2009 Habbal Astro Chapter 14 Lecture 31 1

Chapter 14: Our Galaxy, the Milky Way 4/15/2009 Habbal Astro 110-01 Chapter 14 Lecture 31 1 14.1 The Milky Way Revealed Learning goals • What is ...
Author: Lynette Small
42 downloads 2 Views 6MB Size
Chapter 14: Our Galaxy, the Milky Way

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

1

14.1 The Milky Way Revealed Learning goals • What is the structure of our galaxy? • How do stars orbit in our galaxy?

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

2

In the night sky, the Milky Way appears as a faint band of light.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

3

Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes new star systems. 
 It comprises clouds of hydrogen gas (atomic & molecular) and dust. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

4

All-Sky View of the Milky Way

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

5

Size of the Milky Way (side view) •  •  •  • 

4/15/2009

Diameter ~ 100,000 light years Thickness ~ 1,000 light years (flatter than a CD !) Distance from Sun to center ~ 30,000 light years About 100 billion stars in total.

Habbal Astro 110-01 Chapter 14 Lecture 31

6

Stellar components of the Milky Way 1.  2.  3. 

4/15/2009

Disk: rotating, thin collection of stars, gas & dust. Halo: tenuous outer sphere of stars & globular clusters, and very little gas. Bulge: spherical concentration of stars near the center

Habbal Astro 110-01 Chapter 14 Lecture 31

7

Size of the Milky Way (side view) •  •  •  • 

4/15/2009

Diameter ~ 100,000 light years Thickness ~ 1,000 light years (flatter than a CD !) Distance from Sun to center ~ 30,000 light years About 100 billion stars in total.

Habbal Astro 110-01 Chapter 14 Lecture 31

8

Stellar components of the Milky Way 1.  2. 

3. 

4/15/2009

Disk: rotating, thin collection of stars, gas & dust. Halo: tenuous outer sphere of stars & globular clusters, 
 and very little gas. Bulge: spherical concentration of stars near the center

Habbal Astro 110-01 Chapter 14 Lecture 31

9

If we could view the Milky Way from above the disk, we would see its spiral arms

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

10

If we could view the Milky Way from above the disk, we would see its spiral arms

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

11

Another spiral galaxy seen edge-on

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

12

Another spiral galaxy seen face-on

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

13

Stellar Orbits: Stars in the Galactic Disk •  Disk stars all orbit in the same direction of rotation, 
 with a small amount of vertical (up-and-down) motion. –  Rotation due to angular momentum from the galaxyʼs formation. –  Vertical motion due to gravitational attraction of the disk stars.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

14

Stellar Orbits: Galactic Halo & Bulge •  Stars in the halo & bulge also orbit the center of the galaxy. •  But their orbits have random orientations, w/o any overall sense of rotation. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

15

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

16

How do we measure the mass of the Galaxy? •  Sunʼs orbital motion (radius & velocity) tell us the mass inside Sunʼs orbit: 
 ~1.0 x 1011 Msun. •  Cannot measure the mass outside of the Sunʼs orbit in this fashion.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

17

Orbital velocity law Mr = r v2 / G Take v = 220 km/s: orbital velocity of Sun around center of galaxy r = 28,000 ly: orbital radius  Mr = 1.9 1041 kg  Mr/MS = 1011

Similar calculations of orbits of distant stars  most of galaxyʼs mass is far from center and distributed throughout halo. But since donʼt see emission  dark matter (otherwise stars far away would have v decreasing with distance like planets) 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

18

Whatʼs the Milky Way got to do with us?

4/15/2009

It holds onto the gas and allows new stars to form 
 from recycled (and enriched) material Habbal Astro 110-01 Chapter 14 Lecture 31

19

How does our galaxy form stars? •  Recycles gas from old stars into new stars.
 •  With each cycle, more heavy elements are made by nuclear fusion in stars. •  “Star-gas-star cycle”

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

20

Star-gas-star 
 cycle •  Recycles gas from old stars into new stars. •  With each cycle, more heavy elements are made by nuclear fusion in stars.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

21

Gas Cools

Summary of Galactic Recycling

4/15/2009

•  Stars make new heavy elements by fusion. •  Dying stars expel gas and new elements, producing hot bubbles of gas (~106 K). These emit X-rays. •  This hot gas cools, allowing atomic hydrogen clouds to form (~100-10,000 K). This hydrogen emits at 21-cm wavelength emission line. •  Further cooling permits molecules (CO, etc) to form, making molecular clouds (~30 K). CO emits an emission line spectrum at 3 mm. •  Gravity forms new stars (and planets) in molecular clouds. Process starts over. Habbal Astro 110-01 Chapter 14 Lecture 31

22

Effect of low-mass stars on the interstellar medium •  Low-mass stars eject gas through their (very small) stellar winds and mass loss during the planetary nebula phase. •  Overall, these have much less effect on the ISM than high mass stars. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

23

Effect of high-mass stars on the interstellar medium •  During their lives, high-mass stars have strong stellar winds that blow bubbles of hot gas. •  High mass stars die as supernovae, injecting heavy elements into the interstellar medium.

10 light-years •  Have a very strong effect on the ISM. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

24

Supernova remnants: Xrays

4/15/2009

20 light years Habbal Astro 110-01 Chapter 14 Lecture 31

Supernova remnants are filled with hot gas (~106 K), which emit thermal radiation at 
 mostly X-ray wavelengths.

25

Recap: Learning from Light •  How does light tell us what things are made of?
 Every kind of atom, ion, and molecule produces a unique set of spectral lines, seen in emission or absorption spectra.

4/15/2009

•  How does light tell us the temperatures of dense objects?
 We can determine temperature from the (continuous) spectrum 
 of thermal radiation.

Habbal Astro 110-01 Chapter 14 Lecture 31

26

Supernova remnants •  The gas of the supernova remnant expands and cools. •  Begins to emit visible light, mostly emission line spectra.

4/15/2009

130 light years Habbal Astro 110-01 Chapter 14 Lecture 31

27

Supernova remnants •  The gas of the supernova remnant expands and cools. •  Begins to emit visible light as emission line spectra. •  These spectra show heavy elements (O, Ne, N, S) made by the star, which are distributed back into the ISM.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

28

SN superbubbles

•  Multiple supernovae can create huge bubbles of hot gas, which blow out of the galactic disk. •  Gas clouds cooling in the halo can rain back down onto the disk. 
 •  These collisions may trigger future star formation.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

29

Atomic hydrogen in the ISM •  As the hot gas cools, electrons combine with protons to form clouds of atomic hydrogen (H). •  Hydrogen produces an emission line at 21cm wavelength (in the radio). Can use this to map the spatial distribution.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

Radio (21 cm)

30

Molecular hydrogen in the ISM •  Atomic hydrogen clouds slowly contract & cool further. •  Once they get cold & dense enough, the single H atoms combine to form molecular hydrogen (H2) clouds.

4/15/2009

Optical image

Habbal Astro 110-01 Chapter 14 Lecture 31

31

Molecular clouds Composition: •  •  •  • 

Mostly H2 About 28% He About 1% CO Many other molecules.

Unlike atomic hydrogen (H), molecular hydrogen (H2) 
 is very hard to detect, as it emits very weak radiation. Detect molecular clouds from 3-mm emission line of CO (a trace constituent by mass). 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

32

Molecular clouds collapse due to gravity to form new stars, thereby completing the star-gas-star cycle.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

33

Star formation in molecular clouds

•  Young massive stars can erode the birth clouds, preventing further star formation. •  Only a small fraction of gas in molecular clouds forms into stars.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

34

Gas Cools

Summary of Galactic Recycling

4/15/2009

•  Stars make new heavy elements by fusion. •  Dying stars expel gas and new elements, producing hot bubbles of gas (~106 K). These emit Xrays. •  This hot gas cools, allowing atomic hydrogen clouds to form (~100-10,000 K). This hydrogen emits at 21-cm wavelength emission line. •  Further cooling permits molecules (CO, etc) to form, making molecular clouds (~30 K). CO emits an emission line spectrum at 3 mm. •  Gravity forms new stars (and planets) in molecular clouds. Process starts over. Habbal Astro 110-01 Chapter 14 Lecture 31

35

QUESTION: Where will our 
 Galaxyʼs gas be in 1 trillion years from now?


A. Blown out of galaxy

B. Still recycling just like now

C. Locked into white dwarfs and lowmass stars

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

36

QUESTION: Where will our 
 Galaxyʼs gas be in 1 trillion years from now?


A. Blown out of galaxy

B. Still recycling just like now

C. Locked into white dwarfs and lowmass stars

Galactic recycling is an imperfect process. 
 More and more gas gets locked up into 
 low-mass stars and white dwarfs, which never return their material to the interstellar medium. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

37

We observe star-gas-star cycle operating in the Milky Wayʼs disk using many different wavelengths of light.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

38

Infrared

Visible

4/15/2009

Infrared light reveals stars whose visible light is 
 blocked by clouds of gas & dust. Habbal Astro 110-01 Chapter 14 Lecture 31

39

X-rays

4/15/2009

X-rays are observed from hot gas above and 
 below the Milky Wayʼs disk. Habbal Astro 110-01 Chapter 14 Lecture 31

40

Radio (21cm)

21-cm radio waves emitted by atomic hydrogen show where gas has cooled and settled into disk.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

41

Radio (3 mm)

3-mm radio waves from carbon monoxide (CO) show 
 locations of molecular clouds.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

42

Far-IR (dust)

Long-wavelength infrared emission shows where 
 young stars have heated dust grains.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

43

Gamma rays show where cosmic rays from supernovae collide with atomic nuclei in gas clouds 4/15/2009 Habbal Astro 110-01 Chapter 14 Lecture 31

44

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

45

Where do stars tend to form in our galaxy?

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

46

Much of the star formation in disk galaxies happens in the spiral arms. Ionization Nebulae Blue (massive) stars Dusty Gas Clouds

4/15/2009

Whirlpool Galaxy

Habbal Astro 110-01 Chapter 14 Lecture 31

47

Ionization nebulae •  Regions of ionized gas •  Found around short-lived high-mass stars and signify active star formation. •  The blue light of the massive stars is scattered by nearby dust clouds. •  The nebulae tend to appear reddish, b/c of strong emission lines at these wavelengths. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

48

Reflection nebulae are dusty gas clouds which scatter the light from stars.

•  Why do reflection nebulae look bluer than the nearby stars? For the same reason our sky is blue, and sunsets are red. •  Blue light is preferentially scattered by gas molecules and small dust particle. 4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

49

Spiral arms are waves of star formation 1.  Gas clouds get squeezed as they move into spiral arms 2.  Squeezing of clouds triggers star formation. 3.  Young stars flow out of spiral arms.

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

50

4/15/2009

Habbal Astro 110-01 Chapter 14 Lecture 31

51