Decibel (db) 3dB point

Decibel (dB) – 3dB point P  dB  10 log o   Pi  V  dB  20 log o   Vi  • Resonance • Bode Plots • Wires – theory vs reality • Amplitu...
2 downloads 0 Views 1MB Size
Decibel (dB) – 3dB point P  dB  10 log o   Pi 

V  dB  20 log o   Vi  • Resonance • Bode Plots • Wires – theory vs reality • Amplitude Modulation • Diodes Acknowledgements: Lecture material adapted from Prof Qing Hu & Prof Jae Lim, 6.003 Figures and images used in these lecture notes by permission, copyright 1997 by Alan V. Oppenheim and Alan S. Willsky

6.101 Spring 2016

Lecture 2

100 dB = 100,000 = 105

log10(2)=.301

1

80 dB = 10,000 = 104

3 dB point = ?

60 dB =

1,000 = 103

half power point

40 dB =

100 = 102

6.101 Spring 2016

Bode Plot ‐ Review

Lecture 2

MATLAB 

• A Bode plot is a graph of the magnitude (in dB) or  phase of the transfer function versus frequency. • Magnitude plot on log‐log scale – Slope: 20dB/decade, same as 6dB/octave • Bode plot provides insight into impact of RLC in  frequency response. • Stable networks must always have poles and zeroes   in the left‐half plane.

• Matlab windows:  current folder,  command, work  space (workspace),  command history  (commandhistory) • Set folder to your   favorite folder • Built in help in  command window • docking/undocking

Command window Current folder

6.101 Spring 2016

Lecture 2

2

3

Workspace Command history

MATLAB 

MATLAB commands • •

• • • • • •

%  comment delimiter MATLAB arrays starts with index=1 – a = [4,5,6] is a row vector       a(2)=5 – b = [7;8;9] is a column vector “;”   don’t print values Variables are case sensitive     A a Variables must start with a letter who/whos:   list the current variables in short/long form shg – show recent graph, pop to the front use apostrophes for FILENAME

pi i,j

3.14159265 sqrt(-1) imaginary unit

zeros(n,m) ones(n,m)

an n x m matrix of zeros an n x m matrix of ones

+*/ ^

addition, subtraction multiplication, division, power

sqrt

square root

MATLAB Flow Control

MATLAB Matrix Operation  >> a=[2,3,4] a= 2 3

4

>> b=[1,0,0] b= 1 0

0

>> c=a+b c= 3 3

4

>> d=a*b % dot product operation ??? Error using ==> mtimes Inner matrix dimensions must agree. >> d=a.*b d= 2 0

0

>> e=a*b' % ' transpose e= 2

• if else statement

• for loop • while loop

if a == 0 b = a; else b = 1/a; end n = 100 for m = 1:n a(m) = a(m) + 1; end

n = 10 while n > 0 n = n – 1 end

Bode vs Freqs Plots

MATLAB example sin(x) >> t=[0:1/100:1-1/100]; % create t from 0 to .99, 100 values >> x=sin(2*pi*t); >> plot(t, x); >> stem(t,x); >> shg

R=1 L=47uh C=1.8nf f=540khz

not same scale

6.101 Spring 2016

R

L

Z  R  sL  C

1 1  R  j (L  ) C sC

2  1 

• BW =

• Q* (quality factor) • Applies to more complex RLC circuits Q

• At resonance: power is maximum • At resonace: phase angle zero, i.e.  capacitive reactance = inductive  reactance, or  impedance is real 

6.101 Spring 2016

Lecture 2

bode

freqs Lecture 2

10

Bandwidth and Q (Series RLC)

Resonance (Series RLC) – Key points + V -

num=[1/L 0] denom=[1 R/L 1/(L*C)] f=1/(2*pi*sqrt(L*C)) w=2*pi*f w_range = [.8*w:20:1.2*w] h=bode(num,denom,w_range) magh=abs(h) plot(w_range,magh) shg freqs(num,denom,w_range)

1 s 1 I ( s) L   R V ( s) Z ( s) s2  s  1 L LC

R L resonant frequency bandwidth

1 L   R C 

• Higher Q implies more selectivity    *Agarwal/Lang

11

6.101 Spring 2016

Foundation of Analog Digital Elect Circuits equation 14.47, p 794

Lecture 2

12

Summary – Parallel Series RLC 

Series Parallel Duality

Series

Parallel

L

R V

 1  V  I  R  jwL  jwC  

C I

O

Q

Q  w RC o

I

6.101 Spring 2016

R

+ C V -

L

1 1  I  V   jwC  jwL  R

Series

Parallel

V

I

R

1/R

L

C

C

L

BW 

1 RC

O

BW  ( w2  w1 ) 

R L

1  2f LC 1 f  2 LC

13

6.101 Spring 2016

Lecture 2

14

Selectivity and Q

L=47uh C=1.8nf f=540khz

Lecture 2

wL R

0 

Selectivity and Q

6.101 Spring 2016

1 LC

wO 

1 LC

w 

L=47uh C=1.8nf f=540khz

R

Q

R

Q

1

160

1

160

5

32

5

32

10

16

10

16

15

6.101 Spring 2016

Lecture 2

16

Lab 1 Topics

Lab 1

• Resonance, Q, bandwidth • Transformers and impact on load and   bandwidth • Diode detector, demodulation • Simple AM transmitter and receiver

12-100 pF trimmer

C

Rsource

L [Antenna]

VS

10 

Pri-Sec turns ratio = 4:1 PRI [3 pins]

RSERIES C

VS [Function Generator]

SEC [2 pins]

RLOAD

Metal shield ["can"]

6.101 Spring 2016

17

6.101 Spring 2016

Proper External Grounding for Lab 1    IF Transformer

• IC power supply connections generally not drawn.  All integrated circuits need power! • Use standard color coded wires to avoid confusion. – red: positive  – black: ground or common reference point – Other colors:  signals • Circuit flow, signal flow left to right • Higher voltage on top, ground negative voltage on  bottom • Neat wiring helps in debugging!

sec NC

Can

6.101 Spring 2016

18

Schematics & Wiring

PC Board pri

Lecture 2

Lecture 2

19

6.101 Spring 2016

20

Wires Theory vs Reality ‐ Lab 1

Wire Gauge • Wire gauge:  diameter is inversely proportional to the  wire gauge number. Diameter increases as the wire  gauge decreases. 2, 1, 0, 00, 000(3/0) up to 7/0. • Resistance – 22 gauge .0254 in  16 ohm/1000 feet – 12 gauge .08 in    1.5 ohm/1000 feet – High voltage AC used to reduce loss

30-50mv voltage drop in chip Wires have inductance and resistance

• 1cm cube of copper has a resistance of 1.68 micro  ohm (resistance of copper wire scales linearly :  length/area)

‫ܮ‬

ௗ௜ ௗ௧

noise during transitions

This image cannot currently be display ed.

power supply noise

Voltage drop across wires LC ringing after transitions 6.101 Spring 2016

21

Bypass (Decoupling) Capacitors Electrolytic Capacitor 10uf

Lecture 2

Lecture 2

22

The Concept of Modulation (modulating a carrier)

Bypass capacitor 0.1uf typical

Through hole PCB (ancient) shown for clarity.

6.101 Spring 2016

6.101 Spring 2016

Transmitted Signal

x(t) • Provides additional  filtering from main  power supply • Used as local energy  source – provides peak  current during  transitions • Provided decoupling of  noise spikes during  transitions • Placed as close to the IC  as possible. • Use small capacitors for  high frequency response.  • Use large capacitors to  localize bulk energy  storage 23

Carrier Signal

Why? • • • •

More efficient to transmit E&M signals at higher frequencies. Transmitting multiple signals through the same medium using  different carriers. Increase signal/noise ratio in lock‐in measurements. others...

How? • Many methods

6.101 Spring 2016

Lecture 2

24

Two of Many Methods of Modulation

Fourier Series  ? T= 1/f1

? V=|Asin(ω0t)| ω0 = 2π f1

Focus  is on  Amplitude Modulation (AM)

?

6.101 Spring 2016

25

Time Domain Analysis

6.101 Spring 2016

26

Amplitude Modulation (AM) of a Complex  Exponential Carrier

v  Ac cos c t * KAm cos mt

ct   e j c t ,  c — carrier frequency

KAm v  Ac cos c t  [cos(c  m )t  cos(c  m )t ] 2

y(t)  x(t) e

j ct

1 X j   C j  2 1  X j   2    c  2

Y j  

 X j    c  6.101 Spring 2016

Lecture 2

27

6.101 Spring 2016

Lecture 2

28

AM with Carrier (for different Amplitudes of A)

Asynchronous Demodulation

xm (t )  A  c(t )

Assume c >> M, so signal envelope looks like x(t) Add same carrier

• •

xm (t )

t c(t )

t

Time Domain

y (t )  xm (t )  c(t )

A + x(t) > 0 why?

Frequency Domain

t 6.101 Spring 2016

D1

Lecture 2

29

6.101 Spring 2016

30

Units

Asynchronous Demodulation (continued) Envelop Detector

In order for it to function properly, the envelop function must be positive  definite, i.e. A + x(t) > 0. Simple envelop detection for asynchronous demodulation. D1: 1N914 or 1N4148

6.101 Spring 2016

Lecture 2

31

6.101 Spring 2016

Lecture 2

32

Standard Values

Diodes

I D  I s (e

qv D kT

 1)

kT/q is also known as the thermal voltage, VT. VT = 25.9 mV when T = 300K, room temperature.

6.101 Spring 2016

33

Lecture 2

6.101 Spring 2016

Finger Tips Facts

34

Diode V‐I Characteristic 

• Current thru pn junction doubles for every 26mv  (at room temperature) or 10x for every 60mv • Temperature coefficient of silicon diode is  ~2mv/degC at room temperature • Small signal resistance of pn junction is – 1 ohm @26 ma, 26 ohm @1ma

I D  I se kT q

qvD kT

 26mv

thermal voltage

I s  10 pa

6.101 Spring 2016

35

6.101 Spring 2016

Lecture 2

36

Zener Diode

Reverse Breakdown Voltage 4.7k

Low doped diodes have higher breakdown voltage

+ V _

• Zener diodes will maintain a  fixed voltage by breaking down  at a predefined voltage (zener voltage).

http://en.wikipedia.org/wiki/File:Diode_current_wiki.png

6.101 Spring 2016

Lecture 2

37

6.101 Spring 2016

39

6.101 Spring 2016

Lecture 2

38

Zener Breakdown •

Actually caused by two effects: avalanche effect and zener  effect.



Avalanche effect: electron/holes entering depletion region is  accelerating by the electric field, collides and creates additional  electron/hole pairs – like a snow avalanche; occurs above 5.6V;   has positive temperature coefficient



Zener effect: heavy doping of PN junction results in a thin  depletion layer. Quantum tunneling results in current flow;  occurs below 5.6V; has negative temperature coefficient



At 5.6V, two effects balance is near zero temperature  coefficient.

6.101 Spring 2016

40

1N4001‐1N4007

Transient Respopnse

Fast reverese recovery diode needed for switching power supplies

6.101 Spring 2016

41

6.101 Spring 2016

Diodes

Lecture 2

42

Lecture 2

44

1N4001

Type

Max Vr

Max I Continous

Recovery time

Capaciitance

1N914

75V

10ma

4ns

1.3pf

1N4002

100V

1000ma

3500ns

15pf

1N5625

400

3000ma

1N1084

4000

30,000ma (peak)

400

50,000ma

1N914, 1N4148 1N7XX

40pf

Pulse Ox

Diode types

6.101 Spring 2016

Lecture 2

43

6.101 Spring 2016

Optical Isolators

Light Emitting Diode

• Optical Isolators are used to  transmit information  optically without physical  contact.

• LED’s are pn junction devices which emit light.  The frequency of the light is determined by a  combination of gallium, arsenic and  phosphorus. • Red, yellow and green LED’s are in the lab • Diodes have polarity • Typical forward current 10‐20ma

• Single package with LED and  photosensor (BJT, thyristor,  etc.) • Isolation up to 4000 Vrms • Used in pulse oximetry Nellcor DS-100 Pulse-ox

6.117 2104 IAP Lecture 2

45

6.117 2104 IAP Lecture 2

46

RC Equation

Diode Circuits

Vs = 5 V Vs = 5 V

Switch is closed t0

R

Vs = VR + VC Vs = iR R+ Vc

+ t Vc V  51  e  RC  c    

Vs =

RC

dV

c iR = C dt

dVc  Vc dt

t    Vc  Vs 1  e RC   

Is RC in units of time? 6.101 Spring 2016

Lecture 2

47

6.101 Spring 2016

Lecture 2

48

More Diode Circuits

Clamping Circuit

RC time constant limitation Lecture 2

6.101 Spring 2016

49

Lecture 2

6.101 Spring 2016

Voltage

RMS Voltage v  A sin t

• What is the equation describing the voltage from a  120VAC outlet? • 120 VAC is the RMS (Root Mean Square Voltage) • 60 is the frequency in hz • Peak to peak voltage for 120VAC is 340 volts!



The RMS voltage for a sinusoid is that value  which will produce the same heating effect  (energy) as an equivalent  DC voltage.



Energy = 

 Pdt   vidt 



For DC,

2 rms



Equating and solving, A =

vrms



t=π

i

120 2 sin 2 60t  169.7 sin 2 60t

+ v -

340 V

6.101 Spring 2016

50

51

6.101 Spring 2016

v

 r

0



1 2 v dt r 0

2

vrms

52

Agilent Function Generator

RMS Derivation 



2 vrms  1 2 1   v dt   A2 sin 2 tdt r r0 r0



 t 1 2 sin dt   sin 2 t [ ] 0 0 2 4

2   A2 t 1 vrms   sin 2t ] [ 0 r r 2 4

A=

2

Turn on output!

vrms

6.101 Spring 2016

53

6.101 Spring 2016

Agilent DMM

54

Oscilloscope Cursor controls

Menu driven soft key/buttons 6.101 Spring 2016

55

6.101 Spring 2016

56

Oscilloscope Controls • Auto Set, soft menu keys



– – – – –

• Trigger  – channel,  – slope,  – Level

• Input – – – – –

Signal measurement



time, frequency, voltage cursors single sweep

Image capture

AC, DC coupling,  10x probe,  1khz calibration source, probe calibration, bandwidth filter

6.101 Spring 2016

57