1. Earthquake ground motion and seismic loads. Structural Control for Seismic Protection of Structures. Particular Feature of Seismic Loads

2010/8/6 1. Earthquake ground motion  and seismic loads Structural Control for Seismic  Protection of Structures 2010.7.27 APSS, Tokyo Akira Igaras...
Author: Laurel Stanley
1 downloads 0 Views 824KB Size
2010/8/6

1. Earthquake ground motion  and seismic loads

Structural Control for Seismic  Protection of Structures 2010.7.27 APSS, Tokyo

Akira Igarashi Associate Prof., Graduate School of Engineering Kyoto University

Particular Feature of Seismic Loads • Level of force can be greatly high • Highly nonstationary

Seismic Load Representation • “Response  Spectrum” Response  of SDOF systems to  seismic ground  motion

Time

(a) Seismic Ground Motion Maximum acceleration (absolute value)

Seismic Ground Motion

(b) SDOF systems

Diagram representing “Natural period of structure” t t ” vs. “maximum “ i response”

Sa ( T )

Acceleration Response Spectrum (max. absolute acc. is used)

Response Sv ( T ) Velocity Spectrum (max.

Natural Period

relative velocity) Displacement Response Spectrum (max. relative displ.) where T =natural period

Sd ( T )

Response Spectra & Seismic Action •

From seismic design perspective…





Maximum load acting on the structure=

a = x+z ( b l acc.)) (absolute Natural period =T

(d) Response Spectrum Time

(c) Response of each SDOF system

Demonstration of Seismic Action • Numerical Simulation

mass×maximum response acceleration

M F=Ma F=Ma

Maximum structural deformation=maximum response displacement

(force acting on the structure)

Fmax = M ⋅ Sa (T ) xmax = Sd (T )

z

x (deformation)

where T = natural period of the structure

1

2010/8/6

Property of Seismic Loads (Relationship with Natural Period) • Amplitude of seismic load acting on the structure changes depending on  the natural period of the structure, even under the identical ground  motion • (Overall tendency) Seismic load decreases as the natural period increases than a certain value, even though the load increases in a short natural  period range Seismic Load Sa(T)

Property of Seismic Loads  (Relationship with Damping) • Amplitude of seismic load acting on the structure  changes depending on the damping of the structure,  even under the identical ground motion • Seismic load decreases as the damping increases Seismic load Sa(T)

h=5%

T

Natural Period

h=5%

Low damping

= Greater seismic load

High damping = Smaller seismic load

T

Natural period

Demonstration of the Effect of  Damping on the Seismic Action • Numerical Simulation

2. Protective systems against  seismic loads

Earthquake Protective Systems

Seismic Isolation System Also called as “Base Isolation” for the typical yp layout of isolators shown

Structure Energy Dissipation Device Isolator

2

2010/8/6

Seismic Isolation for Bridges (Example) Girder Isolator

Rubber

Steel ates Plates

Pier/Bent substructure

• Isolator:Laminated  Rubber (elastomeric)  bearing, friction bearing High Damping Rubber Bearing

Rubber Bearing with Lead plugs (LRB)

Seismic Isolation Principle (1)

Lead Plug

Force

Laminated Rubber Bearing Steel Plate Rubber Steel Plate

Laminated Layers

Seismic Isolation Principle (2) Deformation

Short period = Stiff

Seismic force decreases

Natural Period Long period = Soft

Load‐Displacement Performance of  Isolators

Large Deformation Increased Damping Natural Period

Short period = Stiff

Long period = Soft

3

2010/8/6

Demonstration of Seismic Isolation  Effect • Numerical Simulation

Energy Dissipation Devices • A type of passive structural control • Used combined /w isolators for seismic  isolation • Adding damping capability of structures ddi d i bili f

Isolated bridge

Conventional

Oil Damper

Passive Control for Bridges (example) Girder Bearing Seismic damper Pier/abutment substructure

Laminated Rubber Dampers &  Implementation for a Cable Stayed Bridge

Laminated Rubber Assembly

Girder Main Tower Damper cable

4

2010/8/6

Effect of Seismic Damper Seismic Load

Seismic load decreases

Summary for Seismic Load Protection • Seismic load decreases for – Longer natural periods – Higher damping (energy dissipation) capability

• Structural control technologies used in practice  rely on (somehow) the above principle rely on (somehow) the above principle Natural Period

Short period = Stiff

Long period = Soft

Seismic Load Sa(T)

h=5%

・Also: effect of distributed lateral loads on plural piers for bridges

T

Active & Semi‐active controls 3. Active & semi‐active  earthquake protection ideas q p

• Have been developed based on system control  theory • Use of sensors, actuators and controllers Theoretical & Application development • Theoretical & Application development – Closed‐Loop Feedback Control – LQR, LQG, optimal control – H‐infinity control – Fuzzy control – …and more

Closed‐Loop Control

LQG Control dx (t ) = Ax ( t )dt + Bu( t ) dt + G c dW (t )

X (ω ) = H (ω ) F (ω )

X (ω ) =

H (ω ) F (ω ) 1 + H (ω )G (ω )

⎧ x1 (t ) ⎫ ⎪ M ⎪ ⎪ ⎪ ⎪ x (t ) ⎪ x(t ) = ⎨ n ⎬ v ( t ) ⎪ 1 ⎪ ⎪ M ⎪ ⎪ ⎪ ⎩⎪ vn (t ) ⎭⎪

⎡ 0 A=⎢ −1 ⎣ −M K

I ⎤ −M −1C⎥⎦

u(t ) = Fx (t )

J = E ⎡⎣ x T (t )R1x (t ) + uT ( t )R 2 u( t ) ⎤⎦



min

F = − R 2 −1BT P

PA + A T P − PBR 2 −1BT P + R1 = 0

• State‐feedback control

5

2010/8/6

Application to Earthquake Protection • Relationship between the “seismic load”  principle & control concepts?

Hysteretic‐response‐based active &  semi‐active control  • Use of the seismic loading principle • Taking advantage of active and semi‐active  control technologies • Control is designed based on the hysteretic  li d i db d h h i response of the active/semi‐active devices • Avoiding complication of the control system

Motivations:

Motivation • What are the actual merits of introducing  active/semi‐active systems over existing  systems? – Flexibility against the change of dynamic  Flexibility against the change of dynamic properties (natural periods etc.) of the structure  to be controlled – Enhance control performance for limited control  device loads

Active/Semi-active device Control…

maximum acceleration (=load) Limit the maximum damper of the structure forces maximum displ. response of the structure

- Effective for a wide range of excitation amplitude levels - Higher frequency components in damper loads

Base Isolation / Smart Base Isolation  System • Control Device ‐ Passive

Background: Base isolation of liquid storage tanks • ‐ Greece Capacity: 65000m3 Diameter: 65.7m, Height: 22.5m. Each tank on 212 isolators  Friction pendulum system (FPS)

(ex. Viscous damper,  F i ti d Friction damper) )

Structure

Control Device Isolator

‐ Active ‐ Semi‐Active (ex. Variable Oil damper,  MR damper)

• ‐ Korea • Three LNG storage tanks  • Capacity of 100000 m3 • Diameter 68 m, Height 30  • steel laminated rubber bearings  • The design isolation period ~ 3 Sec. (Tajirian, 1998 )

6

2010/8/6

Pseudo Negative Stiffness Control for Semi‐ Active devices

4. Negative‐stiffness‐type Active &  semi‐active control for earthquake  protection

cns kns

Displ.

Load

F ≡ − k ns x + c ns x& ⎧ F (F ⋅ x& > 0 ) Fd = ⎨ ⎩0 (F ⋅ x& ≤ 0 )

• Pseudo Negative Stiffness (PNS) Control Fd = −k ns x + cns x&

Shift of natural periods →seismic load decreases more efficiently

• The value of the negative stiffness kns is recommended to be  identical to the structural stiffness – Relationship between the required damper load l i hi b h i dd l d and the  d h negative stiffness value – Principle to determine the damping parameter for  compromised values of negative stiffness • Parameter determination procedure considering the balance  between the limited damper load and the structural  displacement reduction should be established

Natural Period

Short period = Stiff

Load

PNS Control

Idea of optimization

Effect of Negative Stiffness Damper Seismic Load

Displ.

Long period = Soft

Optimal PNS Control Concept

Effects of parameter values on PNS control  Hysteretic Response

Base shear vs. Displacement Hysteretic  response

Str. Stiffness

x(t) m

+ St t l restoring Structural t i force f

40

+ Structural stiffness

kns, cns k0 Increased Acc Acc.

D Damper lload d

=

Increased damping

Base Shear Possible Maximum Base Shear

Str. Stiffness

+ Structural stiffness

Affecting the parameter determination

41

42

7

2010/8/6

Optimality criterion for PNS control Str. stiffness

Base Shear Indicator

Base shear

Increase of damping

Bmax = −m0 × &x&max

Ba = k0 × xmax Base shear at Point a

DIspl

Maximum base shear

Bmax = max(Ba , Bb ) Base shear at Point b

ΔB ≡ Bmax − Ba

Maximum energy dissipation w/o increasing base shear

( B a < Bb ) ( B a ≥ Bb )

⎧ Bb − Ba =⎨ ⎩0

ΔB Area I

Area I : Ba < Bb Area II : Ba ≥ Bb

Ba = Bb Area II

Optimality condition 43

Example SDOF model mass m0 stiffness k0 damping coef c0 damping ratio h0 Natural freq f0 N t l period Natural i d T0

damping

damping

600[t] 5920[kN/m] 0[N.s/m] 0[%] 0.5[Hz] 2[ ] 2[sec]

Negative stiffness

Boundary between the two Regions corresponds optimality

44

Computed optimal PNS parameters Optimality condition Ba = Bb is satisfied on the indicated lines

Negative stiffness f = 0.125[Hz] (f / f0 = 0.25)

-The curve depends on excitation frequency

f = 0.25[Hz] (f / f0 = 0.5)

+ PNS control damper Fd

• Excitation:100gal sinusoidal – 0.125Hz,0.25Hz,0.5Hz,1Hz

• Different combinations of PNS control parameters kns and cns 45

Theoretical representation of optimal PNS  control parameters Bb = xmax

(cnsω )2 + (k 0 − k ns )2

f = 0.5[Hz] (f / f0 = 1)

46

f = 1.0[Hz] (f / f0 = 2)

Derivation of optimal PNS control  parameter representation Ba = k 0 x max

Bb = xmax

(cnsω )2 + (k 0 − k ns )2

Ba = k 0 x max PNS control

Fd = −k ns x + cns v

k0:structural stiffness xmax:maximum displ displ.

• Do the optimal combinations of PNS control  parameters allow mathematical expressions? • Assumption : structural response is approximated by  a sinusoidal function 47

k0 xmax = xmax

c ns = hns =

1

ω

(cnsω )2 + (k0 − kns )2 2k ns k 0 − k ns2

⎛k ⎞ cns k ω = 0 2 ⋅ ns − ⎜⎜ ns ⎟⎟ k0 ⎝ k 0 ⎠ 2 m0 k0 2ω

Relationship between hns and ω :frequency ratio ω0

2

k ns k0 48

8

2010/8/6

Comparison between numerical and  theoretical solutions

Application to seismic ground motion • Optimal PNS for sinusoidal input Ba = Bb

hns = f = 0.125[Hz] (f / f0 = 0.25)

f = 0.25[Hz] (f / f0 = 0.5)

ω0



2⋅

k ns ⎛ k ns ⎞ ⎟ −⎜ k 0 ⎝⎜ k0 ⎟⎠

2

Optimal PNS control formula

Good agreement

hns =

ω0

2⋅



k ns ⎛ k ns ⎞ −⎜ ⎟ k 0 ⎜⎝ k0 ⎟⎠

2

– Frequency dependency

• Optimal PNS for earthquake input? Optimality condition

Ba = Bb

49

f = 0.5[Hz] (f / f0 = 1)

50

f = 1.0[Hz] (f / f0 = 2)

Direct numerical computation for  optimal PNS (base shear indicator)

Earthquake ground motion for input Name

Descriptioin Hyogoken Nanbu Eq. Kobe JMA (NS) ElCentro El Centro (NS) Niigataken Chuetu EQ. Kawaguchi Kawaguchi (NS) Japanese Design Specification for T221 Highway Bridge Type2-II-1 Kobe

Peak Acc. 817.8gal

Boundary lines for Ba = Bb

341.7gal 972.8gal 686 8 l 686.8gal Kobe

Acc. Response spectra

51

52 Kawaguchi

Idea for theoretical solution of optimal PNS  control for seismic input For the extreme case k ns =1 k0

Ba = k0 S D SD:Max. displacement response to EQ input SV:Max. velocity response to EQ input

Theoretical solution?

El Centro

T221

Idea for theoretical solution of optimal PNS  control for seismic input (2) • The fundamental solution in terms of damping  ratio parameter is hns =

Bb = Cns SV

cns ωS = 0 D 2m0ω0 2 SV

• SSubstitution into the optimal PNS solution for  b i i i h i l S l i f sinusoidal input yields

k0 S D = cns SV

ω0 S D

⎧k ns = k0 ⎪ k0 S D ⎨ ⎪cns = S V ⎩

2 SV

=

ω0



2 ⋅1 − 12 =

ω0

ω=



• Proposed approximate solution:

Fundamental solution

hns = 53

ω0



2⋅

k ns ⎛ k ns ⎞ −⎜ ⎟ k0 ⎜⎝ k0 ⎟⎠

2

ω=

SV SD

SV SD

9

2010/8/6

Estimation of SD and SV for a given  earthquake ground motion

Numerical Example

• Assumption of kns=k0 implies that the system  is responding with ideal PNS control • The SDOF system to be considered in  g p calculating the maximum response SD and SV  is such that

• Original structural system model  • SDOF system to calculate SD and  with a semi‐active damper SV x(t)

x(t)

– stiffness k= 0 – damping ratio h = 0.534.

m=600 t

kns, cns k0=6100 kN/m

k0=0 kN/m

&& z (t )

&& z (t )

input ground motion

Result

Kobe

c=2013 kN/m s

m=600 t

-Good agreement between the approximate solution for the optimal control parameters and those determined by direct numerical computation

ElCentro

input ground motion

Implication in the advantage in terms  of control device loads Optimal PNS control

Damper load

• Achieves mimimum acceleration • Suggests the highest performance under damper  load constraint  Kawaguchi

57

T221

58

Other ideas for Semi-Active Negativestiffness-type Control Algorithm Fs

Schematic of the damping load components Fb=Fs+Fd

Fd

F1

Fy

+ Isolator

Semi-Active Damper Force

=

u

u

u

u

u

F3

F2

Fy u

Computed components of damper force commands Base Shear Hysteretic Loop

Fb

Fd=F1+F2+F3

u

u

- Proper energy dissipation for various amplitudes - Limit the Absolute Base Acceleration - Limited hysteretic loop shape for large amplitude response

Semi-Active Damper Force

Base shear

10

2010/8/6

Key Expressions for the Control Algorithm ⎧ F + F2 + F3 Fd = ⎨ 1 ⎩0 F1 = Fy Z

Response of a Controlled SDOF System to Harmonic Loads: Example

if Fd × u& > 0 if Fd × u& < 0

Z& = −γ u& Z Z

n −1

m Fd

− β u& Z + Au&

Fs

Base shear

Damper force

n

Ag

T=2 Sec.

⎧ k d 1 .Z .u y + C d 1 .u& ⎪ ⎪0 F2 = ⎨ ⎪0 ⎪ F y − F1 ⎩

If Z < 1.0

Amplitude= 1m/s2

Z = 1.0 if F2 × u& > 0 if ( F1 + k d1 Z .u y + C d 1 .u& ) > F y If

F3 = kd 2u + Cd 2 .u&

Amplitude= 2m/s2

End of Lecture Thank you for your attention.

11