Computer Navigation Assisted Musculoskeletal Tumor Surgery

Computer Navigation–Assisted Musculoskeletal Tumor Surgery Update and Presentation of 4 Clinical Cases MICK P. KELLY, MD / MATTHEW W. COLMAN, MD Refe...
Author: Easter Baldwin
1 downloads 0 Views 219KB Size
Computer Navigation–Assisted Musculoskeletal Tumor Surgery Update and Presentation of 4 Clinical Cases MICK P. KELLY, MD / MATTHEW W. COLMAN, MD

References 1. Nolte LP, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech (Bristol, Avon). 1995;10(6):293-303. 2. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235-240. 3. Jeys L, Matharu GS, Nandra RS, Grimer RJ. Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint J. 2013;95b(10):1417-1424. 4. Cho HS, Oh JH, Han I, Kim HS. The outcomes of navigationassisted bone tumour surgery: minimum three-year follow-up. J Bone Joint Surg Br. 2012;94(10):1414-1420. 5. Sternheim A, Daly M, Qiu J, et al. Navigated pelvic osteotomy and tumor resection: a study assessing the accuracy and reproducibility of resection planes in Sawbones and cadavers. J Bone Joint Surg Am. 2015;97(1):40-46. 6. Cartiaux O, Banse X, Paul L, Francq BG, Aubin CE, Docquier PL. Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis. Comput Aided Surg. 2013;18(1-2):19-26. 7. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res. 1980;(153):106-120. 8. Yang MS, Kim KN, Yoon DH, Pennant W, Ha Y. Robotassisted resection of paraspinal Schwannoma. J Korean Med Sci. 2011;26(1):150-153. 9. Khan F, Pearle A, Lightcap C, Boland PJ, Healey JH. Haptic robot-assisted surgery improves accuracy of wide resection of bone tumors: a pilot study. Clin Orthop Relat Res. 2013;471(3):851-859. 10. Wong KC, Kumta SM, Geel NV, Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20(1):14-23.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

2016 Rush Orthopedics Journal References

1

Chemokine Receptor Antagonists Can Inhibit Macrophage Migration PENG SHI, DDS, PHD / ANA V. CHEE, PHD / DAVID K. LIU, MS / JUSTIN L. ZHENG, BS / DING CHEN, MD / ZEMIN LI, MD CHUNDO OH, PHD / DI CHEN, MD, PHD / GUNNAR B. J. ANDERSSON, MD, PHD / HOWARD S. AN, MD

References 1. Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the united states. Arthritis Rheum. 1998;41(5):778-799. 2. AAOS. United states bone and joint decade: The burden of musculoskeletal diseases in the united states. Rosemont, IL: The American Academy of Orthopaedic Surgeons, 2008. 3. Bogduk N. The anatomical basis for spinal pain syndromes. J Manipulative Physiol Ther. 1995;18(9):603-605. 4. Hirsch C, Ingelmark BE, Miller M. The anatomical basis for low back pain. studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthop Scand. 1963;33:1-17. 5. Stefanakis M, Al-Abbasi M, Harding I, et al. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila Pa 1976). 2012;37(22):1883-1891. 6. Doita M, Kanatani T, Harada T, Mizuno K. Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine (Phila Pa 1976). 1996;21(2):235-241. 7. Gronblad M, Virri J, Tolonen J, et al. A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine (Phila Pa 1976). 1994;19(24):2744-2751. 8. Habtemariam A, Gronblad M, Virri J, Seitsalo S, Karaharju E. A comparative immunohistochemical study of inflammatory cells in acute-stage and chronic-stage disc herniations. Spine (Phila Pa 1976). 1998;23(20):2159-2165; discussion 2166. 9. Rothoerl RD, Woertgen C, Holzschuh M, Rueschoff J, Brawanski A. Is there a clinical correlate to the histologic evidence of inflammation in herniated lumbar disc tissue? Spine (Phila Pa 1976). 1998;23(11):1197-1200; discussion 1200-1201. 10. Ikeda T, Nakamura T, Kikuchi T, Umeda S, Senda H, Takagi K. Pathomechanism of spontaneous regression of the herniated lumbar disc: Histologic and immunohistochemical study. J Spinal Disord. 1996;9(2):136-140. 11. Ito T, Yamada M, Ikuta F, et al. Histologic evidence of absorption of sequestration-type herniated disc. Spine (Phila Pa 1976). 1996;21(2):230-234.

2

2016 Rush Orthopedics Journal References

12. Haro H, Shinomiya K, Komori H, et al. Upregulated expression of chemokines in herniated nucleus pulposus resorption. Spine (Phila Pa 1976). 1996;21(14):1647-1652. 13. Kawaguchi S, Yamashita T, Yokogushi K, Murakami T, Ohwada O, Sato N. Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs. Spine (Phila Pa 1976). 2001;26(11):1209-1214. 14. Rothoerl RD, Woertgen C, Brawanski A. Pain resolution after lumbar disc surgery is influenced by macrophage tissue infiltration. A prospective consecutive study on 177 patients. J Clin Neurosci. 2002;9(6):633-636. 15. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine (Phila Pa 1976). 2002;27(22):2484-2490. 16. Peng B, Hao J, Hou S, et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976). 2006;31(5):560-566. 17. Kepler CK, Markova DZ, Dibra F, et al. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1beta in painful human intervertebral discs. Spine (Phila Pa 1976). 2013;38(11):873-880. 18. Wang J, Tian Y, Phillips KL, et al. Tumor necrosis factor alphaand interleukin-1beta-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis Rheum. 2013;65(3):832-842. 19. Quinones MP, Jimenez F, Estrada CA, Martiniez HG, Ahuja SS. The chemokine system and arthritis. In: Harrison JK, Lukacs NW, eds. The chemokine receptors. Humana Press; 2007:155-198. 20. Elliott MJ, Maini RN, Feldmann M, et al. Randomised doubleblind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet. 1994;344(8930):1105-1110. 21. Haringman JJ, Gerlag DM, Smeets TJ, et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(8):2387-2392.

22. Vergunst CE, Gerlag DM, Lopatinskaya L, et al. Modulation of CCR2 in rheumatoid arthritis: A double-blind, randomized, placebocontrolled clinical trial. Arthritis Rheum. 2008;58(7):1931-1939. 23. Tak PP, Balanescu A, Tseluyko V, et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann Rheum Dis. 2013;72(3):337-344. 24. Yamasaki R, Liu L, Lin J, Ransohoff RM. Role of CCR2 in immunobiology and neurobiology. Clinical and Experimental Neuroimmunology. 2012;3:16-29.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

2016 Rush Orthopedics Journal References

3

Anterior Cruciate Ligament Reconstruction Optimizing Femoral Tunnel Position With Flexible Curved Reamers BRIAN FORSYTHE, MD / MICHAEL J. COLLINS, BS / THOMAS A. ARNS, BS / MICHAEL KHAIR, MD / NIKHIL N. VERMA, MD BRIAN J. COLE, MD, MBA / BERNARD R. BACH JR, MD / NOZOMU INOUE, MD, PHD

References 1. Carson EW, Anisko EM, Restrepo C, Panariello RA, O’Brien SJ, Warren RF. Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg. 2004; 17(3):127-132. 2. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am. 2006; 88 Suppl 4:2-10. 3. Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ, et al. Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am. 2010; 92(6):1427-1431. 4. Siebold R, Ellert T, Metz S, Metz J. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy. 2008; 24(5):585-592. 5. Ferretti M, Ekdahl M, Shen W, Fu FH. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy. 2007; 23(11):1218-1225. 6. Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am. 2010; 92(6):1418-1426. 7. Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M. Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med. 2009; 37(10):1912-1919. 8. Bedi A, Raphael B, Maderazo A, Pavlov H, Williams RJ, 3rd. Transtibial versus anteromedial portal drilling for anterior cruciate ligament reconstruction: a cadaveric study of femoral tunnel length and obliquity. Arthroscopy. 2010; 26(3):342-350.

9. Heming JF, Rand J, Steiner ME. Anatomical limitations of transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med. 2007; 35(10):1708-1715. 10. Cain EL, Jr., Clancy WG, Jr. Anatomic endoscopic anterior cruciate ligament reconstruction with patella tendon autograft. Orthop Clin North Am. 2002; 33(4):717-725. 11. Silver AG, Kaar SG, Grisell MK, Reagan JM, Farrow LD. Comparison between rigid and flexible systems for drilling the femoral tunnel through an anteromedial portal in anterior cruciate ligament reconstruction. Arthroscopy. 2010; 26(6):790-795. 12. Steiner ME, Smart LR. Flexible instruments outperform rigid instruments to place anatomic anterior cruciate ligament femoral tunnels without hyperflexion. Arthroscopy. 2012; 28(6):835-843. 13. Basdekis G, Abisafi C, Christel P. Effect of knee flexion angle on length and orientation of posterolateral femoral tunnel drilled through anteromedial portal during anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2009; 25(10):1108-1114. 14. Basdekis G, Abisafi C, Christel P. Influence of knee flexion angle on femoral tunnel characteristics when drilled through the anteromedial portal during anterior cruciate ligament reconstruction. Arthroscopy. 2008;24(4):459-464. 15. Miller CD, Gerdeman AC, Hart JM, Bennett CG, Golish SR, Gaskin C, et al. A comparison of 2 drilling techniques on the femoral tunnel for anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(3):372-379. 16. Lubowitz JH, Konicek J. Anterior cruciate ligament femoral tunnel length: cadaveric analysis comparing anteromedial portal versus outside-in technique. Arthroscopy. 2010; 26(10):1357-1362. 17. Chang CB, Yoo JH, Chung BJ, Seong SC, Kim TK. Oblique femoral tunnel placement can increase risks of short femoral tunnel and cross-pin protrusion in anterior cruciate ligament reconstruction. Am J Sports Med. 2010; 38(6):1237-1245.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

4

2016 Rush Orthopedics Journal References

Limb Lengthening A New Technology MONICA KOGAN, MD

References 1. Ilizarov GZ. The tension-stress effect on the genesis and growth of tissues. Part 1: The influence of stability on fixation and soft tissue preservation. Clin Orthop Relat Res. 1989;(238):249. 2. Ilizarov GA: The tension-stress effect on the genesis and growth of tissues: Part II: The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989; (239):263-285. 3. Paley D, Herzenberg JE, Paremain G, Bhave A. Femoral lengthening over an intramedullary nail: A matched case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am. 1997:79(10):1464-1480. 4. Mahboubian S, Sean M, Fragomen AT, Rozbruch SR: Femoral lengthening with lengthening over a nail has few complication than intramedullary skeletal kinetic distraction. Clin Orthop Rel Res. 2012; 470 (4):1221-1231.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

2016 Rush Orthopedics Journal References

5

Regrowth of Symptomatic Cam Deformity After Hip Arthroscopy and Femoral Osteochondroplasty GREGORY L. CVETANOVICH, MD / BRANDON J. ERICKSON, MD / RANDY MASCARENHAS, MD / SIMON X. LEE, MPH / SHANE J. NHO, MD, MS

References 1. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;(417):112-120. 2. Lynch TS, Terry MA, Bedi A, Kelly BT. Hip arthroscopic surgery: patient evaluation, current indications, and outcomes. Am J Sports Med. 2013;41(5):1174-1189. 3. Krych AJ, Thompson M, Knutson Z, Scoon J, Coleman SH. Arthroscopic labral repair versus selective labral debridement in female patients with femoroacetabular impingement: a prospective randomized study. Arthroscopy. 2013;29(1):46-53. 4. Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med. 2012;40(5):1015-1021. 5. Aprato A, Jayasekera N, Villar RN. Revision hip arthroscopic surgery: outcome at three years. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):932-937. 6. Heyworth BE, Shindle MK, Voos JE, Rudzki JR, Kelly BT. Radiologic and intraoperative findings in revision hip arthroscopy. Arthroscopy. 2007;23(12):1295-1302. 7. Philippon MJ, Schenker ML, Briggs KK, Kuppersmith DA, Maxwell RB, Stubbs AJ. Revision hip arthroscopy. Am J Sports Med. 2007;35(11):1918-1921. 8. Bogunovic L, Gottlieb M, Pashos G, Baca G, Clohisy JC. Why do hip arthroscopy procedures fail? Clin Orthop Relat Res. 2013;471(8):2523-2529. 9. Hack K, Di Primio G, Rakhra K, Beaule PE. Prevalence of camtype femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92(14):2436-2444. 10. Gupta A, Redmond JM, Stake CE, Finch NA, Dunne KF, Domb BG. Does the femoral cam lesion regrow after osteoplasty for femoroacetabular impingement? Two-year follow-up. Am J Sports Med. 2014;42(9):2149-2155. 11. Carsen S, Moroz PJ, Rakhra K, Ward LM, Dunlap H, Hay JA, Willis RB, Beaule PE. The Otto Aufranc Award. On the Etiology of the Cam Deformity: A Cross-sectional Pediatric MRI Study. Clin Orthop Relat Res. 2014;472(2):430-436. No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

6

2016 Rush Orthopedics Journal References

Adolescent Idiopathic Scoliosis A Pilot Study With Differential Rod Bending PHILIP K. LOUIE, MD / CHRISTOPHER J. DEWALD, MD

References 1. Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis. 2006;1(1):2. 2. Monazzam S, Newton PO, Bastrom TP, Yaszay B. Multicenter comparison of the factors important in restoring thoracic kyphosis during posterior instrumentation for adolescent idiopathic scoliosis. Spine Deformity. 2013. 3. Cidambi KR, Glaser DA, Bastrom TP, Nunn TN, Ono T, Newton PO. Postoperative changes in spinal rod contour in adolescent idiopathic scoliosis. Spine. 2012;37(18):1566-1572. 4. Hwang SW, Samdani AF, Lonner B, et al. Impact of Direct vertebral body derotation on rib prominence. Spine. 2012;37(2):E86-E89. 5. Mattila M, Jalanko T, Helenius I. En bloc vertebral column derotation provides spinal derotation but no additional effect on thoracic rib hump correction as compared with no derotation in adolescents undergoing surgery for idiopathic scoliosis with total pedicle screw instrumentation. Spine. 2013;38(18):1576-1583. 6. Akbar M, Terran J, Ames CP, Lafage V, Schwab F. Use of Surgimap Spine in sagittal plane analysis, osteotomy planning, and correction calculation. Neurosurgery Clinics of North America. 2013;24(2):163-172. 7. Lafage R, Schwab F, Challier V, et al. Defining spino-pelvic alignment thresholds. Spine. 2016;41(1):62-68. 8. Vila-Casademunt A, Pellisé F, Acaroglu E, et al. The reliability of sagittal pelvic parameters. Spine. 2015;40(4):E253-E258. 9. Schwab F, Patel A, Ungar B, Farcy J-P, Lafage V. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine. 2010;35(25):2224-2231. 10. Legaye J, Duval-Beaupere G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7(2):99-103. 11. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44A:591-610. 12. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10-23. 13. Luque ER. Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res. 1982;(163):192-198.

14. Steinmetz MP, Rajpal S, Trost G. Segmental spinal instrumentation in the management of scoliosis. Neurosurgery. 2008;63(3 Suppl):131-138. 15. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine. 2001;26(18):2049-2057. 16. Mac-Thiong J-M, Labelle H, Charlebois M, Huot M-P, de Guise JA. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine. 2003;28(13):1404-1409. 17. Newton PO, Yaszay B, Upasani VV, et al. Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2010;35(14):1365-1370. 18. Potter BK, Lenke LG, Kuklo TR. Prevention and management of iatrogenic flatback deformity. J Bone Joint Surg Am. 2004;86A(8):1793-1808. 19. Cheng JS, Lebow RL, Schmidt MH, Spooner J. Rod derotation techniques for thoracolumbar spinal deformity. Neurosurgery. 2008;63(3 Suppl):149-156. 20. Lee S-M, Suk S-I, Chung E-R. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine. 2004;29(3):343-349. 21. Lowenstein JE, Matsumoto H, Vitale MG, et al. Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine. 2007;32(4):448-452. 22. Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH. Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am. 1990;72(3):320-327. 23. Lenke LG, Edwards CC, Bridwell KH. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine. 2003;28(20):S199-S207. 24. Perdriolle R, Vidal J. Thoracic idiopathic scoliosis curve evolution and prognosis. Spine. 1985;10(9):785-791. 25. Luk KD, Cheung KM, Lu DS, Leong JC. Assessment of scoliosis correction in relation to flexibility using the fulcrum bending correction index. Spine. 1998;23(21):2303-2307.

2016 Rush Orthopedics Journal References

7

26. Legaye J, Duval-Beaupere G. Sagittal plane alignment of the spine and gravity: a radiological and clinical evaluation. Acta Orthop Belg. 2005;71(2):213-220. 27. Helgeson MD, Shah SA, Newton PO, et al. Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine. 2010;35(2):177-181. 28. Hilibrand AS, Tannenbaum DA, Graziano GP, Loder RT, Hensinger RN. The sagittal alignment of the cervical spine in adolescent idiopathic scoliosis. J Ped Orthop. 1995;15(5):627-632. 29. Johnston CE, Richards BS, Sucato DJ, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine. 2011;36(14):1096-1102. 30. Fletcher ND, Hopkins J, McClung A, Browne R, Sucato DJ. Residual thoracic hypokyphosis after posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis: risk factors and clinical ramifications. Spine. 2012;37(3):200-206. 31. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity. Spine. 2013;38(13):E803-E812. 32. Samdani AF, Hwang SW, Miyanji F, et al. Direct vertebral body derotation, thoracoplasty, or both. Spine. 2012;37(14):E849-E853. 33. Hayashi K, Upasani VV, Pawelek JB, et al. Three-dimensional analysis of thoracic apical sagittal alignment in adolescent idiopathic scoliosis. Spine. 2009;34(8):792-797. 34. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728-1734.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

8

2016 Rush Orthopedics Journal References

Chronic Type III Acromioclavicular Separations Modified Weaver-Dunn Reconstruction Failures RANDY MASCARENHAS, MD, FRCSC / PAV SUMNER, MBBS, FRACS / BRYAN M. SALTZMAN, MD / MYRNA DYCK, BN, MSC ANTHONY A. ROMEO, MD / PETER B. MACDONALD, MD, FRCSC

References 1. Rockwood CA Jr. Injuries to the acromioclavicular joint. In: Rockwood CA Jr, Green DP, eds. Fractures in Adults, Fourth Edition. Philadelphia: Lippincott-Raven; 1996: 1342-1402. 2. Weaver JK, Dunn HK. Treatment of acromioclavicular injuries, especially complete acromioclavicular separation. J Bone Joint Surg Am. 1972;54(6):1187-1194. 3. Bigliani, LU, Weinstein DM, McCann PD, et al. Surgical treatment of complete acromioclavicular dislocations. Am J Sports Med. 1995;23(3):324-331. 4. Neer CS II. Shoulder Reconstruction. In: Shoulder Reconstruction. Philadelphia: WB Saunders and Co; 1990: 341-355. 5. Lemos MJ, Jone HP, Schepsis AA. Salvage of failed acromioclavicular joint reconstruction using autogenous semitendinosus tendon from the knee. Surgical technique and case report. Am J Sports Med. 2001;29(2):234-237. 6. Allman FL Jr. Fractures and ligamentous injuries of the clavicle and its articulation. J Bone Joint Surg Am. 1967;49(4):774-784. 7. Tossy JD, Mead NC, Sigmond HM. Acromioclavicular separations: useful and practical classification for treatment. Clin Orthop. 1963;28:111-119. 8. Rockwood CA Jr. Injuries to the acromioclavicular joint. In: Rockwood CA Jr, Green DP, eds. Fractures in Adults, Second Edition: Volume 1. Philadelphia: JB Lippincott; 1984: 860-910, 974-982. 9. Lemos MJ. The evaluation and treatment of the injured acromioclavicular joint in athletes. Am J Sports Med. 1998;26(1):137-144. 10. Dias JJ, Steingold RF, Richardson RA, et al. The conservative treatment of acromioclavicular dislocation. Review after five years. J Bone Joint Surg Br. 1987;69(5):719-722.

13. Galpin RD, Hawkins RJ, Grainger RW. A comparative analysis of operative versus nonoperative treatment of grade III acromioclavicular separations. Clin Orthop. 1985; 193:150-155. 14. Larsen E, Bjerg-Nielsen A, Christensen P. Conservative or surgical treatment of acromioclavicular dislocation. A prospective, controlled, randomized study. J Bone Joint Surg Am. 1986;68(4):552 15. Taft TN, Wilson FC, Oglesby JW. Dislocation of the acromioclavicular joint. An end-result study. J Bone Joint Surg Am. 1987;69(7):1045-1051. 16. Walsh WM, Peterson DA, Shelton G, et al. Shoulder strength following acromioclavicular injury. Am J Sports Med. 1985;13(3):153-158. 17. Ceccarelli E, Bondi R, Alviti F, et al. Treatment of acute grade III acromioclavicular dislocation: a lack of evidence. J Orthopaed Traumatol. 2008; 9: 105-108. 18. Hootman JM. Acromioclavicular dislocation: Conservative or surgical therapy. J Athl Train. 2004; 39(1): 10-11. 19. MacDonald PB, Alexander MJ, Frejuk J, et al. Comprehensive functional analysis of shoulders following complete acromioclavicular separation. Am J Sports Med. 1988;16(5):475-480. 20. Tibone J, Sellers R, Tonino P. Strength testing after thirddegree acromioclavicular dislocations. Am J Sports Med. 1992;20(3):328-331. 21. Cox JS. Current method of treatment of acromioclavicular joint dislocations. Orthopedics. 1992;15(9):1041-1044. 22. Beitzel K, Cote MP, Apostolakos J, et al. Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy. 2013; 29(2): 387-397. 23. Kennedy JC, Cameron H. Complete dislocation of the acromioclavicular joint. J Bone Joint Surg Br. 1954;36-B(2):202-208.

11. Urist MR. Complete dislocation of the acromioclavicular joint. J Bone Joint Surg Am. 1963;45:1750-1753.

24. Post M. Current concepts in the diagnosis and management of acromioclavicular dislocations. Clin Orthop. 1985;(200):234-247.

12. Bannister GC, Wallace WA, Stableforth PG, et al. The management of acute acromioclavicular dislocation: A randomised prospective controlled trial. J Bone Joint Surg Br. 1989;71(5):848-850.

25. Press J, Zuckerman JD, Gallagher M, et al. Treatment of grade III acromioclavicular separations. Operative versus nonoperative management. Bull Hosp Jt Dis. 1997; 56(2): 77-83.

2016 Rush Orthopedics Journal References

9

26. Dawe CJ. Acromioclavicular joint injuries. J Bone Joint Surg. 1980; 62B: 269. 27. Deshmukh AV, Wilson DR, Zilberfarb JL, et al. Stability of acromioclavicular joint reconstruction: biomechanical testing of various surgical techniques in a cadaveric model. Am J Sports Med. 2004;32(6):1492-1498. 28. Michlitsch MG, Adamson GJ, Pink M, et al. Biomechanical comparison of a modified Weaver-Dunn and a free-tissue graft reconstruction of the acromioclavicular joint complex. Am J Sports Med. 2010;38(6):1196-1203. 29. Thomas K, Litsky A, Jones G, et al. Biomechanical comparison of coracoclavicular reconstructive techniques. Am J Sports Med. 2011;39(4):804-810. 30. Fauci F, Merolla G, Paladini P, et al. Surgical treatment of chronic acromioclavicular dislocation with biologic graft vs synthetic ligament: a prospective randomized comparative study. J Orthop Traumatol. 2013; 14(4): 283-290. 31. Tauber M, Gordon K, Koller H, et al. Semitendinosus tendon graft versus a modified Weaver-Dunn procedure for acromioclavicular joint reconstruction in chronic cases: a prospective comparative study. Am J Sports Med. 2009; 37(1):181-190. 32. Kovilazhikathu SH, Dodenhoff RM. Management of type 3 acromioclavicular joint dislocation: comparison of long-term functional results of two operative methods. ISRN Surg. 2012; [Epub 2012 Jun 13]. 33. Beitzel K, Obopilwe E, Chowaniec DM, et al. Biomechanical properites of repairs for dislocated AC joints using suture button systems with integrated tendon augmentation. Knee Surg Sports Traumatol Arthrosc. 2012; 20(10): 1931-1938.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

10

2016 Rush Orthopedics Journal References

Update on Superior Labrum Anterior to Posterior Tears and Biceps Tendon Tears Conclusions Based on Translational Research Performed at the Department of Orthopedic Surgery at Rush BRIAN J. COLE, MD, MBA / ROBERT J. THORSNESS, MD / NIKHIL N. VERMA, MD / ANTHONY A. ROMEO, MD

References 1. Andrews JR, Carson WG, Jr., McLeod WD. Glenoid labrum tears related to the long head of the biceps. Am J Sports Med. 1985;13(5):337-341. 2. Weber SC, Martin DF, Seiler JG, Harrast JJ. Superior labrum anterior and posterior lesions of the shoulder: incidence rates, complications, and outcomes as reported by American Board of Orthopedic Surgery. Part II candidates. The American journal of sports medicine. 2012;40(7):1538-1543. 3. Hwang E, Carpenter JE, Hughes RE, Palmer ML. Effects of biceps tension and superior humeral head translation on the glenoid labrum. J Orthop Res. 2014;32(11):1424-1429. 4. Snyder SJ, Karzel RP, Del Pizzo W, Ferkel RD, Friedman MJ. SLAP lesions of the shoulder. Arthroscopy. 1990;6(4):274-279. 5. Maffet MW, Gartsman GM, Moseley B. Superior labrumbiceps tendon complex lesions of the shoulder. Am J Sports Med. 1995;23(1):93-98. 6. Kim TK, Queale WS, Cosgarea AJ, McFarland EG. Clinical features of the different types of SLAP lesions: an analysis of one hundred and thirty-nine cases. J Bone Joint Surg Am. 2003;85A(1):66-71. 7. Abrams GD, Safran MR. Diagnosis and management of superior labrum anterior posterior lesions in overhead athletes. Br J Sports Med. 2010;44(5):311-318. 8. Keener JD, Brophy RH. Superior labral tears of the shoulder: pathogenesis, evaluation, and treatment. J Am Acad Orthop Surg. 2009;17(10):627-637. 9. Abrams GD, Hussey KE, Harris JD, Cole BJ. Clinical results of combined meniscus and femoral osteochondral allograft transplantation: minimum 2-year follow-up. Arthroscopy. 2014;30(8):964-970.e961. 10. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology Part I: pathoanatomy and biomechanics. Arthroscopy. 2003;19(4):404-420.

11. O’Brien SJ, Pagnani MJ, Fealy S, McGlynn SR, Wilson JB. The active compression test: a new and effective test for diagnosing labral tears and acromioclavicular joint abnormality. Am J Sports Med. 1998;26(5):610-613. 12. Cheung E, O’Driscoll S. The dynamic labral shear test for superior labral anterior posterior tears of the shoulder. Paper presented at: Podium presentation at the 76th Annual Meeting of the American Academy of Orthopaedic Surgeons, San Diego (CA)2007. 13. Ben Kibler W, Sciascia AD, Hester P, Dome D, Jacobs C. Clinical utility of traditional and new tests in the diagnosis of biceps tendon injuries and superior labrum anterior and posterior lesions in the shoulder. Am J Sports Med. 2009;37(9):1840-1847. 14. Virk MS, Arciero RA. Superior labrum anterior to posterior tears and glenohumeral instability. Instr Course Lect. 2013;62:501-514. 15. Calvert E, Chambers GK, Regan W, Hawkins RH, Leith JM. Special physical examination tests for superior labrum anterior posterior shoulder tears are clinically limited and invalid: a diagnostic systematic review. J Clin Epidemiol. 2009;62(5):558-563. 16. Jones GL, Galluch DB. Clinical assessment of superior glenoid labral lesions: a systematic review. Clin Orthop Relat Res. 2007;455:45-51. 17. Taylor SA, Newman AM, Nguyen J, et al. Magnetic Resonance Imaging Currently Fails to Fully Evaluate the BicepsLabrum Complex and Bicipital Tunnel. Arthroscopy. 2015. 18. Mohtadi NG, Vellet AD, Clark ML, et al. A prospective, double-blind comparison of magnetic resonance imaging and arthroscopy in the evaluation of patients presenting with shoulder pain. J Shoulder Elbow Surg. 2004;13(3):258-265. 19. Houtz CG, Schwartzberg RS, Barry JA, Reuss BL, Papa L. Shoulder MRI accuracy in the community setting. J Shoulder Elbow Surg. 2011;20(4):537-542. 20. Reuss BL, Schwartzberg R, Zlatkin MB, Cooperman A, Dixon JR. Magnetic resonance imaging accuracy for the diagnosis of superior labrum anterior-posterior lesions in the community setting: eighty-three arthroscopically confirmed cases. J Shoulder Elbow Surg. 2006;15(5):580-585.

2016 Rush Orthopedics Journal References

11

21. Dubrow SA, Streit JJ, Shishani Y, Robbin MR, Gobezie R. Diagnostic accuracy in detecting tears in the proximal biceps tendon using standard nonenhancing shoulder MRI. Open Access J Sports Med. 2014;5:81-87. 22. Werner BC, Brockmeier SF, Miller MD. Etiology, Diagnosis, and Management of Failed SLAP Repair. J Am Acad Orthop Surg. 2014;22(9):554-565. 23. Werner BC, Pehlivan HC, Hart JM, et al. Biceps tenodesis is a viable option for salvage of failed SLAP repair. J Shoulder Elbow Surg. 2014;23(8):e179-184. 24. Erickson J, Lavery K, Monica J, Gatt C, Dhawan A. Surgical Treatment of Symptomatic Superior Labrum Anterior-Posterior Tears in Patients Older Than 40 Years: A Systematic Review. Am J Sports Med. 2014. 25. Huri G, Hyun YS, Garbis NG, McFarland EG. Treatment of superior labrum anterior posterior lesions: a literature review. Acta Orthop Traumatol Turc. 2014;48(3):290-297. 26. Li X, Lin TJ, Jager M, et al. Management of type II superior labrum anterior posterior lesions: a review of the literature. Orthop Rev (Pavia). 2010;2(1):e6. 27. Strauss EJ, Salata MJ, Sershon RA, et al. Role of the superior labrum after biceps tenodesis in glenohumeral stability. J Shoulder Elbow Surg. 2014;23(4):485-491. 28. Pagnani MJ, Deng XH, Warren RF, Torzilli PA, Altchek DW. Effect of lesions of the superior portion of the glenoid labrum on glenohumeral translation. J Bone Joint Surg Am. 1995;77(7): 1003-1010. 29. McMahon PJ, Burkart A, Musahl V, Debski RE. Glenohumeral translations are increased after a type II superior labrum anteriorposterior lesion: a cadaveric study of severity of passive stabilizer injury. J Shoulder Elbow Surg. 2004;13(1):39-44. 30. Burkart A, Debski R, Musahl V, McMahon P, Woo SL. Biomechanical tests for type II SLAP lesions of the shoulder joint before and after arthroscopic repair. Orthopade. 2003;32(7):600-607. 31. Panossian VR, Mihata T, Tibone JE, Fitzpatrick MJ, McGarry MH, Lee TQ. Biomechanical analysis of isolated type II SLAP lesions and repair. J Shoulder Elbow Surg. 2005;14(5):529-534. 32. Mihata T, McGarry MH, Tibone JE, Fitzpatrick MJ, Kinoshita M, Lee TQ. Biomechanical assessment of Type II superior labral anterior-posterior (SLAP) lesions associated with anterior shoulder capsular laxity as seen in throwers: a cadaveric study. The American journal of sports medicine. 2008;36(8):1604-1610. 33. Youm T, Tibone JE, ElAttrache NS, McGarry MH, Lee TQ. Simulated type II superior labral anterior posterior lesions do not alter the path of glenohumeral articulation: a cadaveric biomechanical study. The American journal of sports medicine. 2008;36(4):767-774. 34. Erickson J, Lavery K, Monica J, Gatt C, Dhawan A. Surgical treatment of symptomatic superior labrum anterior-posterior tears in patients older than 40 years: a systematic review. Am J Sports Med. 2015;43(5):1274-1282.

12

2016 Rush Orthopedics Journal References

35. Gorantla K, Gill C, Wright RW. The outcome of type II SLAP repair: a systematic review. Arthroscopy. 2010;26(4):537-545. 36. Sayde WM, Cohen SB, Ciccotti MG, Dodson CC. Return to play after Type II superior labral anterior-posterior lesion repairs in athletes: a systematic review. Clin Orthop Relat Res. 2012;470(6):1595-1600. 37. Park S, Glousman RE. Outcomes of revision arthroscopic type II superior labral anterior posterior repairs. Am J Sports Med. 2011;39(6):1290-1294. 38. McCormick F, Nwachukwu BU, Solomon D, et al. The efficacy of biceps tenodesis in the treatment of failed superior labral anterior posterior repairs. Am J Sports Med. 2014;42(4):820-825. 39. Gupta AK, Bruce B, Klosterman EL, McCormick F, Harris J, Romeo AA. Subpectoral biceps tenodesis for failed type II SLAP repair. Orthopedics. 2013;36(6):e723-728. 40. Boileau P, Parratte S, Chuinard C, Roussanne Y, Shia D, Bicknell R. Arthroscopic treatment of isolated type II SLAP lesions: biceps tenodesis as an alternative to reinsertion. Am J Sports Med. 2009;37(5):929-936. 41. Ek ET, Shi LL, Tompson JD, Freehill MT, Warner JJ. Surgical treatment of isolated type II superior labrum anterior-posterior (SLAP) lesions: repair versus biceps tenodesis. J Shoulder Elbow Surg. 2014;23(7):1059-1065. 42. Gupta AK, Chalmers PN, Klosterman EL, et al. Subpectoral biceps tenodesis for bicipital tendonitis with SLAP tear. Orthopedics. 2015;38(1):e48-53. 43. Alpert JM, Wuerz TH, O’Donnell TF, Carroll KM, Brucker NN, Gill TJ. The effect of age on the outcomes of arthroscopic repair of type II superior labral anterior and posterior lesions. Am J Sports Med. 2010;38(11):2299-2303. 44. Provencher MT, McCormick F, Dewing C, McIntire S, Solomon D. A prospective analysis of 179 type 2 superior labrum anterior and posterior repairs: outcomes and factors associated with success and failure. Am J Sports Med. 2013;41(4):880-886. 45. Denard PJ, Lädermann A, Burkhart SS. Long-term outcome after arthroscopic repair of type II SLAP lesions: results according to age and workers’ compensation status. Arthroscopy. 2012;28(4):451-457. 46. Burns JP, Bahk M, Snyder SJ. Superior labral tears: repair versus biceps tenodesis. J Shoulder Elbow Surg. 2011;20(2 Suppl):S2-8. 47. Chalmers PN, Monson B, Frank RM, et al. Combined SLAP repair and biceps tenodesis for superior labral anterior-posterior tears. Knee Surg Sports Traumatol Arthrosc. 2015. Epub Ahead of Print 48. Katz LM, Hsu S, Miller SL, et al. Poor outcomes after SLAP repair: descriptive analysis and prognosis. Arthroscopy. 2009;25(8):849-855.

49. Mazzocca AD, Cote MP, Arciero CL, Romeo AA, Arciero RA. Clinical outcomes after subpectoral biceps tenodesis with an interference screw. Am J Sports Med. 2008;36(10):1922-1929. 50. Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF. Kinetics of baseball pitching with implications about injury mechanisms. Am J Sports Med. 1995;23(2):233-239. 51. Bey MJ, Elders GJ, Huston LJ, Kuhn JE, Blasier RB, Soslowsky LJ. The mechanism of creation of superior labrum, anterior, and posterior lesions in a dynamic biomechanical model of the shoulder: the role of inferior subluxation. J Shoulder Elbow Surg. 1998;7(4):397-401. 52. Burkhart SS, Morgan CD, Kibler WB. Shoulder injuries in overhead athletes. The “dead arm” revisited. Clin Sports Med. 2000;19(1):125-158. 53. Lesniak BP, Baraga MG, Jose J, Smith MK, Cunningham S, Kaplan LD. Glenohumeral findings on magnetic resonance imaging correlate with innings pitched in asymptomatic pitchers. Am J Sports Med. 2013;41(9):2022-2027. 54. Chalmers PN, Trombley R, Cip J, et al. Postoperative restoration of upper extremity motion and neuromuscular control during the overhand pitch: evaluation of tenodesis and repair for superior labral anterior-posterior tears. Am J Sports Med. 2014;42(12):2825-2836. 55. Fedoriw WW, Ramkumar P, McCulloch PC, Lintner DM. Return to play after treatment of superior labral tears in professional baseball players. Am J Sports Med. 2014;42(5):1155-1160. 56. Edwards SL, Lee JA, Bell JE, et al. Nonoperative treatment of superior labrum anterior posterior tears: improvements in pain, function, and quality of life. Am J Sports Med. 2010;38(7):1456-1461. 57. Denard PJ, Ladermann A, Parsley BK, Burkhart SS. Arthroscopic biceps tenodesis compared with repair of isolated type II SLAP lesions in patients older than 35 years. Orthopedics. 2014;37(3):e292-297.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

2016 Rush Orthopedics Journal References

13

Minimally Invasive Transforaminal Lumbar Interbody Fusion One Surgeon’s Learning Curve DUSTIN H. MASSEL, BS / BENJAMIN C. MAYO, BA / SREEHARSHA V. NANDYALA, MD / STEVE FINEBERG, MD / KERN SINGH, MD

References 1. Ozgur B, EC Benzel, SR Garfin. Minimally invasive spine surgery: A practical guide to anatomy and techniques. Springer London, Limited; 2009. 2. Wang B, G Lu, AA Patel, P Ren, I Cheng. An evaluation of the learning curve for a complex surgical technique: The full endoscopic interlaminar approach for lumbar disc herniations. Spine J. 2011;11(2):122-130. 3. Neal CJ, MK Rosner. Resident learning curve for minimalaccess transforaminal lumbar interbody fusion in a military training program. Neurosurg Focus. 2010;28(5):E21. 4. Beringer WF, JP Mobasser. Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2006;20(3):E4. 5. Scheufler KM, H Dohmen, VI Vougioukas. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery. 2007;60(4 Suppl 2):203-212; discussion 212-203. 6. Rouben D, M Casnellie, M Ferguson. Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: A clinical and radiographic follow-up. J Spinal Disord Tech. 2011;24(5):288-296. 7. Wu RH, JF Fraser, R Hartl. Minimal access versus open transforaminal lumbar interbody fusion: Meta-analysis of fusion rates. Spine (Phila Pa 1976). 2010;35(26):2273-2281. 8. Peng CW, WM Yue, SY Poh, W Yeo, SB Tan. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34(13):1385-1389. 9. Mayer HM. Minimally invasive spine surgery: A surgical manual. Springer; 2005.

11. Lee KH, W Yeo, H Soeharno, WM Yue. Learning curve of a complex surgical technique: Minimally invasive transforaminal lumbar interbody fusion (mis tlif). J Spinal Disord Tech. 2014;27(7):E234-240. 12. Park Y, SB Lee, SO Seok, BW Jo, JW Ha. Perioperative surgical complications and learning curve associated with minimally invasive transforaminal lumbar interbody fusion: A single-institute experience. Clin Orthop Surg. 2015;7(1):91-96. 13. Silva PS, P Pereira, P Monteiro, PA Silva, R Vaz. Learning curve and complications of minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2013;35(2):E7. 14. Girasole G, G Muro, A Mintz, J Chertoff. Transforaminal lumbar interbody fusion rates in patients using a novel titanium implant and demineralized cancellous allograft bone sponge. Int J Spine Surg. 2013;7(1):e95-e100. 15. Eck JC, S Hodges, SC Humphreys. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15(6):321-329. 16. Hoogland T, K van den Brekel-Dijkstra, M Schubert, B Miklitz. Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: A prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 2008;33(9):973-978. 17. McLoughlin GS, DR Fourney. The learning curve of minimally-invasive lumbar microdiscectomy. Can J Neurol Sci. 2008;35(1):75-78. 18. Hyde J, M Seits. Clinical experience, outcomes, and learning curve following xlif for lumbar degenerative conditions. World Spinal Column Journal. 2011;2(1):21-26. 19. Wang MY. Minimally invasvie transforaminal lumbar interbody fusion (mis tlif). In A. A. Baaj ed. Handbook of spine surgery. New York, New York: Thieme.

10. Lee JC, HD Jang, BJ Shin. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: Our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012;37(18):1548-1557.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

14

2016 Rush Orthopedics Journal References

History of Lumbar Disc Science and Surgery NICHOLAS BROWN, MD / GUNNAR B. J. ANDERSSON, MD, PHD / DAVID FARDON, MD

References 1. Goodrich JT. History of spine surgery in the ancient and medieval worlds. Neurosurg Focus. 2004;16(1):E2. 2. Chang A, Lad EM, Lad SP. Hippocrates’ influence on the origins of neurosurgery. Neurosurg Focus. 2007;23(1):E9. 3. Marketos SG, Skiadas P. Hippocrates. The father of spine surgery. Spine (Phila Pa 1976). 1999;24(13):1381-1387. 4. Knoeller SM, Seifried C. Historical perspective: history of spinal surgery. Spine (Phila Pa 1976). 2000;25(21):2838-2843. 5. Castro I, Santos DP, Christoph Dde H, Landeiro JA. The history of spinal surgery for disc disease: an illustrated timeline. Arq Neuropsiquiatr. 2005;63(3A):701-706. 6. Robinson JS. Sciatica and the lumbar disk syndrome: a historic perspective. South Med J. 1983;76(2):232-238. 7. Kyere KA, Than KD, Wang AC, Rahman SU, ValdiviaValdivia JM, La Marca F, et al. Schmorl’s nodes. Eur Spine J. 2012;21(11):2115-2121. 8. Putti V. New conceptions in the pathogenesis of sciatic pain. Lancet. 1927;2(53). 9. Dandy WE. Loose cartilage from intervertebral disk simulating tumor of the spinal cord. By Walter E. Dandy, 1929. Clin Orthop Relat Res. 1989;(238)(238):4-8. 10. Alajouanine TH P, D. Le nodule fibrocartilageneux de la face face posterieure des disques inter-vertebraux, II. Etude clinique et therapeutique d’une variete nouvelle de compression radiculomedullaire extra-durale. Presse Med. 1930;38:1749-1751. 11. Bucy PC. Chondroma of intervertebral disc. JAMA. 1930;94(1152). 12. Crouzon O, Petit-Dutaillis D, Christophe J. Sur un cas de compression de la queue de cheval, d’origine traumatique, par un nodule fibro-cartilagineux du disque intervertebral: operation. Gurison Rev Neurol. 1931;55(1):612-617. 13. Mixter WJ. Rupture of the intervertebral disk; a short history of this evolution as a syndrome of importance to the surgeon. JAMA. 1949;140(3):278-282. 14. Mixter WJ. Rupture of the Lumbar Intervertebral Disk: an Etiologic Factor for So-Called “Sciatic” Pain. Ann Surg. 1937;106(4):777-787. 15. Mixter WJ, Barr JS. Rupture of the intervertebral disk with involvement of the spinal canal. N Engl J Med. 1934;210-214.

16. Crock HV. Internal disc disruption. A challenge to disc prolapse fifty years on. Spine (Phila Pa 1976). 1986;11(6):650-653. 17. Smith L. Enzyme dissolution of the nucleus pulposus in humans. JAMA. 1964;167:137-140. 18. Smith L. Chemonucleolysis. Personal history, trials, and tribulations. Clin Orthop Relat Res. 1993;(287)(287):117-124. 19. Steinmetz J. Dr. Lyman Smith Tangles with the FDA over his papaya enzyme to treat bad backs. People Magazine. 1976;5(3). 20. Simmons J, Fraser R. The Rise and Fall of Chemonucleolysis. In: Parviz Kambin, editor. Arthroscopic and Endoscopic Spinal Surgery. Humana Press; 2005. p.351-358. 21. Sicard JA, Forestier J, Laplane L. Radiodiagnostic lipiodole au cours des compressions rachidiennes. Rev Neurol. 1923;6(676). 22. Epstein BS. The history of neuroradiology. In: Rose FC B, editor. Historical Aspects of the Neurosciences. New York: Raven Press; 1982. p.255-264. 23. Almen T. Contrast Agent Design. Some aspects on the synthesis of water-soluble contrast agents of low osmality. J Theor Biol. 1969;24:216-226. 24. Chedid KJ, Chedid MK. The “tract” of history in the treatment of lumbar degenerative disc disease. Neurosurg Focus. 2004;16(1):E7. 25. Padua R. The history of the diagnosis and treatment of lumbar sciatic disc herniation. Chir Organi Mov. 1999;84(4):367-373. 26. Peng S, Chee A, Liu D, Zheng, J, Chen, D, Li, Z, Oh, C, Chen, D, Andersson, G, An, H. Chemokine receptor antagonists can inhibit macrophage migration. Paper presented at: International Society for the Advancement of Spine Surgery; April 2015; San Diego, CA. 27. Ala-Kokko L. Genetic risk factors for lumbar disc disease. Ann Med. 2002;34(1):42-47. 28. Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). 2008;33(25):2789-2800. 29. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: version 2.0: Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J. 2014;14(11):2525-2545.

No sources of support in the forms of grants, equipment, or other items were received for this study. The authors report no conflict of interest. The authors’ personal disclosure information can be accessed through the AAOS Orthopedic Disclosure Program at www.aaos.org.

2016 Rush Orthopedics Journal References

15

Suggest Documents