Diet and Gut Microbiota

Diet and Gut Microbiota Leo Dieleman, MD PhD Professor of Medicine Div. of Gastroenterology, Univ. of Alberta, Edmonton Financial Disclosure Consult...
69 downloads 3 Views 3MB Size
Diet and Gut Microbiota Leo Dieleman, MD PhD Professor of Medicine Div. of Gastroenterology, Univ. of Alberta, Edmonton

Financial Disclosure Consultant for Abbvie, Janssen, Shire, Takeda Grant support: CIHR, Alberta Innovates, Broad Foundation, Beneo-Orafti

Learning Objectives Understand how gut microbiome affects health Learn how diets affect microbiome composition and function Understand the pathogenesis of IBD and role of diets

The Intestinal Microbiome – an “organ” of its own Human gut contains more than 1000 species with 99% belonging to about 40 species 10-fold the number of human cells, and predicted to encode 100-fold more unique genes than our own genome

Beneficial role of microflora Harvest of energy from food not digested by the host Production of vitamin K Production of short chain fatty acids Trophic effects on the intestinal epithelium Maturation of the host’s innate and adaptive immune responses

sPCV9wk

sPCV0wk

sNMR9wk

sNMR0wk

sMPB9wk

sMPB0wk

sMEF9wk

sMEF0wk

sLAM9wk

sLAM0wk

sGTL9wk

sGTL0wk

0%

40% 50

250

20% 200

150

50

100

300

100

50

100

150

Subject DMO

Fragment length (bp)

150

Rikenellaceae

100

Erysipelotrichaceae Streptococcaceae Lachnospiraceae Leuconostocaceae (Weissella)

300 Streptococcaceae (Lactococcus)

Microbacteriaceae

Leuconostocaceae

Streptococcaceae (Streptococcus) Moraxellaceae Bradyrhizobiaceae Flavobacteriaceae

Subject BJJ

Bacteroidaceae

200 Methylobacteriaceae Enterobacteriaceae

16S rDNA sequencing

Leuconostocaceae (Leuconostoc) Lachnospiraceae/Ruminococcaceae Ruminococcaceae

60%

Enterobacteriaceae

80% Frequency

100%

Moraxellaceae Bacteroidaceae

Frequency

DGGE

sCLD9wk

sCLD0wk

Dominant fecal microbiota remains stable at intra-individual level but is unique for each individual – data from β-fructans (oligofructose enriched-inulin) interventional study in active UC In silico T-RFLP

400 0 week 9 week

0

Fragment length (bp)

200

200

250

0 week 9 week

0 250

How to analyze the gut microbiome and use them in clinical medicine?

Who is there – species/strains – 16s rRNA gene sequencing 

What is their function?   Metagenomics

What are they doing?   Metabolomics

Host-microbe interactions in the GI tract maintain health

Luminal contents

Role in Disease • Complex immune disorders • IBD • Allergic disorders • RA • T1 diabetes

• Metabolism

Host

• T2 diabetes • Obesity Microbes

• • • •

Cancer Development Infectious diseases Neurological/motor disorders

There is evidence for an involvement of intestinal dysbiosis in chronic diseases, with inflammation as one of the mechanistic links

Dysbiosis Inflammation Host metabolism

Host immune system Autoimmune diseases

Chronic inflammation Allergies

Colon Cancer

Obesity

Type 2 Diabetes Metabolic syndrome

Heart disease

GutGut microbial dysbiosis associated with  microbial dysbiosis associated with human Bacteria human disease disease >50 different phyla

Spor et al. Nature Reviews Microbiology 9:279. 2011

Intestinal microbiota dysbiosis and chronic inflammation Abnormal gut barrier, pro-inflammatory immune response Obesity

Nonalcoholic Fatty Liver

Bacteroidetes ↓ Firmicutes ↑

Bacteroidetes ↓ γ-Proteobacteria ↑

Type 2 Diabetes

Inflammatory Bowel Disease

Butyrate-producing ↓ Enterobacteriaceae ↑

Faecalibacterium prausnitzii ↓ Akkermansia municiphila ↓

We can modulate composition of the human gut microbiota and induce changes that are predicted to be beneficial

Crohn’s disease and ulcerative colitis have unique geographic features Crohn’s disease

IBD has been increasing over the past half century

Model of the Etiopathogenesis of IBD

Genetics • Nod2 • TLR, TNF • Autophagy • IL23R

Immune imbalance

Environment

Defective Host defense

• Microbes • Diet • Smoking

IBD

Diets in the US have changed dramatically over the past century

http://longbottomline.com/tag/forks-over-knives/

Dietary Changes in Western Society Increase • Animal protein • Fat • Refined Carbohydrates

Decrease • Whole grains • Fruits and vegetables

Impact of diet in shaping gut (fecal) microbiota – a study of modern versus rural diet

De Filippo C, et al. Proc Natl Acad Sci U S A. 2010; 107:14691-6

Enterotypes of the human gut microbiome Enterotypes are strongly associated with long term diets: Bacteroides

- Bacteroides enterotype – protein and animal fat - Prevotella enterotype Ruminococcus

carbohydrates

Prevotella

Arumugam et al. Nat. 473: 174-180; Wu et al. Sci. 334: 105-8

Short-term effect of diet on the gut microbiota composition Plant-based Fiber intake

Animal-based

Animal-based diet showed greater impact on the gut microbiota than the plant-based diet.

Fat intake

Protein intake

αDiversity

βDiversity

David LA et al. Nature 2013 doi: 10.1038/nature12820

Western Diet changed the composition of the gut microflora WT mice:

IL10 mice:

Control chow‐ Day 0

Control chow‐ Day 0

Control chow‐ Day 35

Control chow‐ Day 35

Western Diet‐ Day 0

Western Diet‐ Day 0

Western Diet‐ Day 35

Western Diet‐ Day 35

PCA‐ Discriminant analysis: Stool Microbiom Day 0 and Day 35

Shannon‐wiener index

Western Diet decreased microbial  Western Diet decreased microbial diversity diversity 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

*

Day 0 Day 35

WT western  IL10 control IL10 western WT control WT western diet chow chow chow chow diet

Mouse species and Treatment group

Can diet affect the enteric microbiome? C57Bl/6 mice fed different diets; Cecal samples harvested 21 days later

16S rRNA gene sequences were determined by Sanger-based clone library sequencing

Bilophila wadsworthia is a sulfite-reducing microbe that is uncommon in gut microbiota LF + B.wad

MF + B.wad

 Discovered in 1988  Often recovered from a  variety of infections  (pathobiont)  Bilophila = “bile‐loving”  Sulfite‐reducing bacteria  (SRB‐ dsrA)  Production of H2S B. wadsworthia colonizes only when mice are on MF diet

Could differences in dietary fat-induced bile acid conjugation promote B. wadsworthia growth?

% Taurocholate of total bile

***

LF Taurocholic acid

PUFA

MF

Diet-derived bile

MF Bile

PUFA Bile LF Bile Control Media

Glycocholic acid Time (hrs)

B. wadsworthia induces TH1-mediated colitis (Bw monoassociation of GF mice) a a a

b bc c

bc

b

bc c

LF + Bw 0%

bc

c

c

c

PUFA + Bw

0%

b

0%

0%

MF + Bw 23%

28%

Isotype Isotype

IFN-γ IFN-γ

b

MF + Bw

MLN

CD4 CD4

bc

bc

CD4 CD4

Dietary strategies to modulate the gut microbiota and redress disease associated dysbioses. •Bifidobacteria •Functional targets •SCFAs and Butyrate producers •Community diversity Therapeutic:

Nutritional:

Fecal transplantation

Probiotics

Antimicrobials (Bacteriophages)

Prebiotics

Probiotics

Fibers, resistant starches, and whole grain

Dose-dependent clinical response in active UC by adjunct prebiotic inulin-enriched oligofructans

Fusobacteriaceae Bifidobacteriaceae Coriobacteriaceae Leuconostocaceae Streptococcaceae Enterococcaceae Lactobacillaceae Erysipelotrichaceae Incertae Sedis XIV Incertae Sedis XI Ruminococcaceae Lachnospiraceae Peptostreptococcaceae Veillonellaceae Eubacteriaceae Clostridiaceae Rikenellaceae Prevotellaceae Bacteroidaceae Porphyromonadaceae Desulfovibrionaceae Alcaligenaceae Enterobacteriaceae Pasteurellaceae Verrucomicrobiaceae Chloroplast

Change in log10 bacterial abundance in fecal samples

Prebiotics inulin plus oligofructose alter fecal microbiota 1.5 7.5 g dose 15 g dose

1.0

**

0.5

-0.5

Actinobacteria

*

** * *

0.0

*

-1.0

Firmicutes Bacteroidetes Proteobacteria

Criterium 2 : Prebiotics are FERMENTED BY the (endogenous) INTESTINAL MICROBIOTA

INULIN & OLIGOFRUCTOSE Exhalation and Flatulence

GASES : CO2, H2, CH4

FERMENTED BY INTESTINAL BACTERIA ACETIC ACID Excretion PROPIONIC ACID BUTYRIC ACID BACTERIAL LACTIC ACID BIOMASS

Correlations between colitis and mucosaassociated bacterial taxa Acidovorax Unclass. Moraxellacea

Desulfovibrio

Enterobacter

Sutterella Enhydrobacter

Fecal 0.53 UCDAI calprotectin

Sphingomonas

Enterococcus

Microvirgula Comamonas

Veillonella

Lactobacillus

Parabacteroides

-0.41

Chryseobacterium

Faecalibacterium Dialister

Roseburia

Diet alters β-fructans protective effect in rodent colitis model Colon

IL-1β secreted (ng/g protein)

Histology score

Cecum

Control

IMO

FOS – fructooligosaccharides IMO – iso-maltooligosaccharides

FOS

Control

IMO

FOS

Values in the same panel that do not share a common superscript differ significantly (P< 0.05, Bonferroni adjustment)

Diet rich in refined sugars changes the function of colonic bacteria

Acetate

Propionate

Butyrate

Isobutyrate

Isovalerate

Valerate

Diet rich in refined sugars and milk protein, but deficient in complex fiber and polyphenol, sources promotes protein fermentation versus carbohydrate (fiber) fermentation in cecum and colon of a rat colitis model

Dietary and bacterial-derived metabolites in serum and urine of UC patients predict future relapse

Take Home Points • Diets as well the prevalence of certain “western GI disorders” have drastically changed in the last 50 years • Diets affect the composition and function of the human microbiome • Dietary therapy may be the solution to prevent and possibly cure these disorders

Suggest Documents