Biogeochemistry of Wetlands

Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands S i Science and dA Applications li ti SULFUR Wetland Biogeochemistry ...
Author: Jacob Garrison
0 downloads 1 Views 3MB Size
Institute of Food and Agricultural Sciences (IFAS)

Biogeochemistry of Wetlands S i Science and dA Applications li ti

SULFUR Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett [email protected] 6/22/2008 6/22/2008 6/22/2008

WBL P.W. Inglett

1 1 1

Sulfur ‰ Introduction ‰

‰

S Forms, Distribution, Importance

Basic processes of S Cycles ‰ Examples

of current research ‰ Examples of applications ‰

6/22/2008

Key points learned

P.W. Inglett

2

1

Sulfur Learning Objectives ‰ Identifyy the forms of S in wetlands ‰ Understand the importance of S in wetlands/global processes ‰ Define the major S processes/transformations ‰ Understand the importance of microbial activity in S transformations ‰ Understand the potential regulators of S processes ‰ See the application of S cycle principles to understanding natural and man-made ecosystems

6/22/2008

P.W. Inglett

3

Sources of Sulfur • Sulfur is a ubiquitous element element. • Various sulfur compounds are present in: – – – – – – –

6/22/2008

The atmosphere Minerals Soils Plant tissue Animal tissue Microbial biomass Sediment

P.W. Inglett

4

2

Reservoirs of Sulfur •Atmosphere •Lithosphere •Hydrosphere – Sea – Freshwater •Pedosphere – Soil S il – Soil Organic matter •Biosphere

6/22/2008

4.8 x 109 kg 24.3 x 1018 kg 1.3 x 1018 kg 3.0 x 1012 kg 2.6 2 6 x 1014 kg k 14 0.1 x 10 kg 8.0 x 1012 kg

P.W. Inglett

5

General Forms of Sulfur in the Environment • Organic S in plant, animal, and microbial tissue (as essential i l components off amino i acids id and d proteins) i ) Methionine

Cysteine H3C-S-CH2-CH2-

HS-CH2Thioester O R1-C~S-R2

– Organic sulfur primarily in soil and sediments as humic material (naturally occurring soil and sediment organic matter)

6/22/2008

P.W. Inglett

6

3

General Forms of Sulfur in the Environment • Gaseous S compounds (SO2, H2S, DMSO, DMS) • Oxidized Inorganic S (sulfate, SO42-, is the primary compound). Seawater contains about 2,700 mg/L (ppm) of sulfate

• Reduced Inorganic S (elemental sulfur, So, and sulfide, S2-)

6/22/2008

P.W. Inglett

7

General Forms of Sulfur in the Environment • Minerals Galena (PbS2)

Gypsum (CaSO4)

Jarosite(Fe2S)

Barite (BaSO4)

Pyrite (FeS2)

• Fossil F il Fuels F l – Petroleum (0.1-10%) – Coal (1-20%)

6/22/2008

P.W. Inglett

8

4

Oxidation states of selected sulfur compounds • • • • • •

6/22/2008

Organic S (R-SH) Sulfide (S2-) Elemental S (S0) Sulfur dioxide (SO2) Sulfite (SO3-2) Sulfate (SO42-)

-2 -2 0 +4 +4 +6

P.W. Inglett

9

Global Sulfur Cycle

6/22/2008

P.W. Inglett

10

5

Sulfur Cycling Processes 1. Dissimilatory sulfate reduction 2. Assimilatory sulfate reduction 3. Desulfurylation 4. Sulfide oxidation 5. Sulfur oxidation 6. Dissimilatory So reduction

6/22/2008

P.W. Inglett

11

Sulfur Cycle So 4 5

SH groups

2

Aerobic

SO4

of protein

2-

Anaerobic

S2-

1 2

Anaerobic

Aerobic

3

3

SH groups 5

of protein

4 6

So 6/22/2008

P.W. Inglett

12

6

Distribution of sulfur in soils Organic sulfur [93%] – Carbon-bonded sulfur (cysteine and methionine) 41% – Non-carbon-bonded sulfur (ester sulfates) 52%

Inorganic sulfur [7%] – Adsorbed + soluble sulfates 6% – Inorganic compounds less oxidized than sulfates and reduced sulfur compounds (e.g. sulfides) 1%

6/22/2008

P.W. Inglett

13

Organic Sulfur Forms 20 Freshwater

Sulfur, g/kg S

15 10

Brackish Salt

5 0

Ester

C-S

Total

Organic Geochemistry vol. 18, no. 4, pp. 489-500, 1992 6/22/2008

P.W. Inglett

14

7

Inorganic Sulfur Forms 4

400 Freshwater

3

Brackish

2

200 Salt

1

100

Sulfur, g/kg S

Su ulfur, mg/kg

300

0

0 FeS

So

FeS2

HCl

Krairapanond et al. 1992. Organic Geochemistry 18: 489-500. 6/22/2008

P.W. Inglett

15

Organic S Hydrolysis

R-S S-H H2 + H2O Thiol

6/22/2008

R-OH R OH + H2S

Sulfohydrolase

P.W. Inglett

16

8

Sulfur – Organism Groups Assimilatory Sulfate Reduction • Bacteria, Bacteria fungi fungi, algae, algae and plants

Dissimilatory Sulfate Reduction • Hetrerotrophs Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfuromonas

Sulfide Oxidation • Phototrophs: Chlorobium, Chromatium • Chemolithoautotrophs: Thiobacillus, Beggiatoa

6/22/2008

P.W. Inglett

17

Sulfate Reducing Bacteria: SRB (habitats)

Desulfovibrio - found in water-logged soils. Desulfotomaculum - spoilage of canned foods. Desulfomonas - found in intestines. Archaeglobus - a thermophilic Archea whose optimal growth temperature is 83oC. C

6/22/2008

P.W. Inglett

18

9

6/22/2008

P.W. Inglett

19

Sulfate Reduction Deposition

SO42Tidal Exchange

SO42AEROBIC

SO42-

Reduction

S2-

Reduction

SO42-

So Microbial Biomass-S

6/22/2008

P.W. Inglett

Adsorbed 2 SO42-

ANAEROBIC

20

10

Glucose Oxidation kJ/mol Glucose

Oxidation – Reduction Reaction C6H12O6 + 6O2 = 6CO2 + 6H2O

2,880

5C6H12O6 + 24NO3- + 24H+ = 30CO2 + 12N2 +42H2O

2, 712

C6H12O6 + 12MnO2 + 24H+ = 6CO2 + 12Mn2+ + 18H2O

1,920

C6H12O6 + 24Fe(OH)3 + 48H+ = 6CO2 + 24 Fe2+ +66H2O

432

C6H12O6 + 3SO42- = 6CO2 + 3S2- + 6H2O

6/22/2008

381

P.W. Inglett

21

Oxygen EquivalentsEnergy Yield from Glucose

% of Ae erobic Energy Yield

120 100 80 60 40 20 0

O2 6/22/2008

NO3MnO2 Fe(OH)3 Electron Acceptors P.W. Inglett

SO4222

11

Oxidation-Reduction SO42CO2

Mn4+

S2-

CH4

-200

Fe3+

-100

0

Mn2+ NO3-

Fe2+

+100

+200

O2

H2O

N2

+300 +400

Redox Potential, mV (at pH 7) 6/22/2008

P.W. Inglett

23

Sequential Reduction of Electron Acceptors

6/22/2008

P.W. Inglett

24

12

Redox Zones With Depth WATER

D Depth

SOIL

Oxygen Reduction Zone Eh = > 300 mV

I

II

Nitrate Reduction Zone Mn4+ Reduction Zone Eh = 100 to 300 mV

III

Fe3+ Reduction Zone Eh = -100 to 100 mV

IV

Sulfate Reduction Zone Eh = -200 to -100 mV

V

Methanogenesis Eh = < -200 mV

6/22/2008

Aerobic Facultative

Anaerobic

P.W. Inglett

25

Redox Potential and pH 1000

Eh [mV]

800 600 400 200 0 -200 -400 -600 6/22/2008

0

2

4

pH

P.W. Inglett

6

8

10 12 Baas Becking et al. 26

13

Microbial Activity [Site: Water Conservation 2A] y = 0.33x + 1.3 r2 = 0.88; 0 88; n = 24

50

[mg kg-1 hour-1]

Sulfate e reducing conditions

60

40 30 20 10 0 10

0

20

30

40

50

60

Aerobic [mg kg-1 hour-1] 6/22/2008

P.W. Inglett

27

Sulfate Respiration Detrital Matter Complex Polymers

Enzyme Hydrolysis

Monomers Sugars, Amino Acids F tt Acids Fatty A id

Cellulose, Hemicellulose, Proteins, Lipids, Waxes, Lignin

Uptake

Glucose Glycolysis

Oxidative phosphorylation

Pyruvate

TCA Cycle Products: CO2, H2O, S2-, Nutrients

CO2

Substrate level phosphorylation

Acetate

SO42- + e-

Uptake

Lactate

Substrate level phosphorylation

Organic Acids [acetate, propionate, butyrate, lactate, alcohols, H2, and CO2]

ATP [Sulfate Reducing Bacterial Cell] 6/22/2008

P.W. Inglett

[Fermenting Bacterial Cell] 28

14

Electron donors used during sulfate reduction

• SRB lack enzymes necessary for complex carbon assimilation

6/22/2008

P.W. Inglett

29

Electron donors used during sulfate reduction

6/22/2008

P.W. Inglett

30

15

Decreasing energy yield

6/22/2008

P.W. Inglett

31

Electron Donors

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008

P.W. Inglett

32

16

Sulfate Reduction Rates Activity [[nmol/g g per p day] y]

Low carbon wetland

23

Peaty wetland

130

Oligotrophic lake

707

Eutrophic lake

1,224

Marine and salt-marsh

6/22/2008

744-24,000

P.W. Inglett

33

Salt Marshes Respiration [g C/m2 year] Sapelo Island Sippewissett Sapelo Island [GA] [MA] (199 ) (1997)

Aerobic respiration Denitrification Mn and Fe reduction Sulfate reduction Methanogenesis S Respiration

6/22/2008

390 10 ND 850 40 ~65%

P.W. Inglett

390 3 ND 1,800 1-8 18 ~82%

2,000

~69-87%

34

17

Sulfate Respiration

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008

P.W. Inglett

35

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008

P.W. Inglett

36

18

Seasonal Effects

Jorgensen, 1977. Marine Biology 41:7-17. 6/22/2008

P.W. Inglett

37

Seasonal Effects Spartina alterniflora marsh Great Sippewissett Marsh

Moles SO42- m-2 d-1 M

05 0.5 0.4 0.3 0.2 0.1 0.0 J

F

M

A

M

J

J

A

S

O

N

D

Months Howarth and Giblin, 1983. Limnol and Oceanogr, 28:70-82. 6/22/2008

P.W. Inglett

38

19

Seasonal Effects Spartina alterniflora marsh

05 0.5

Moles O2 m-2 d-1 M

Moles SO42- m-2 d-1 M

0.03 0.4 0.3 0.2 0.1

0.02

0.01

0.0 -5

0

5

10

15

20

25

30

Temp (C)

-5

0

5

10

15

20

25 30

Temp (C) Howarth and Teal. 1979. Limnol and Oceanogr, 24: 999-1013.

6/22/2008

P.W. Inglett

39

Regulators of Sulfate Reduction • P Presence off electron l t acceptor t with ith higher hi h reduction potentials • Oxygen is toxic to sulfate reducers • Sulfate concentration – Freshwater (< 0.1 mM) – Marine (20-30 mM)

• Substrate/Electron Donor • Temperature • Microbial populations 6/22/2008

P.W. Inglett

40

20

Decreasing energy yield

6/22/2008

P.W. Inglett

41

Anaerobic Sludge Reactor (FISH) Sulfidogenic aggregate

Sulfidogenic/Methanogenic aggregate

Archeal Probe

SRB Probe

Appl Environ Microbiol. 1999 October; 65(10): 4618–4629. 6/22/2008

P.W. Inglett

42

21

Competition With Methanogens

X X X X

6/22/2008

P.W. Inglett

43

Sulfate Reducers vs Methanogens

Sulfate reducers

Vmax

Vmax Methanogens

V = [Vmax S]/Km + S Km

Km [Substrate]

6/22/2008

P.W. Inglett

44

22

Sulfate Reduction Typical Lake Sediments

mM SO42-

20

SO42-

0.4

10

mM CH4

0.6

CH4

0.2

20

0

40

60

80

100

Days from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. 6/22/2008

P.W. Inglett

45

Sulfate Reduction Typical Lake Sediments mM SO42-

mM SO420.1

0.2

20

10 0

12 8

2 SO42-

SO42-

0.5

1.0

0

m

cm

4

4

CH4

8 12

2.0 1

2 mM CH4

Freshwater 6/22/2008

CH4

1.5

0.5

1.0 mM CH4

Marine

from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. P.W. Inglett 46

23

Sulfate Reduction Cattail Marsh – Sunnyhill Farm Wetland CH4 (mg L-1) 0

5

10

15

10

W t Water

0

Depth (cm)

Soil

CH4

-10

SO42-

-20

-30 0

20

40

60

80

100

SO42- (mg L-1) 6/22/2008

P.W. Inglett

47

Sulfate Reduction

Iversen and Jorgensen. 1985. Limnol Oceanogr, 30: 944-955. 6/22/2008

P.W. Inglett

48

24

Sulfur Emissions

H2S DMS

Mineralization

Org-S

H2S DMS

Mineralization

O S Org-S

AEROBIC

Reduction 2 S2-

Reduction

So

2 SO42-

ANAEROBIC

6/22/2008

P.W. Inglett

49

Gaseous S Emissions

6/22/2008

P.W. Inglett

50

25

Gaseous Speciation DeLaune et al. 2001

SALT

BRACKISH

FRESH

CO-S

H 2S

H3C-S-CH3

ug S m-2 hr-1

6/22/2008

P.W. Inglett

51

Sulfide Formation

H2S DMS

Mineralization

Org-S

H2S DMS

Mineralization

O S Org-S

AEROBIC

Reduction 2 S2-

Reduction

So

2 SO42-

ANAEROBIC

6/22/2008

P.W. Inglett

52

26

Sulfide Speciation

6/22/2008

P.W. Inglett

53

Problems With Hydrogen Sulfide

• Malodorous (rotten egg smell) • Acidic (corrosion/fouling) • Toxic (reactive with metalloenzyme systems)

6/22/2008

P.W. Inglett

54

27

Sulfide Toxicity Tall vs. Short Spartina alterniflora

Short Form

Tall Form

6/22/2008

P.W. Inglett

55

6/22/2008

P.W. Inglett

56

28

Tall vs. Short Spartina alterniflora Sapelo Island Marsh

Tall

Creek

Short

Kostka et al., 2002. Biogeochemistry 60:49-76. P.W. Inglett 57

6/22/2008

Sulfide Toxicity Tall vs. Short Spartina alterniflora NH4+ Uptake Lower Vmax

Higher Vmax

Higher Km

Lower Km

MHT MLT

Inc. NH4+, S2-, and Salt Concentrations

Inc. Flood Frequency, Pore Water Turnover 6/22/2008

P.W. Inglett

58

29

Sulfide Precipitation

AEROBIC

Reduction 2 S2-

Reduction

So

2 SO42-

Me+-S

FeS2

6/22/2008

P.W. Inglett

ANAEROBIC

59

Iron and Sulfide Interactions 2F OOH + H2S = So + 2Fe 2FeOOH 2F 2+ + 4OHFe2+ + H2S = FeS + 2H+ FeS + So = FeS2

Acid Volatile S (AVS) 6/22/2008

Chromium Reducible S (CRS) P.W. Inglett

60

30

Pyrite Framboids

6/22/2008

P.W. Inglett

61

Pyrite Formation Fe Oxides Monosulfides (AVS)

FeS

ΣH2S

S0 Intermediate Redox S

FeS2 Pyrite (CRS)

Sulfate Reduction 6/22/2008

P.W. Inglett

62

31

Pyrite Formation Sapelo Island Marsh Solid--Fe Solid

AVS

CRS

Creek Tall Short

Kostka et al., 2002. Biogeochemistry 60:49-76. 6/22/2008

P.W. Inglett

63

ZnS

6/22/2008

P.W. Inglett

64

32

Metal Sulfide Solubility% Uptake of added 35S

Uptake by Rice Plant 5 Na2S 4 3 2 MnS FeS ZnS

1 0 0 10

10-10

10-20

C S CuS

10-30

H S HgS

10-40

10-50

Solubility Product (Ksp) 6/22/2008

P.W. Inglett

Engler and Patrick, 1981

65

Metal Sulfide Solubility

Yu et al. 2001. Wat Res. 35:4086-4094. 6/22/2008

P.W. Inglett

66

33

Sulfur Oxidation

Tidal Exchange

SO42H2S DMS

Oxidation

Oxidation

So

SO42-

AEROBIC

Reduction 2 S2-

So

ANAEROBIC

6/22/2008

P.W. Inglett

67

Sulfide Oxidation 2H2S + O2 = 2So + 2H2O -204 204 kJ/ kJ/reaction ti

2So + 3O2 + 2H2O = 2SO42- + 4H+ -583 kJ/reaction

H2S + 2O2 = SO42- + 2H+ -786 86 kJ/reaction J/ eact o

H2S 6/22/2008

So

SO32P.W. Inglett

SO4268

34

Sulfur Cycling Cyanobacterial Mat Sediments

6/22/2008

P.W. Inglett

69

Sulfur Cycling Cyanobacterial Mat Sediments

Surface Aphanothece Diatoms 6/22/2008

Green Layer Phormidium, Lyngbya P.W. Inglett

Red Layer Chromatium salexigens Thiocapsa halophila. 70

35

Oxidation-Reduction Soil-floodwater Interface O2 Floodwater Aerobic soil

SO42-

H2S + O2

SO42-

H2S

Anaerobic soil

6/22/2008

P.W. Inglett

71

Sulfur Cycling Salt Marsh Surface Sediments

6/22/2008

P.W. Inglett

72

36

Oxidation-Reduction Root- Soil Interface

AEROBIC

ANAEROBIC

6/22/2008

P.W. Inglett

73

Oxidation-Reduction Infaunal Burrows

Uca spp.

6/22/2008

P.W. Inglett

74

37

Oxidation-Reduction Infaunal Burrows

ca. 12” Deep

6/22/2008

P.W. Inglett

75

6/22/2008

P.W. Inglett

76

38

Sulfur Cycle

Rates = mmol/m2 day from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. 6/22/2008

P.W. Inglett

77

Pyrite Oxidation FeS2 + 3.5O2 + H2O = Fe2+ + 2SO42- + 2H+ Fe2+ + 0.25O2 + H+ = Fe3+ + 0.5H2O (1) FeS2 + 3.75O2 + 0.5H2O = Fe3+ + 2SO42- + H+ (2) FeS2 + 14Fe3++ 8H2O = 15Fe2+ + 2SO42- + 16H+

O2

Fe2+

Slow (at low pH) Biological

[Thiobacillus ferrooxidans]

6/22/2008

Fe3+ P.W. Inglett

SO42- + H+ Fast Chemical/ Biological

FeS2

78

39

Drainage Effects on Acid Sulfate Soils

6/22/2008

P.W. Inglett

79

Acid Sulfate Soils

6/22/2008

P.W. Inglett

80

40

Acid Mine Drainage

6/22/2008

P.W. Inglett

81

Sulfur Cycling in Wetlands Plant Biomass-S

Deposition

SO42Litterfall

H2S DMS

Tidal Exchange

SO42Mineralization

Org-S

H2S DMS

Mineralization

S2-

SO42-

Org-S

So

Reduction 2 S2-

Me+-S

FeS2 6/22/2008

Oxidation

Oxidation

P.W. Inglett

.

SO42-

Reduction 2 SO42-

So Microbial Biomass-S

AEROBIC

Adsorbed SO42-

ANAEROBIC

82

41

6/22/2008

P.W. Inglett

83

Hg Methylation

Gilmore et al., 1992. Env Sci Tech. 26:2281-2287. 6/22/2008

P.W. Inglett

84

42

Hg Methylation

Gilmore et al., 1992 6/22/2008

P.W. Inglett

85

Hg Methylation Desulfobacteriaceae Acetate

Lactate

Control

King et al., 2000. Applied and Environmental Microbiology, June 2000, p. 2430-2437.

6/22/2008

P.W. Inglett

86

43

Hg Methylation

6/22/2008

P.W. Inglett

Periphyton Delta 32S September 1996

87

Methylmercury in Floating Periphyton All Cycles 1995-1996

ug/k g

> 6 4

2

0

Kendall et al., http://sofia.usgs.gov/publications/posters/ 6/22/2008

P.W. Inglett

88

44

Hg Methylation S2S0

Hg

HgS0

?

HgS2 6/22/2008

H3C-Hg

SRB

SO42P.W. Inglett

89

Importance of Sulfur in Wetlands

• • • • • • •

Source of nutrient Source of energy Role in decomposition of organic matter Adverse effects of sulfide on plant growth Immobilization of toxic metals Contribution to acid development (oxidation) Role in methylation of Hg

6/22/2008

P.W. Inglett

90

45