors is: 0.5 mA

VT 25 mV re    50  I E 0.5 mA Rid  2    1  re  RE   2  101  50  150   40 k 

vid Rid 40    0.8 vsig Rsig  Rid 5  5  40 vo Total resistance in the collectors  vid Total resistance in the emitters ECE 342 – Jose Schutt‐Aine

24

Example - I (cont’) vo 2 RC 2  10    50 3 vid 2  re  RE  2  50  150   10 Overall differential gain:

vo vid vo Ad     0.8  50  40 vsig vsig vid

RC RC Acm   2 REE RC common-mode gain

Where RC is the worst case variation in collector resistance

ECE 342 – Jose Schutt‐Aine

25

Example – I (cont’) 10 Acm   0.02  5  104 2  200 Common-Mode Rejection ratio CMRR

Ad CMRR  20 log Acm 40 CMRR  20 log  98 dB 4 5  10

ECE 342 – Jose Schutt‐Aine

26

Example – I (cont’) Input common-mode resistance: Ricm

Ricm

VA 100 ro    200 k  I / 2 0.5 ro       1  REE ||   101 200 k  ||100k    6.7 M  2 

ECE 342 – Jose Schutt‐Aine

27

Example - II In the circuit shown, the dc bias current is 4 mA. If  = 0.993, RB1 = RB2 = RB3 = 1,000 , RE = 30 , RC = 1.6 k, VCC = 10 V, and VBE(on) = 0.7 V, (a) Calculate the dc collector currents (b) Calculate the dc or quiescent collector voltages (c) Calculate the maximum peak value of vout before serious distortion results (d) Calculate the incremental differential voltage gain of the circuit (e) If the base resistor of Q2 is changed to RB2= 400 , calculate the dc collector current through each device

ECE 342 – Jose Schutt‐Aine

28

Example - II

ECE 342 – Jose Schutt‐Aine

29

Example - II (a) Assuming perfect match between Q1 and Q2, DC bias current will split equally IE1 = IE2 = 2mA. IC=IE=1.986 mA (b) The quiescent collector voltages will equal

VCC  I C RC  10  1.986  1.6  6.82 V (c) Maximum collector voltage is 10 V (at cutoff) minimum is 0 V (at saturation).Therefore, positive peak voltage is 10-6.82 = 3.18 V, and negative peak is 6.82 V p-p voltage = 6.36 V ECE 342 – Jose Schutt‐Aine

30

Example - II (d) The incremental differential voltage gain of the circuit is defined as: Calculate re and 

vout vo 2  vo1 AD   vin vin

26 26 re    13  2 IE

 0.993    142 1   0.007

ECE 342 – Jose Schutt‐Aine

31

Example - II Applying the gain equation and assuming rout >> 1.6 k gives

142  1600 AD   31.8 V / V 143  13  30   1000 (e) The voltage at the node above the dc current source can be found from

V1    I B1RB1  VBE ( on )     1 I B1RE  V2    I B 2 RB 2  VBE ( on )     1 I B 2 RE  ECE 342 – Jose Schutt‐Aine

32

Example - II Effects of non-balance

ECE 342 – Jose Schutt‐Aine

33

Example - II

   1 I B1     1 I B 2  4 mA I B 2  14.8  A

I B1  13.1  A

The corresponding emitter and collector currents are

I E1  1.88 mA I C1  1.86 mA

I E 2  2.12 mA I C 2  2.10 mA

The two quiescent collector voltages are no longer equal, resulting in a nonzero quiescent output voltage

VCQ 2  10  1.6  2.1  6.64 V VCQ1  10  1.6  1.86  7.02 V ECE 342 – Jose Schutt‐Aine

34

Example - II VoutQ  VCQ 2  VCQ1  6.64  7.02  0.38 V Nonzero quiescent voltage serious consequences when this stage is followed by additional gain stages, creating an output offset voltage when the inputs are shorted together

ECE 342 – Jose Schutt‐Aine

35

Nonideal Characteristics Input offset voltage of MOS differential pair

Mismatch can result in a dc output voltage Vo (output dc offset voltage)

Vos=Vo/Ad is input offset voltage ECE 342 – Jose Schutt‐Aine

36

Nonideal Characteristics If Vos is applied (differentially) at the input, a zero voltage difference should result at the output •

Factors contributing to dc offset voltage 1. 2. 3.

Mismatch in load resistance Mismatch in W/L Mismatch in VT

2  Vov RD   Vov  W / L   Vos        VT    2   2 W /L   2 2

ECE 342 – Jose Schutt‐Aine

2

37

Input Offset Voltage for BJT Diff Pair •

Offset results from 1. 2. 3.

Mismatch in RC’s Mismatch in  Mismatch in junction area

2

Vos  VT

ECE 342 – Jose Schutt‐Aine

 RC   I S       RC   I S 

2

38

Offset Current for BJT Diff Amp In a perfectly symmetric differential pair, the 2 input terminals carry equal dc current to support bias I /2 I B1  I B 2   1 Mismatches (primarily from ) make the 2 input dc currents unequal

I os  I B1  I B 2

   I os  I B      ECE 342 – Jose Schutt‐Aine

39

Differential-to-Single-Ended Conversion

ECE 342 – Jose Schutt‐Aine

-

Beyond first stage, signal can be converted from differential to single-ended

-

Simply ignore the drain current in Q1 and eliminate its drain resistor

40

Differential-to-Single-Ended Conversion • Limitations – Factor of 2 (6 dB) is lost in the gain if drain current of Q1 is not used – Much better approach consists of using drain current of Q1 – Active load approach allows to perform conversion without loss of gain by making use of drain current in Q1

ECE 342 – Jose Schutt‐Aine

41

MOS Differential Amp with Active Load Replacing drain resistances with current sources, results in much higher voltage gain and savings in chip area in diff amp

ECE 342 – Jose Schutt‐Aine

42

MOS Differential Amp - Equilibrium

ECE 442 – Jose Schutt‐Aine

43

MOS Differential Amp with Active Load Current mirror action makes it possible to convert the signal to single-ended form without loss of gain.

The differential gain is:

vo Ad   g m  ro 2 || ro 4  vid If ro 2  ro 4  ro

1 Ad  g m ro 2 ECE 342 – Jose Schutt‐Aine

44

MOS Differential Amp with Active Load The active-loaded MOS differential amplifier has a low common-mode gain  high CMRR

The common-mode gain is:

vo ro 4 1  Acm  vicm 2 RSS 1  g m 3ro 3

RSS is internal impedance of current Usually, g m 3ro 3  1 and ro 3  ro 4 source

Acm  

1 2 g m 3 RSS ECE 342 – Jose Schutt‐Aine

45

MOS Differential Amp with Active Load Since RSS is large, Acm will be small

Ad   g m  ro 2 || ro 4    2 g m 3 RSS  CMRR  Acm If ro 2  ro 4  ro and g m 3  g m CMRR   g m ro  g m RSS  ECE 342 – Jose Schutt‐Aine

46

BJT Differential Amp with Active Load

Current mirror & active load

Differential stage

ECE 342 – Jose Schutt‐Aine

47

Active Loaded BJT Pair – Incremental Model

Virtual ground develops at common-emitter terminal

ECE 342 – Jose Schutt‐Aine

48

BJT Differential Amp with Active Load Output resistance is parallel equivalent of the output resistance of the differential pair and the output resistance of the current mirror

The differential gain is:

vo Ad   g m  ro 2 || ro 4  vid If ro 2  ro 4  ro

1 Ad  g m ro 2

The differential input impedance is:

Rid  2r ECE 342 – Jose Schutt‐Aine

49

BJT Differential Amp with Active Load The active-loaded BJT differential amplifier has a low common-mode gain  high CMRR

The common-mode gain is:

vo ro 4 Acm    3 REE vicm It is assumed that , g m 3  g m 4

REE is internal impedance of current source

and r 4  r 3 and ro 3  r 3 , r 4 ECE 342 – Jose Schutt‐Aine

50

BJT Differential Amp with Active Load Ad  3 REE  CMRR    g m  ro 2 || ro 4     Acm  ro 4  If ro 2  ro 4  ro 1 CMRR   3 g m REE 2 For large CMRR, bias current source should have large output resistance REE ECE 342 – Jose Schutt‐Aine

51

Frequency Response of MOS Diff Amp •

Resistively Loaded 1. Resistance RSS is between node S and ground 2. Capacitance CSS is between node S and ground 3. CSS includes Cdb, Cgd, and Csb

ECE 342 – Jose Schutt‐Aine

52

Frequency Response – Differential Half Gain function of differential half will be identical to that of common-source amplifier

ECE 342 – Jose Schutt‐Aine

53

Frequency Response – Common-Mode CSS/2 will form dominant  real‐axis zero at much lower  frequency  Zero dominates frequency  dependence of Acm

Common-mode gain is found by analyzing the effect of a mismatch RD in RD ECE 342 – Jose Schutt‐Aine

54

Frequency Response – Common-Mode RD  RD  Acm ( s )     1  sCSS RSS  2 RSS  RD  Acm picks up a zero on the negative real axis of the complex s-plane. The frequency is Z

1 Z  CSS RSS 1 fZ  2 CSS RSS ECE 342 – Jose Schutt‐Aine

55

Frequency Response – Common-Mode Gain

ECE 342 – Jose Schutt‐Aine

56

Frequency Response – Differential Gain

ECE 342 – Jose Schutt‐Aine

57

Frequency Response – CMRR

ECE 342 – Jose Schutt‐Aine

58

Frequency Response – Actively Loaded MOS

Cm  Cgd 1  Cdb1  Cdb 3  Cgs 3  Cgs 4

Capacitance at input node

CL  Cgd 2  Cdb 2  Cgd 4  Cdb 4  Cload

Capacitance at output node

ECE 342 – Jose Schutt‐Aine

59

Frequency Response – Actively Loaded MOS Cm  1 s    2 g m3 vo 1 Ad ( s )    g m Ro    vid  1  sCL Ro   1  s Cm  g m3  1 First pole: f P1  2 CL Ro Second pole: f P 2 Zero at:

     

g m3 g m3    fT / 2 2 Cm 2  2C gs 3  2 g m3 fZ   fT 2 Cm

Mirror pole and zero occur at very high frequencies ECE 342 – Jose Schutt‐Aine

60

Actively Loaded MOS - Transconductance

ECE 342 – Jose Schutt‐Aine

61

CMOS OP Amp Example In the differential amplifier shown, Q1 and Q2 form the differential pair while the current source transistors Q4 and Q5 form the active loads for Q1 and Q2 respectively. The dc bias circuit that establishes an appropriate dc voltage at the drains of Q1 and Q2 is not shown. The following specifications are desired: differential gain Ad = 80V/V, IREF = 100 A, the dc voltage at the gates of Q6 and Q3 is +1.5V; the dc voltage at the gates of Q7, Q4 and Q5 is –1.5V. The technology available is specified as follows: nCox=3pCox = 90A/V2; Vtn=|Vtp|=0.7V, VAn=|VAp| = 20V. Specify the required value of R and the W/L ratios for all transistors. Also, specify ID and VGS at which each transistor is operating. For dc bias calculations, you may neglect channel-length modulation. Fill in the entries in the table provided to show your results. ECE 342 – Jose Schutt‐Aine

62

CMOS OP Amp Example

ECE 342 – Jose Schutt‐Aine

63

CMOS OP Amp Example I REF

1.5  ( 1.5) 3V  100  A  R  30k  0.1mA R

Drain currents are determined by symmetry and inspection VGS values are also determined by inspection for all transistors except Q1 and Q2. To determine VGS for Q1 and Q2, we do the following: the equivalent load resistance will consist of ro1 in parallel with ro4 for Q1 and ro2 in parallel with ro5 for Q5. Since the ro’s are equal, this corresponds to ro/2. We have:

ro 2 Ad 2  80 g m  Ad  g m    0.4mA / V ro 2 400k  ECE 342 – Jose Schutt‐Aine

64

CMOS OP Amp Example 2I D 2 I D 2  0.05 gm   Vov    0.25 Vov gm 0.4 Take polarity into account for PMOS

VGS 1,2  0.25  VT  0.95 To find W/L ratios, use

2I D W W 2 I D   Cox (VGS  VT )   2L L  Cox (VGS  VT ) 2 taking into account PMOS and NMOS devices separately ECE 342 – Jose Schutt‐Aine

65

CMOS OP-AMP DESIGN TABLE Q1

Q2

Q3

Q4

Q5

Q6

Q7

Units

Cox

30

30

30

90

90

30

90

A/V2

ID

50

50

100

50

50

100

100

A

VGS

-.95

-.95

-1

+1

+1

-1

+1

V

W/L

57.3

57.3

74 1.

12.3

12.3

73.1

24.7

ECE 342 – Jose Schutt‐Aine

66

2-Stage CMOS Op Amp

ECE 342 – Jose Schutt‐Aine

67

2-Stage CMOS Op Amp Two-stage configuration with two power supplies which can range from +/- 2.5 V for 0.5 m technology to +/- 0.9 V for 0.18 m technology. IREF is generated either externally or using on-chip CKT. Current mirror formed by Q5-Q8 supplies differential pair Q1-Q2 with bias current. The W/L of Q5 is selected to control I. The diff pair is actively loaded by current mirror Q3-Q4

ECE 342 – Jose Schutt‐Aine

68

2-Stage CMOS Op Amp Second stage is Q6 which is a CS amplifier for which Q7 is the current source. A capacitor Cc is included for negative feedback to enhance the Miller effect through Q6  compensation. This op amp does not have a low output impedance and is thus not suited for driving a lowimpedance load. The W/L ratios are given and listed below:

W/L

Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

20/0.8

20/0.8 5/0.8

5/0.8

40/0.8

10/0.8

40/0.8

40/0.8

Let I REF  90  A, Vtn  0.7 V , Vtp  0.8 V

 nCox  160  A / V ,  p Cox  40  A / V 2

ECE 342 – Jose Schutt‐Aine

2

69

2-Stage CMOS Op Amp | VA | for all devices  10 V , VDD  VSS  2.5 V •

Voltage Gain

First stage: A1   g m1  ro 2 || ro 4  Since Q8 and Q5 are matched, I = IREF, Q1, Q2, Q3 and Q4 will have I/2 = 45 A. IQ7=IREF = 90 A = IQ6 Let VGS - VT = Vov (overdrive voltage) ECE 342 – Jose Schutt‐Aine

70

2-Stage CMOS Op Amp 1 2 From I D    Cox W / L  Vov 2 We find Vov for each transistor.

2I D Transconductance is: g m  Vov VA ro  ID ECE 342 – Jose Schutt‐Aine

71

2-Stage CMOS Op Amp – Voltage Gain Gain for first stage: A1   g m1  ro 2 || ro 4 

A1  0.3  222 || 222   33.3 V / V Gain for second stage: A2   g m 6  ro 6  ro 7 

A2  0.6 111||111  33.3 V / V Overall dc open loop gain is (-33.3)(-33.3) = 1109 V/V 20 log1109 = 61 dB ECE 342 – Jose Schutt‐Aine

72

2-Stage Op Amp Design Table Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

W/L

20/0.8

20/0.8 5/0.8

5/0.8

40/0.8

10/0.8

40/0.8

40/0.8

ID(A)

45

45

45

45

90

90

90

90

|Vov| (v)

0.3

0.3 0.3

0.3

0.3

0.3

0.3

0.3

|VGS| (v)

1.1

1.1 1.0

1.0

1.1

1.0

1.1

1.1

gm(mA/V)

0.3

0.3 0.3

0.4

0.6

0.6

0.6

0.6

ro(k)

222 222 222

222

111

111

111

111

ECE 342 – Jose Schutt‐Aine

73

2-Stage Op Amp – Frequency Response Incremental Circuit

Gm1  g m1  g m 2 R1  ro 2 || ro 4 , C1  C gd 4  Cdb 4  C gd 2  Cdb 2  C gs 6 ECE 342 – Jose Schutt‐Aine

74

2-Stage Op Amp – Frequency Response Gm 2  g m 6 R2  ro 6 || ro 7 , C2  Cdb 6  Cdb 7  C gd 7  CL CL is the load capacitance (usually large)  C2  C1 Vo Gm1  Gm 2  sCC  R1 R2  1  sA  s 2 B Vid ECE 342 – Jose Schutt‐Aine

75

2-Stage Op Amp – Frequency Response A  C1 R1  C2 R2  CC  Gm 2 R1 R2  R1  R2 

B  C1C2  CC  C1  C2   R1 R2 Transmission zero at s = sZ with

Gm 2 Z  CC Two poles that are the root of the denominator

1  p1  R1CC Gm 2 R2

 p2 ECE 342 – Jose Schutt‐Aine

Gm 2  C2 76

Suggest Documents