Wood Pellet Workshop Vancouver Marriot Pinnacle Hotel November 17, Recent advances in wood pellet science and engineering

Wood  Pellet  Workshop     Vancouver  Marriot  Pinnacle  Hotel      November  17,  2014 Recent  advances  in  wood  pellet   science  and  engineering...
Author: Crystal Nichols
0 downloads 0 Views 7MB Size
Wood  Pellet  Workshop     Vancouver  Marriot  Pinnacle  Hotel      November  17,  2014 Recent  advances  in  wood  pellet   science  and  engineering  

Dr.  Shahab  Sokhansanj  (UBC)

Life  cycle  analysis  for  wood  pellets  

Dr.  Warren  Mabee  (Queen’s   University)

10:20-­‐10:30

Break

 

4

10:30-­‐11:15

Pellets  to  fuel  heat  and  CO2   producWon  for  greenhouses  

Dr.  Mark  Lefsrud  (McGill)  

5

11:15-­‐  12:00

Dr.  Stefan  Cenkowski  (U.   InnovaWve  wood  drying  for  pellet     Manitoba)

6

12:00-­‐1:30  

7

1

9:00-­‐9:40

2

9:40-­‐10:20

3

Lunch  trade  show  

WPAC

1:30-­‐2:15

TorrefacWon  (Steam  or  dry)  -­‐  Pre  or  post   pelleWzaWon,  

Bahman  Ghiasi  (UBC)

8

2:15-­‐3:00

Fundamentals  of  operaWons   resaerch  applied  to  feedstock   and  pellets  handling  

Dr.  Mahmoud  Ebadian,   Consultant

9

3:00-­‐3:15  

Break  

 

10

3:15-­‐4:00

Gas  emissions  and  dry  mass  loss  from   stored  woody  biomass  residues

Dr.  Anthony  Lau    (UBC)

11

4:00-­‐4:45  

Sustainability  and  emission   reducWons      

Dr.    Terry  McIntyre  (BFN)/Ms.   Olga  Petrov

A  brief  survey  of    research  on  wood   pellets     Shahab  Sokhansanj  

  Presented  at  the     Third  Wood  PelleWzaWon  Workshop    in  conjuncWon  with  2014  Wood  Pellet  AssociaWon  of   Canada  -­‐  AGM     November  17,  2014    Vancouver,  Canada  

World  Pellet  produc9on  and  demand   Demand  

60  

ProducWon   51  

Million  tonnes  

50   40   22.4  

30   20  

15.7   17  

54  

35   25.5  

22  

10   0   2010  

2012  

2015  

2020  

2025  

Wood  Pellet  Produc9on  –North  America   Million  tonnes   9   8   7   6   5   3   2   1  

Global  biomass  trade  routes  

Research  topics:     •  Diversity  of  feedstock,     •  logisWcs  (handling,  storage)   •  Sustainability    

Approach

•  Understand structural and compositional make up of biomass – concerned with quality, cost, volumes, and environment. •  Develop engineering equations and data for design of unit operations. •  Develop mass and energy balances for TEA and LCA •  Develop logistical and integration models •  Develop standards and practices for quality evaluations safety •  Train and mentor highly qualified engineering (HQP) graduates in clean energy •  Attend to short and long term needs of industry

Biomass  &  Bieoenrgy   Research  Group     UBC  Biomass   Gasifier   Pellet  mill  

Wood  pellet  plant  

Torrefier  

Hammer  mill  

Biomass  drying  is  a  highly     integrated  system     The  installa9on  on  the  leL  of  the   green  drum  is  the  biomass   burner.  The  air  and  dried   biomass  are  separated  in  a   cyclone.  The  exit  air  from  cyclone   is  further  cleaned  from   par9culate  maOer  in  a  baghouse.     HEAT RECOVERY

WET BIOMASS

GRINDER SIZING

HOG FUEL

EMISSION CONTROL

DRYER

BIOMASS BURNER

DRY BIOMASS

Effect  of  ini9al  moisture  content  on  the  cost  of  drying   18.00  

Fuel  cost  ($/Mg)  

16.00   14.00   12.00   10.00   8.00   6.00   4.00   2.00   0.00  

MC=25%  

MC=50%  

MC=70%  

Fig. 10. Cost of hog fuel to provide heat to a dryer with the capacity to produce 10 Mg/h of biomass at 10% moisture content. The horizontal axis shows the initial moisture content of the biomass. Fuel cost is based on $44/Mg for hog fuel.

Varia9on  of  par9cle  size  affects  drying  rates    

Moisture  ra9o  

1.0  

Moisture  ra9o  vs.  9me  (from  50  %  MC   at  100  °C)   Size: Based on thickness Large (10-35 mm), Medium (3-10 mm), Small (3.5 mm). The length of pieces in each group ranged from 10 mm to 50 mm.

0.8  

0.6  

Large  

0.4  

Medium   0.2  

Small  

0.0   0  

100  

200  

300  

400  

500  

600  

Time  (min)  

(Source: University of British Columbia)

Three  Industrial  Size  Reduc9on  Equa9ons     dE = −K

Kick   Bond  

dL Ln

n=1.0

E = K K ln

n=1.5

E = KB (

Rifnger   n=2.0    

E = KR (

1 L1P/ 2



[1]  and  [2]    

1 L1F/ 2

1 1 − ) LP LF

dE  =  power  input   K  =  constant     LF  =  size  of  the  feed   LP  =  size  of  the  ground  product   [1]  Earle  and  Earle,  1983;   [2]  Perry  et  al.,  1997;  

LF LP )

[1]  and  [2]    

[1]  and  [2]    

Ques9ons:   Applicability  to  fibrous  biomass?   DefiniWon  of  parWcle  size?  

Size  reduc9on  

Douglas-­‐fir  

Pine  

Wheat  straw  

Miscanthus  

Aspen  

Hybrid  poplar  

Corn  stover  

Willow  

14  

Size reduction Specific energy required to reduce the size of biomass particles from Lf to final ⎛ 1 1 ⎞⎟ size Lp. The fit to Rittinger’s equation ⎜ E = KR −

⎜ L p ⎝

L f ⎟⎠

Refnger  equaWon  had  a  good   fit  to  the  hammer  mill  data  

Energy input (kWh/t)

40 35 30 25 20 15 10 5 0

Rittinger's Law (with intercept) Hybrid willow Douglas-fir Canola Oat Barley straw Wheat straw Switchgrass Corn stover

200 150 100 50 0 0

1

2

1/Lp-1/Lf 3.2 mm 6.4 mm

3

4

5

6

100 80 60 40 20 0

Specific energy, kJ/ kg

Specific energy, kJ/ kg

250

y = 67.312x R² = 0.91384

Pine   0

0.5 (1/Lp)-(1/Lf)

1

1.5

Grinding   stover  past  6   mm  screen   fracWonates   into  a  hairy   material  and   ground   parWcles     15

Energy  input  to  make  pellets     80 Forming pellets in the die

6,000

Force (N)

Energy Input (MJ/dry t)

8,000

y = 133.51e2.0087x R² = 0.8482

4,000 2,000 0 0.0

0.5 1.0 1.5 Distance ratio (Lr)

2.0

60 40 20 0

40 Energy Input (MJ/dry t)

200 160 Force (N)

Compression  

120 Expulsion of pellets from die

80 40 0 0.0

5.0 10.0 Distance (mm)

15.0

30 20 10 0

FricWon  

PelleWzaWon   5000  

Douglas-­‐fir   Hybrid  willow   Miscanthus  

Force,  N  

4000   3000   2000   1000   0   0  

10  

20   30   Displacement,  mm  

40  

50  

•  Miscanthus  (an  agricultural  biomass)  used  more   energy  to  pelleWze  comparing  to  woody  biomass;   •  Specific  energy  of  size  reducWon  is  more  than   specific  energy  of  pelleWzaWon;  

       mm  screen   2                  4                6  

Miscanthus  Pellets  

17  

Effect  of  parWcle  size  and  shape  (raw  wood  and  pellet  parWcles)  on   high  temperature  pyrolysis    (0.5  mm  to  5  mm  parWcles)  

Microscopic surface picture of the 5 mm particle (a&b top) before drying and (c&d bottom) after drying, up to temperature of 150 C.

For drying temperatures lower than 100 ˚C, mass loss decreased from 0.25 to 5 mm particles. After 100 ˚C, 5 mm particle showed different behavior which was described by some observed cracks into the structure of particle.

Pellet  parWcles  are  denser  and  more  regular  in   shape  than  saw  dust  parWcles     18  

Concluding  thougts   •  Pelle9zed  fuels  (biomass)  is  a  new  and  exci9ng  area   in  the  bioenergy  industry  that  is  expanding  rapidly.     •  Rapid  growth  oLen  coincides  with  modifying  or   crea9ng  new  ways  to  increase  output  of  exis9ng  and   newly  developed    process  equipment  and  products   to  keep  up  with  demand.     •  These  changes  in  processing  will  raise  new  ques9ons   about  safety    and  cost  compe99veness    that  will   need  to  be  researched  and  developed    for  the   industry  to  succeed.    

BBRG  conducts    science  and  engineering   research  on  adding  value  to  unused   biomass  from  forestry,  agriculture,  and   MSW  –  New  dedicated  Lab  (Gas  Gun)     •  Densifica9on  (pelle9za9on,  briquecng)   •  Drying,  size  reduc9on,  storage   •  Logis9cs    modeling  and  process  designs     •  Life  cycle  analysis   •  Safety     Short  and  long  term  R&D  projects  

:

Biomass  and  Bioenergy  Research   Group  (BBRG)  facili9es  and   resources   UBC  biomass  gasificaWon  CHP  -­‐  BRDF  

Wood  pellet  plant  

Pellet  mill  

Single  Pellet   mill   Pilot  scale   storage  

Torrefier  &  steam  treatment   Size  reducWon    mill  

Gas   Gun   Bldg   A  DREAM  PLACE  

Organizing Committee and Contacts Program co-chairs: Fahimeh Yazdanpanah ([email protected]) Hamid Rezaei, [email protected] Communications: Jun Sian Lee, [email protected] Executive Committee Members: Maryam Tajilrou, [email protected] Rachel Wang, [email protected] David Zamar, [email protected] Members of the organizing committee except PDF Dr. Yazdanpanah are UBC graduate students

Biomass  &  Bioenergy  Research  Group  

Pellet Science & Engineering an Update Shahab Sokhansanj Chemical and Biological Engineering Department The University of British Columbia  

 

Acknowledgement   •  NSERC  –  Regional  Opportunity  Fund,  Discovery  Grant,  CRD   Strategic  Program,     •  Biofuel  Network  (Centers  of  Excellence),  BioFuelNet.Ca       •  Wood  Pellet  AssociaWon  of  Canada   –  Pinnacle,  Premium  Pellet,  Viridis,  Princeton  Cogen,  Pacific  Bio  (PG)  

•  •  •  •  •  •  •  •  •  • 

BC  Ministry  of  Forest     NRCan  -­‐  Canmet    Energy     CEATI  –  Electric  power  producing  consorWum  -­‐  OPG   Cogent  Industries     Agriculture  &  Agri-­‐Food  Canada     Nexterra   Global  Biocoal  Inc.     Ontario  Ministry  of  Agriculture,  Food  and  Rural  Affairs   Fibreco,  Inc.  North  Vancouver   BC  Bioenergy  Network