Autonomous Underwater Inspection Using a 3D Laser

Autonomous A t U Underwater d t Inspection I ti Using a 3D Laser 10121-4903-02 Dan McLeod and John Jacobson Lockheed Martin Ultra-Deepwater Conference...
Author: Letitia Rose
5 downloads 0 Views 1MB Size
Autonomous A t U Underwater d t Inspection I ti Using a 3D Laser 10121-4903-02 Dan McLeod and John Jacobson Lockheed Martin Ultra-Deepwater Conference September 19-20, 2012 Lone Star College Conference Center Th Woodlands, The W dl d T Texas

rpsea.org

Autonomous Underwater Inspection Using g a 3D Laser o The Problem o Proposed P dS Solution l ti o Technology to Date • RPSEA 09121 09121-3300-05: 3300 05: Autonomous Inspection of Subsea Facilities • RPSEA 09121-3300-06: High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair, and Operations

o Project Objectives o Scope of Work o Project Schedule

2

The Problem o Inspection operations in deepwater using ROVs are very costly: • • •

Deepwater ROVs require large, expensive vessels and large, heavy deck spreads Vessel operations are limited by weather and umbilical constraints Comprehensive facility inspections require extended vessel deployments at high day rates

o Current C t underwater d t iinspection ti ttechnologies h l i are iinefficient: ffi i t •

Video inspection can be ineffective due to operator fatigue



Ambiguity due to collection of data without accurate geo-registration

o Deepwater poses critical challenges for Structural Integrity Management: • • •

The lack of timely and accurate survey quality 3D measurements A lack of accurate data results in higher risks or costs to build and maintain environmentally safe production d ti andd product d t ttransportation t ti systems t The lack of timely geo-registered 3D model generation inhibits comprehensive situational awareness that is needed to respond to environmental incidents such as hurricanes, operational incidents, etc.

3

Current State of the Art: Underwater Data Collection

Multi Beam SONAR

HD Video

Acoustic Positioning

• The industry lacks: • Rapid, survey quality measurement capabilities • Automated change detection • Automated geo-registration of data to a 3D model

4

Proposed Solution o Autonomous Inspection using an Underwater 3D Laser • • •

Survey using combination of high resolution 3D Sonar and 3D Laser Generation of high fidelity 3D models Real-time detection and localization of structural changes vs vs. reference model

o Advantages: • • • • •

3D model generation in hours vs. days Employs smaller vessels, fewer crew members, no umbilical management Real-time change detection, enabling on site assessment of survey results and structural anomalies Rapid assessment of damage after environmental events Accurate, geo-registered model for structural integrity assessment

Potentially dramatic cost reductions and improved operating efficiencies can  P t ti ll d ti t d ti di d ti ffi i i be achieved if high accuracy inspections can be performed with an AUV 5

Technology to Date: RPSEA 0912109121-3300 3300--05

Autonomous Platform Inspection AUV Launch & Recovery

Optimal Path Planning

Ingress

((>150m 50 Sta Stand-off) do )

15 m Standoff Inspect Operational Sequence: • Pre-mission checkout • Generate inspection plan & download to vehicle • Launch L h vehicle hi l & start t t mission i i • Ingress & detect/acquire platform • Inspect platform • Egress to recovery location & recover vehicle hi l • Post-mission checkout • Offload data & process

Egress

Dive to Next Slice

Detect/Acquire Platform

The platform inspection mission profile involves successive passes around the platform at  a 15m standoff, with 50% overlap of 3D sonar scans between passes 6

Technology to Date: RPSEA 0912109121-3300 3300--05

3D Model Generation •Inspection conducted at –Speed 2.0 kts (ground speed) –Standoff from Structure 15M –100% overlap per depth slice – 5 depth p slices - Water depth: 130 ft. •Mensurated dimensions: - 15.8 15 8 m long (mid-beam) - 16.9 m wide (mid-beam)

One 41 minute mission to  collect the data displayed collect the data displayed ROV operations noted 4 meter  fluidized unconsolidated soils  zone at bottom with zero zone at bottom with zero  visibility 7

Technology to Date: RPSEA 0912109121-3300 3300--05

Autonomous Change Detection

Buckled, bent and missing members d t t d detected

Positive (new features) and Negative (missing features) detected and displayed as Marlin conducts the inspection

Changes detected in real time (on the Marlin) against baseline model 8

Technology to Date: RPSEA 0912109121-3300 3300--06

Underwater 3D Laser Imaging* (Pool Demo) Low resolution scan of  flange

10” diam. 0.5” bolt holes

Yellow Flange with standard  chain attached chain attached High resolution scan of  chain – 1” x 2” x 0.3” metal link Easily identify chain at  5m range 5m range © 2012 Lockheed Martin Corporation *Images used with permission of 3DatDepth LLC

9

Technology to Date: RPSEA 0912109121-3300 3300--06

Underwater 3D Laser Imaging* (ROV Tank Demo)

Hot stab panel as viewed from main ROV camera monitor (Left). Processed 3D data from laser scanner with color mapped to range – red is furthest distance (Right).

Data was collected and processed while ROV was static (Left) and while the ROV was in station keeping mode (Right).

© 2012 Lockheed Martin Corporation *Images used with permission of 3DatDepth LLC

10

Technology to Date: RPSEA 0912109121-3300 3300--06

Underwater 3D Laser Imaging* (ROV Tank Demo) •

• • •

Note the presence and depth of  the fins is difficult to capture with  the 2D ROV camera Pi Primary identification is the  id ifi i i h shadows caused by sunlight Fins are 20.5 cm apart and  17.8cm deep   The height of the fins and the  distance between fins was verified  to within 2mm 3D data from a single scan at  3 d f i l 8.2m range clearly shows the  fins along with the lettering  below the fins “PIGE”.  The  llettering has a depth of ~8 mm.  i h d h f 8

ROV test tank results: • •

Maximum error = 3mm at 8 meter range Maximum error = 3mm at 8 meter range 3D data processed and viewed in less than 1 minute © 2012permission Lockheed Martin Corporation *Images used with of 3DatDepth LLC

11

Project Objectives o Development and demonstration of AUV-based 3D laser imaging with 3D Mapping and Change Detection: • Demonstration of close-in, high resolution underwater structural inspection usingg an AUV with a 3D laser • Generation of high resolution 3D models of subsea structures such as platforms, pipelines, etc. using an AUV with a 3D laser • Performance of real real-time time detection of flaws or damage against a priori structural models

12

Scope of Work Phase 1

Schedule 3 Months

Scope of Work AUV 3D Laser Inspection Requirements • Concept C t of Operations (CONOPS) fO ti (CONOPS) • System / Sensor Requirements Analysis & Modeling • 3D Laser Hardware / Software Interface Definition • Marlin AUV Interface Definition & Layout

CONOPS Requirements / Interface Definition

AUV Software / Hardware Development

2

9 Months

• • • • •

LADAR Sensor SIM Perception‐L  SW Development Laser Sensor Interface Design / Packaging for AUV‐based 3D Laser AUV Mod Kit Design/Procurement

Design / Build

Laboratory Integration and Test / Hardware Integration Laboratory Integration and Test / Hardware Integration

3

6 Months

• • • • •

Fabrication & Test of AUV‐based 3D Laser Factory Integration and Testing of 3D Laser with AUV AUV Simulation Lab Integration and Test AUV Simulation Lab Test and Demonstration Offshore Test Plans and Procedures

Onshore Integration / Test

AUV Integration and Test

4

5 Months

• • • • •

AUV Mod Kit Install 3D Laser Installation and Checkout Dockside Test Local Offshore Test Final Report

Local Offshore Integration / Test

13

Project Schedule RPSEA 4903-02 Program Level Schedule

2012 Jul

Aug

Sep

2013 Oct

PHASE 1

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun

1 2

Aug

Sep

Oct

Nov

Dec

Jan

Feb

3

PHASE 2 PHASE 2 Key Program Milestones Contract Award Program Kickoff Marlin OPIS One AUV Available PM Plan Submittal (Draft / Final) Technology Assessment Report Submittal Technology Transfer Plan Submittal RPSEA Working Group Meetings Phase 1 Stage Gate - System Requirements Document (Draft / Final) Phase 2 Stage Gate - Design Review (Draft / Final) Phase 3 Stage Gate - Lab Sim Demo (Interim / Final) Final Technical Report Submittal Phase 1 - AUV-Based 3D Laser Requirements q Definition LM PB Requirements LM MFC Requirements Definition 3D at Depth Requirements Definition Phase 2 - SW/HW Design LM PB SW Development LM MFC Perception Autonomy Development AUV Mod Kit Design AUV Mod Kit Procure & Build 3D at Depth Hardware Design and Build Phase 3 - SW Lab Integration & Test LM PB SW Integration LM MFC Autonomy Integration LM HW Integration 3D at Depth Integration Support Test Plan and Procedures Phase 4 - 3D AUV Laser Demo Local Offshore Demo and Test LM MFC Offshore Test Support 3D at Depth Offshore Test Support Final Technical Report

2014 Jul

PHASE 3

PHASE 4 PB Activity

7/18 8/24

MFC Activity 3D at Depth Activity Baseline Start

8/24 8/24

B li Fi i h Baseline Finish 9/18

Actual Start Actual Finish Stage Gate Approval

14

Project Budget and Spend Plan PROJECT BUDGET Total Estimated Project Cost

$ 2,055,271

RPSEA Maximum Share

$ 1,642,446

LM C t Sh LM Cost Share

$ 412,825 $      412 825

LM Technology Transfer 

$       30,829

RPSEA 10121‐4903‐02  Baseline Spend Plan $2 500 $2,500 

$2,000 

$1,500 

$K $1,000 

$500 

$‐

15

Questions?

16

Contact Information

d Dan McLeod

John Jacobson h b

Lockheed Martin MS2

Lockheed Martin MS2

[email protected]

[email protected]

(Office) 561‐494‐2305

(Office) 713‐243‐5740

(Cell) 561‐662‐5742

(Cell) 713‐447‐7671

17

Suggest Documents