Differential Voltage & Current amplifiers

Differential Voltage & Current amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected] Willy Sansen 10-05 031 Tw...
Author: Jean Patterson
6 downloads 0 Views 697KB Size
Differential Voltage & Current amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected] Willy Sansen

10-05 031

Two-transistor circuits iin

IB

iout

2

IB

+ ic

2

- ic

ic

1:B

iout = B iin Current mirror/amp.

vin

vin

2

2

IB

vin

ic = gm 2

Differential Voltage amp. Willy Sansen

10-05 032

Table of contents

‰ Current mirrors ‰ Differential pairs ‰ Differential voltage and current amps

Willy Sansen

10-05 033

Diode-connected MOST IDS

VDS = VGS-VT IDS

VDS = VGS

+ VGS

VDS = VGS

-

saturation

G=D

W IDS = n (VDS-VT) 2 L gm = diDS /dvDS K’

0

VT

VDS Willy Sansen

10-05 034

Current mirror iDS

iin

∆iout vGS

iout M1

M2 1:B

iout = B iin

vDS1 = vGS1 ∆iout iout

=

vDS2

vDS

vDS2 - vDS1 VEL2 Willy Sansen

10-05 035

Improved current mirrors iin

iin

iout

iout

Rin

vDS2 = vDS1 M3

M4

M3

1:B M1

Rout = rDS2 gm4rDS4

1:B M2

1:B

M4

M1

M2 1:B

vOUTmin = vGS+vDS ≈ 0.9+0.2=1.1 V

Feedback T ≈ gm1Rin

Is too large !!! Willy Sansen

10-05 036

Low-voltage current mirror iDS iin

vOUTmin

iout

Rout

vGS1

VB M3

vDS M4

vDS2 = vDS1 M1

M2

Rout = rDS2 gm4rDS4 vOUTmin = vDS2+vDS4 ≈ 0.2 + 0.2 = 0.4 V is low ! Willy Sansen

10-05 037

Examples of low-voltage current mirrors iin

VB M3

M5

iout = iin M4

W/L

W/L

n2

n2

W/L

IB

IB

M3

iout = iin M4

M5

M6

M2

M1

(n+1)2

iin

M2

M1 W/L W/L

Willy Sansen

10-05 038

Low-voltage diode-connected MOST

IB

VDSmin ≈ 0.2 V

Vref ≈ 0.2 V

VRef

Rout = rDS2

+

-

M1

M2

Willy Sansen

10-05 039

Lowest-voltage current mirrors iin

More noise !

M3

iin

iout

M4

iout

M3

M4 + -

- + M1

Better !

M2

M1

vOUTmin ≈ 50 mV

M2

Ref.: Charlon, .., ESSCIRC 2004 Willy Sansen

10-05 0310

Current mirror

iin

iin iout

iin

iout

iout M1

M1

M2

M2 1:B

iout = B iin

1:1

R1 iout iin

=

M1

M2 1:B

R2 R1 R2

iout =

kT/q R

R

ln B

iin iout

Ref.: Widlar, JSSC Aug 69, 184-191 Willy Sansen

10-05 0311

Improved current mirrors iin

iin 2iB

iout

2iB

iout

β M3

iB

iB

M1

iB M2

1:B

Error ~

R

2

β

iB

M1

M2 1:B

R

Error ~

2

β2

Willy Sansen

10-05 0312

Improved current mirrors iin

iin

iout

iout

vCE2 = vCE1 M3

M4

M3 1:B

1:B M1

M2 1:B

M4

M1

M2 1:B

Rout = ro2 gm4ro4 vOUTmin = vBE+vCE ≈ 0.7+0.1= 0.8 V

Ref.: Wilson, JSSC Dec.68, 341-348

Is too large ! Willy Sansen

10-05 0313

Current mirror at high frequencies Rout = rDS

iin iout CDS1 M1 1

M2

CG

iout = B iin

B

CG = (1 + B) CGS + CDS1 BW =

gm 2π (CG+CDS1)

≈ fT

1 (2 + B)

Ref.: Gilbert, JSSC Dec.68, 353-365 Willy Sansen

10-05 0314

Current Miller effect Ai = B

iIN

vIN

1 RIN = gm1

RL vOUT

CM

RS = 1/gm1

M1

M2

RS 1 :

vIN ≈ iIN RS B=

B

gm2 gm1

Ref.: Rincon-Mora, JSSC Jan. 2000, 26-32 Willy Sansen

10-05 0315

Current Miller equivalent circuit Miller effect : RL RS

CM

vOUT

vIN M2

f-3dB =

1 2π RSAv2CM

RS = 1/gm1 f-3dB = fz = -

Av2 = gm2RL 1

2π (1+B)CMRL gm2 2π CM Willy Sansen

10-05 0316

Table of contents

‰ Current mirrors ‰ Differential pairs ‰ Differential voltage and current amps

Willy Sansen

10-05 0317

Voltage differential amplifier VDD RL vo1 CL

Two equal transistors vo2

- + vod

Redefine vin & vo :

CL

vin1

vin2 IB VSS

[

vind = vin1- vin2

[

vod = vo1 - vo2

vinc =

vin1+ vin2 2

voc = ... Willy Sansen

10-05 0318

Voltage differential amplifier : DC VDD IB/2 vo1 CL

RL

IB/2 vo2

- + vod

vin1 = vin2 = 0

CL

vin1

vin2

vo1 = vo2 = VDD - RL IB/2 vod = vo1 - vo2 = 0

IB VSS

Willy Sansen

10-05 0319

Voltage differential amplifier : AC Gain VDD io1 vo1 CL vin1

RL

io2

Differential input voltage

vo2

- + vod

vind = vin1- vin2

CL

v Circular current ic = gm ind

ic

vin2 vind

vind 2

2

vod = 2 RL ic

2

IB VSS

vod = gm RL Av = vind Willy Sansen

10-05 0320

Voltage differential amplifier VDD io1 vo1 CL

RL

io2 vo2

- + vod

Av = gm RL Same as single-tr. !!

CL

ic

Independent of :

vin1

vin2 IB VSS

Noise on VDD : PSRRDD Noise on VSS : PSRRSS Noise on Ground : CMRR Willy Sansen

10-05 0321

CMOS Voltage differential amplifier : DC range VDD io1 vo1

RL

vod

io2 RLIB

- +

vo2

vod

vind

slope gmRL

0

ic

-RLIB

vin1

√2 (VGS -VT)

vin2 IB VSS

VGS -VT sets slope and range and …. Gain ! Willy Sansen

10-05 0322

Bipolar Voltage diff. amplifier : DC range VDD io1 vo1

RL

vod

io2

-1% at 6kT/q

RLIB

- +

vo2

vod

vind

slope gmRL

0

ic

-RLIB

vin1

vin2 IB VSS

kT/q sets slope and Gain and range Insert RE to increase range ! Willy Sansen

10-05 0323

MOST Voltage diff. amplifier : large input signals iOd IB

=

vId (VGS-VT)

1-

1 4

(

vId VGS-VT

)2

vId is the differential input voltage iOd is the differential output current (gmvId) or twice the circular current gmvId /2 IB is the total DC current in the pair Note that gm =

IB VGS - VT

= K’ W/L (VGS - VT) Willy Sansen

10-05 0324

Bipolar Voltage diff. amp. : large input signals iOd IB

= tanh

VId 2 kT/q

tanh x =

ex - e-x ex

+

e-x

=

2ex - 1 2ex + 1

vId is the differential input voltage iOd is the differential output current (gmvId) or twice the circular current gmvId /2 IB is the total DC current in the pair Note that gm =

IB 2 kT/q Willy Sansen

10-05 0325

Voltage differential amplifier: transfer function -1% VId ≈ 2.67 x 2kT/q = 0.14 V iOd

1 0.9

IB

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

vId

VId = √2 (VGS-VT) = √2 x 0.2 V Willy Sansen

10-05 0326

Voltage differential amplifier with gmrDS gain IB M1

vin1

M1

vo2

vo1

VB

M2

vin2

Av = gm1(rDS1//rDS2)

Willy Sansen

10-05 0327

Diode-connected MOSTs with resistors 2 gm

2 R//ro R

R

Willy Sansen

10-05 0328

Voltage differential amplifier with high gain IB M1

vin1 vo1

M1

R

R

vo2

vin2

Av = gm1 (R // ro ) M2

ro = ro1//ro2 Willy Sansen

10-05 0329

Differential diode-connected MOSTs 2 gm

2 gm

Willy Sansen

10-05 0330

Differential diode-connected MOSTs 2

gm2 - gm1

M2

M1

M2

Values close to ∞ ! Willy Sansen

10-05 0331

High gain because of current cancellation IB M1

vin1

M1

vo1

M2

vin2

vo2

M3

M2

Av =

gm1 gm2 - gm3

Willy Sansen

10-05 0332

Input impedance ZIN

ZIN

CIN =

CGS 2

RIN = 2 rπ

CIN =

Willy Sansen

Cπ 2 10-05 0333

Low-Pass Voltage Differential amplifier R

|Av|

R

Av0

-20 dB/dec

vOUT 1 φ (Av)

CL

vIN

GBW f

fp

90o

f

0o -90o

Av0 = gmR

AV =

Av0 (1 + j

f fp

fp = )

1 2π 2RCL

GBW =

Willy Sansen

gm 2π 2CL

10-05 0334

High-Pass voltage differential amplifier R

|Av|

R

Av0

20 dB/dec

vOUT vIN

C

fp

φ (Av)

90o

f

0o

j Av0 = gmR

Av = Av0

-90o

f fp

(1 + j

f

f fp

fp = )

gm 2π 2C

Willy Sansen

10-05 0335

Calculation High-Pass differential amplifier R

R

vOUT vIN

C

R

R

vOUT/2

vOUT/2

vIN/2

vIN/2 Z

2C

Av =

- gm R (1 +

gm 2Cs

Av = )

- gm R 1 + gm Z

Willy Sansen

10-05 0336

Table of contents

‰ Current mirrors ‰ Differential pairs ‰ Differential voltage and current amps

Willy Sansen

10-05 0337

Operational Transconductance Amplifier (OTA) VDD

VDD IDD

IDD M1

M2

M1

M2

-

+

vOUT

vOUT ZL

M4

M3

DC

ISS=IDD

IL M4

M3

VSS

AC

ZL

ISS=IDD+IL Willy Sansen

VSS 10-05 0338

Single-stage OTA: operation

Willy Sansen

10-05 0339

Single-stage OTA VDD

Av = gm1 Rout Rout = rDS2 // rDS4

-

M1

+

M2

vOUT

BW = CL

M3

M4

VSS

1 2π RoutCL

GBW =

gm1 2π CL

Willy Sansen

10-05 0340

Bootstrapping for low input capacitance A1 vIN

vOUT

-

+ +

-

A2

Ccoax ≈ 0 !!! Willy Sansen

10-05 0341

Bootstrapping for high input impedance fz = CC

ZIN

-

vOUT

+

vIN

R1

CF

f2 =

1 2π (R1+R2)CF 1 2π R2CF

ZIN

R2 R1+R2

fz

f2.GBW Willy Sansen

f 10-05 0342

Bootstrapping for high input impedance CIN

vIN+

+ R3

vB

CB

-

vOUT+ R1

R4 R2 CB

vIN-

A1

R3

-

+ CIN

R1

vOUT-

A2

ZIN ≈ ∞ !!! Willy Sansen

10-05 0343

Bootstrapping out a load resistance R IB1 Q3 Q4

R

Q5 Q2

R is bootstrapped out : Very high gain !

Q6

Q1

vIN

IB2

vOUT

Ref.: Nordholt JSSC June 85, 688-696 Willy Sansen

10-05 0344

Bootstrapping out an output resistance IB1

vIN +

M1

ro4 is bootstrapped out !

-

M2

Av ≈ gm1 ro2 M5

M3

M4

IB2

vOUT Same GBW !

Willy Sansen

10-05 0345

Bootstrap for high gain Av2

Rm -> x β3 M1

Rout -> x Rm

M3

M2

Rout

1 β3

Av2 ≈ gm1 ro2 x β3 Same GBW ! Ref.De Man JSSC June 77, pp. 217-222 LT1008, LT1012 Willy Sansen

10-05 0346

Current differential amplifier

M1

Rin

M2

M3

iout iin

IB 1 iout = IB + iin Rin = g m1

Is the same ! Willy Sansen

10-05 0347

Current differential amplifier

M1

Rin

M2

Rin M1

M3

M2

M3

iout iin

IB 1 iout = IB + iin Rin = g m1

iout iin

IB 1 1 Rin = gm1 gm3ro3 Willy Sansen

10-05 0348

Current differential amplifier

Rin1 M1

M2

M3

M4

i1

Rin2

i2 IB

iout

iout = IB + i1 - i2 1 1 Rin1 = gm1 gm3ro3 Rin2 =

1 gm4

Ref. Fischer, JSSC June 87, 330-340 Willy Sansen

10-05 0349

4-input current amplifier

Rin1 M1

M2

M3

M4

i1

Rin2

i2 i3

i4

iout

iout = i1 - i2 + i3 - i4

Willy Sansen

10-05 0350

Low voltage operation VDD = 1 V M1 0.85 V M3

0.15 V

iout = IB + i1 - i2

M2 0.85 V

0V

VGS = 0.85 V VDSsat = 0.15 V

M4

i1

i2

Voutmax = 0.7 V

0.15 V

IB

iout VSS = 0 V

For VT = 0.7 V VDDmin ≈ 0.6 V For VT = 0.3 V VDDmin ≈ 0.6 V Willy Sansen

10-05 0351

Table of contents

‰ Current mirrors ‰ Differential pairs ‰ Differential voltage and current amps

Willy Sansen

10-05 0352

Suggest Documents