Wireless Power Transfer for EV

Wireless Power Transfer for EV 2011 REGIONAL CONFERENCES ANSYS Japan K.K. Takahiro Koga 1 © 2011 ANSYS, Inc. Agenda 1. Electromagnetic tools for W...
Author: Helena Paul
43 downloads 2 Views 5MB Size
Wireless Power Transfer for EV

2011 REGIONAL CONFERENCES ANSYS Japan K.K. Takahiro Koga 1

© 2011 ANSYS, Inc.

Agenda 1. Electromagnetic tools for Wireless Power Transfer 2. Coupling Simulation: Electromagnetic ‐ Electrical Circuit 3. Application for Wireless Power Supply – Inductive type – Magnetic resonance type

2

© 2011 ANSYS, Inc.

Wireless Power Supply • Method : – Electromagnetic Induction – Magnetic Resonance – Microwave

 

Ref.: Nikkei Electronics Mar. 2007 EE Times Japan Oct. 2009, Nov. 2010 3

© 2011 ANSYS, Inc.

Method Map Induction type(~15W)

Induction type(~50kW)

Efficiency

100%

Resonance type 50%

Microwave type

0% 1mm        

4

© 2011 ANSYS, Inc.

1cm               10cm                  1m                10m            100m

Transfer Distance

Ref: EE Times Japan 2009.10

Electromagnetic tools

Which is the optimal simulation tool ?  “Low Freq.”   

Maxwell 5

© 2011 ANSYS, Inc.

“High Freq.”

HFSS

Differentiating Features • Maxwell: Low Frequency Field Simulator – – – –

Separated Solver “Magnetic” and “Electric” Time Transient and Lumped Circuit: L,R,C  Linear and Nonlinear Material Application: Motor, Transformer/Inductor for power machine,  Inductive noise

• HFSS:  High Frequency Structure Simulator – – – –

6

Electromagnetic Full Wave Solver Distributed Circuit: S,Z,Y Linear Material Application: Antenna, Transformer/Inductor for signal, Radiation noise

© 2011 ANSYS, Inc.

Resonance Type Coupling 1. Self Capacitance  2. External Capacitance Magnetic



C C

R, L, M

Maxwell Electrostatic →

C

C R

R L

L M

Use Maxwell parasitic extraction and couple  with circuit simulator for resonance 7

© 2011 ANSYS, Inc.

Reference:  Wireless Power Transfer via Strongly Coupled Magnetic Resonaces A.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

Inductive Type Coupling Principle physics is magnetic coupling C

Magnetic



C

R, L, M R

R

Maxwell

L

L M

The resonant circuit is full realized via a lumped  capacitance solved using circuit simulator 8

© 2011 ANSYS, Inc.

Resonance Type Coupling 1. Self Capacitance  2. External Capacitance

HFSS

Use HFSS’ full wave capability when the  resonance occurs by self capacitance 9

© 2011 ANSYS, Inc.

Reference: Wireless Power Transfer via Strongly Coupled Magnetic Resonaces A.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

Coupling Simulation Electromagnetic and Circuit

= WM1

+ W

WM1

+

Cs

Cs

WM2 R1

R1

R2

R2

Current_1st_1:src

W 1.87uF

1.93uF

(1/87-0.004) ohm

Current_1st_1:snk (1/348) ohm M1 Current_2nd_1:snk

L2

Current_2nd_2:src

0.19267mH Current_1st_2:snk 0.5668

0.048166mH

WM2

+

W

Current_2nd_1:src

(1/87) ohm

L1Current_1st_2:src

E1 E1 AMPL=200VAMPL=200V FREQ=10kHz FREQ=10kHz

+

W

(1/348-0.001) ohm

Cp

Cp

5.24uF

5.23uF

Rload

Rload

10ohm

10ohm

Current_2nd_2:snk

0

10

© 2011 ANSYS, Inc.

0

0

0

Calculation of Coil Resistance 11.5mohm

l R S

2.87mohm



l

S

Coil • Litz:0.25φ × 384parallel • σ:5.8×107[S/m] • Primary:20 turns • Secondary:10 turns x 2parallel

Coil slot center 100mm

Primary Coil: R1 = (2*100*pi*1e‐3)/(5.8e7*(0.25/2)^2*pi*1e‐6)*(1/384)*20  = 11.5mohm Secondary Coil: R2 = (2*100*pi*1e‐3)/(5.8e7*(0.25/2)^2*pi*1e‐6)*(1/384)*10/2 = 2.87mohm 11

© 2011 ANSYS, Inc.

Capacitance Calculation Cs 5.24uF k f0 10kHz

L1

L2

Cp 1.93uF

L1 = 0.19267mH L2 = 0.048166mH k = 0.5668

Cp 

1 02 L2

Cs 

1 Cs: 02 1  k 2 L1 1 /((2*1e4*pi)^2*(1‐0.5668^2)*0.0019267) = 1.93e‐6 F = 1.93uF

12



© 2011 ANSYS, Inc.

Cp: 1/((2*1e4*pi)^2*0.0048166) = 5.24e‐6 F = 5.24uF



System Simulation

IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9

3PHAS

WM1

~

PHI = 0°

~

PHI = -120°

~

PHI = -240°

Cs

+

A * sin (2 * pi * f * t + PHI + phi_u)

W 1.93uF

R1

(1/87-0.004) ohm

C1 1000uF D6

D8

IGBT2

D2

IGBT4

WM2

R2

+

Current_1st_1:src Current_2nd_1:src

D11 D11

W

Current_2nd_1:snk Current_1st_1:snk

D13 D13 Rload Rload

(1/348-0.001) ohm

Current_1st_2:src Current_2nd_2:src

Cp

Current_2nd_2:snk Current_1st_2:snk

5.24uF

10ohm 10ohm

C2C2 1e-006farad 1e-006farad D12 D12

D4

- - ++

D14 D14

D10

Battery Battery

LBATT_A1 LBATT_A1

Wireless Power Transformer

0

Rectify

AC200V

Inverter

0

40.00

Curve Info WM1.I

9.4139

WM2.I

10.5939

TR TR

TRANS1

TRANS2

STATE_11_1

STATE_11_2

TR TR

rms

20.00

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=10k Frequency:=10k

SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

Dead_Time:=2u DC_Source:=200

SET: TSV4:=0 SINE1.VAL < TRIANG1.VAL SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

Y1 [A]

ICA:

Battery

0.00

SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency

STATE_11_4

-20.00

STATE_11_3

Controller

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

SET: TSV4:=0 SET: TSV3:=0 SINE1.VAL > TRIANG1.VAL SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

-40.00

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

300.00

Y1 [A]

TR

27.9814 -1.2036 -0.0090 -6.0797

0.00

TR TR

Y1

9.3501

TR TR

Y1

10.5176 100.00

TR

1.3406 TR -0.5141

WM1.V

Y2

153.6594

WM2.V

Y2

119.4615

WM2.I

Y Axis

-20.00

-40.00

-100.00

1.90

1.92

1.94

Time [ms]

1.96

1.98 MX1: 1.9753 0.0030 MX2: 1.9783

13

0.00

© 2011 ANSYS, Inc.

2.00

WM2.V 120.2425

100.00

Y1 [V]

131.1979 20.00

Curve Info rms WM1.V 154.9045

200.00 rms

Curve Info WM1.I 156.0455 TR

Y2 [V]

40.00

2.00

-100.00

-200.00 -300.00 0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

2.00

00

Distinguishing Features for Coupled Simulation

• Integrated design environment – Easy and intuitive user interface • Dynamically linked parameters between the Circuit  and 3D FEA model  – Geometry / Material / Gap etc… Efficient workflow design enables Simulation Driven Product DevelopmentTM 14

© 2011 ANSYS, Inc.

Application • ANSYS Products for Wireless Power Supply Inductive type(~15W)

Inductive type(~50kW)

Efficiency

100%

Maxwell Simplorer

Resonance type

50%

HFSS NEXXIM

Microwave type

0% 1mm        1cm         10cm         1m          10m         100m

Transfer Distance 15

© 2011 ANSYS, Inc.

Ref: EE Times Japan 2009.10

Wireless Power Supply System for EV • Inductive type Inductive type(~15W)

Inductive type(~50kW)

Efficiency

100%

Maxwell Simplorer

Resonance type

50% Battery Rectifier/Charger

AC Power

Secondary Coil

Cable

0% 1mm        1cm         10cm         1m          10m         100m Inverter

Ref: EE Times Japan 2009.10

16

© 2011 ANSYS, Inc.

Transfer Distance

Capacitor

Primary Coil

Geometry

17

© 2011 ANSYS, Inc.

Schematic

20kW @ 400V/20kHz

Core

Shield Plate 18

© 2011 ANSYS, Inc.

Coil

Secondary Coil

Primary Coil

Core

Materials

• Material : FDK 6H40 (Bs=0.53T, μi=2400)

Coil • • • •

Secondary

Litz wire : 0.25φ × 384 parallel turns Conductivity : 5.8×107[S/m] Primary : 10 turns Secondary : 5 turns 400mm

330mm 90mm

Primary 90mm 410mm 19

© 2011 ANSYS, Inc.

500mm

Solution Flow Chart • Maxwell + Simplorer

Gap

Sliding

Maxwell Magnetostatic Core, Winding

Maxwell Eddy Current Impedance Model

Maxwell Eddy Current Field, Loss 20

© 2011 ANSYS, Inc.

Simplorer AC / TR Circuit / Drive / Controller design Waveform, Efficiency, Power  factor, Response

Maxwell / Magnetostatic • L, M, k :  – Self Inductance – Mutual Inductance – Coupling Coefficient

L2 M L1

L1   M M    L2

k=0.54

21

© 2011 ANSYS, Inc.

Maxwell / Magnetostatic Core Shape/Material Number of turns Current Amp. Gap

Inductance L, M Coupling factor k Field Core saturation

Coupling - k

Coupling factor k – sliding gap

1.00

3D_Static_sliding_k

ANSOFT

Curve Info Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='50mm'

Matrix1.CplCoef(Current_1,Current_2)

0.80

Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='100mm' Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='150mm'

0.60

Mag B

Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='200mm'

0.40

0.20

22

© 2011 ANSYS, Inc.

0.00

0.00

20.00

40.00

60.00

80.00 Sliding [mm]

100.00

120.00

140.00

160.00

Maxwell / Magnetostatic

M  k L1 L2

Verification for core saturation:

X: Gap [mm] / Y: Input Current [A] / Z: Mutual inductance [nH] Mutual Inductance L12

1000

2D_Static

ANSOFT

Mutual Inductance L12

1.00

2D_Static_BH

Matrix1.L(C

Matrix1.L(C

[nH]

[nH] 3.4200e+004

3.4200e+004

2.8500e+004

2.8500e+004 2.2800e+004

100

1.1400e+004 5.7000e+003 0.0000e+000

1.7100e+004

Specification Area

Gap [meter]

Gap [mm]

2.2800e+004

0.10

1.7100e+004

Specification Area

ANSOFT

1.1400e+004 5.7000e+003 0.0000e+000

0.01

10

Saturation 1

0.00

20.00

40.00

Current [A]

60.00

Linear Material (Initial permeability) 23

© 2011 ANSYS, Inc.

80.00

100.00

0.00

0.00

20.00

40.00

Current [A]

60.00

80.00

Nonlinear Material (BH curve)

100.00

0.60

Maxwell / Magnetostatic

0.50

• Verification for core saturation – Core’s BH curve, Mag_B field plot – No magnetic saturation

B (tesla)

0.40

0.30

Nonlinear BH curve

0.20

0.10

0.00

0.00

100.00

200.00 H (A_per_meter)

300.00

400.00

Mutual Inductance L12

1.00

2D_Static_BH

ANSOFT

Matrix1.L(C [nH] 3.4200e+004 2.8500e+004

0.10 Gap [meter]

~0.4T

2.2800e+004

Specification Area

1.7100e+004 1.1400e+004 5.7000e+003 0.0000e+000

0.01

0.00

0.00

20.00

40.00

Current [A]

60.00

Maximum point : 0.26T 24

© 2011 ANSYS, Inc.

80.00

100.00

Maxwell / Eddy Current • State Space Modeling for Simplorer – Frequency domain impedance(R,L) model for circuit simulation

• AC Field and Loss (after circuit simulation)

25

© 2011 ANSYS, Inc.

Maxwell / Eddy Current Solver AC Characteristics Inductance L, M Coupling factor k Field Core Hysteresis Shield

Core Shape/Material Number of turns Frequency Gap Shield Shape/Material

Core(Power Ferrite)

Shield Plate (Aluminum) 26

© 2011 ANSYS, Inc.

No Shielding

Shielding

Simplorer with Maxwell State Space Model

AC / Frequency domain

27

© 2011 ANSYS, Inc.

TR / Time domain

Efficiency Map • Output/Input Power • Tuned capacitance for each conditions Max.96%

P  VI cos 

Gap

90%

Efficiency[%]

Pout  100[%] Pin

50%

20%

Sliding

Gap [mm] 28

© 2011 ANSYS, Inc.

Sliding [mm]

Maxwell – Simplorer System Simulation

IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9

3PHAS

WM1

~

WM2 Cs

+

A * sin (2 * pi * f * t + PHI + phi_u)

1.72uF PHI = -120°

~

PHI = -240°

+

R2 Current_1:src Current_2:src

W

PHI = 0°

~

R1

7.2mOhm

C1

D6

D8

D13 Rload 13ohm

Current_1:snk Current_2:snk

1000uF

D11

W

3.6mOhm

Cp

C2

4.96uF IGBT2

D2

IGBT4

1uF

D4

D12

-

D14

D10

+

Battery

LBATT_A1

Wireless Power Transformer

0

Rectify

AC400V

Inverter

0

TRANS2

SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

SINE1.VAL < TRIANG1.VAL

SINE1 TRANS4 AMPL=Modulation_Index FREQ=Frequency

SET: TSV4:=0 SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

rms

281.0066 321.9453

200.00

PWR_Probe2

Dead_Time:=2u DC_Source:=400

WM2.V

TR

PWR Probe

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=20k Frequency:=20k

WM1.V

TR

PWR Probe

Y1 [V]

ICA:

STATE_11_2

0

Curve Info

700.00 PWR_Probe1

TRANS1 STATE_11_1

Battery

-300.00

TRANS3

Controller

STATE_11_4

STATE_11_3

-800.00

2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

SET: TSV4:=0 SINE1.VAL > TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

150.00

Curve Info TR

Y1 [A]

125.00

TR TR

-0.0037

0.00 -40.2840 -64.8250 -408.7847

TR

-315.0105

-319.5653

WM1.I WM2.I WM1.V WM2.V

100.00

Y Axis873.02 rms Y1 Y1 Y2

316.6292

-53.6971 -377.1247 -500.00

-125.00

WM2.I

34.8648

50.00

34.1140

276.0822

0.00 Y2

TR

rms 41.6165

38.9542

500.00

Y1 [A]

Curve Info TR

Y2 [V]

250.00

WM1.I

0.00

-50.00

-100.00 -250.00

2.900

2.925 MX1: 2.9200

29

© 2011 ANSYS, Inc.

2.950 Time [ms] 0.0610

2.975

3.000

-1000.00 -150.00

MX2: 2.9811

2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

Simplorer:  Design by Circuit Level Simulation

Circuit Driver Controller

30

© 2011 ANSYS, Inc.

AC/TR Response Waveform Efficiency

Back to Maxwell: Core Hysteresis Loss Using the  Current Amplitude and Phase from Simplorer

Considering Magnetic Loss tangent

     j    1  j tan   Primary

Core Loss

Secondary Freq [kHz] 1

20.000000

Core1st_Loss Setup1 : LastAdaptive Phase='0deg' 0.909102

Core loss[W]

Hysteresis Loss  31

© 2011 ANSYS, Inc.

3D_Eddy Core2nd_Loss Setup1 : LastAdaptive Phase='0deg' 0.313144

ANSOFT

Back to Maxwell: Shield Surface Loss Using the  Current Amplitude and Phase from Simplorer

Key Point: Impedance boundary BC Shield Loss Freq [kHz] 1

20.000000

Shield1st_Loss Setup1 : LastAdaptive Phase='0deg' 22.938675

Shield Loss[W] Secondary

Primary Surface Loss 32

© 2011 ANSYS, Inc.

3D_Eddy Shield2nd_Loss Setup1 : LastAdaptive Phase='0deg' 37.886583

ANSOFT

Back to Maxwell: Field Solution Using the  Current Amplitude and Phase from Simplorer XY Plot 1

10.00

2D_Eddy

ANSOFT

Curve Info Mag_B Setup1 : LastAdaptive Freq='20kHz' Phase='0deg'

Mag_B [mTesla]

1.00

0.10

0.01

0.00

Distance 0.00

0.00

0.20

0.40

Distance [meter]

0.60

0.80

Magnetic Field Density

Distance

Magnetic Field Intensity 33

© 2011 ANSYS, Inc.

1.00

Back to Maxwell     and Link to HFSS • Maxwell → HFSS Dynamic Link – Magnetic source solved by Maxwell and Link to HFSS field solution – Far Field and Large Area electromagnetic solution – HFSS can handle a car body object as 2D sheet object

Maxwell HFSS 34

© 2011 ANSYS, Inc.

Back to Maxwell and Link to HFSS • Maxwell → HFSS Dynamic Link – Magnetic source solved by Maxwell and Link to HFSS field solution – Far Field and Large Area electromagnetic solution – HFSS can handle a car body object as 2D sheet object

Maxwell HFSS 35

© 2011 ANSYS, Inc.

Conclusion • Wireless power transfer for HEV/EV’s can easily be simulated with ANSYS’  electromagnetic and circuit simulation tools. • The full solutions requires a system level approach.  • ANSYS’ Products can also support multiphysics simulation, i.e. combined  Thermal / Structure / Fluid IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9

3PHAS

WM1

+

A * sin (2 * pi * f * t + PHI + phi_u)

~

PHI = 0°

~

PHI = -120°

Cs

W 1.93uF

R1

(1/87-0.004) ohm

C1 1000uF

PHI = -240°

~

D6

D8

IGBT2

D2

IGBT4

WM2

R2

+

Current_1st_1:src Current_2nd_1:src

D11 D11

W

Current_2nd_1:snk Current_1st_1:snk

D13 D13 Rload Rload

(1/348-0.001) ohm

Current_1st_2:src Current_2nd_2:src

Cp

Current_2nd_2:snk Current_1st_2:snk

5.24uF

10ohm 10ohm

C2C2 1e-006farad 1e-006farad D12 D12

D4

- - ++

D14 D14

D10

Battery Battery

LBATT_A1 LBATT_A1

00

0

0

40.00

Curve Info WM1.I

9.4139

WM2.I

10.5939

TR

TRANS1 TRANS2 STATE_11_1

STATE_11_2

TR

rms

20.00

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=10k Frequency:=10k

SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

Dead_Time:=2u DC_Source:=200

SET: TSV4:=0 DT1 SINE1.VAL < TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

Y1 [A]

ICA:

0.00

SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency

STATE_11_4

STATE_11_3

SET: TSV4:=0 SET: TSV3:=0 SINE1.VAL > TRIANG1.VAL SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

-20.00

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

-40.00

0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

300.00

156.0455 TR

Y1 [A]

TR

27.9814 -0.0090 -1.2036 -6.0797

0.00

TR

1.3406 -0.5141T R

WM1.V

Y2

153.6594

WM2.V

Y2

119.4615

0.00

-40.00

-200.00

1.92

1.94

Time [ms]

1.96

1.98

© 2011 ANSYS, Inc.

TR

9.3501 10.5176 100.00

-100.00

1.90

2.00

Curve Info rms WM1.V 154.9045

TR

200.00 rms

Y1

-20.00

MX1: 1.9753 0.0030 MX2: 1.9783

36

Y Axis Y1

WM2.I

WM2.V 120.2425

100.00

Y1 [V]

Curve Info WM1.I

131.1979 20.00

Y2 [V]

40.00

2.00

-100.00

-300.00 0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

2.00

Thank you!

Maxwell 14.0 HFSS 13.0 Simplorer 9.0 Designer/NEXXIM 6.0

37

© 2011 ANSYS, Inc.

• Add the following slides for an in‐depth  discussion on how HFSS can be used to solve this  type of problem.

38

© 2011 ANSYS, Inc.

Resonance type wireless power supply • Antenna coil Inductive type(~15W)

Inductive type(~50kW)

Efficiency

100%

50%

Resonance type

HFSS NEXXIM

Microwave type

0% 1mm        1cm         10cm         1m          10m         100m

Transfer Distance 39

© 2011 ANSYS, Inc.

Ref: EE Times Japan 2009.10

Model • Theoretically resonance type antenna coil  Load (Port) Load

Capacitor 40

© 2011 ANSYS, Inc.

HFSS / Impedance Characteristics

11

oft me LLC X

XY Plot 2

Y

750.0029.7500 8579.4457 m1

Ring_resonant_single

ANSOFT

5000.00

m1

Curve Info

re(Z(1,1)) Setup1 : Sw eep1 im(Z(1,1)) Setup1 : Sw eep1

30MHz

500.00

2500.00

250.00

0.00

750.00

500.00 -2500.00

250.00

0.00

-5000.00 20.00

22.50

25.00

27.50

30.00 Freq [MHz]

32.50

35.00

37.50

40.00

im(Z(1,1))

000.00

HFSS / Magnetic Field

requency : 30MHz

Resonance type Coil Antenna Transfer Model

ransfer characteristics between primary and secondary coils  y the distance(D1)

D1

HFSS / Transfer characteristics

1 XY Plot 3

Y

Ring_resonant_Two_dist

888

ANSOFT

Curve Info dB(S(2,1)) Setup1 : Sw eep1 D1='1000mm'

m1

dB(S(2,1)) Setup1 : Sw eep1 D1='1500mm' dB(S(2,1)) Setup1 : Sw eep1 D1='2000mm' dB(S(2,1)) Setup1 : Sw eep1 D1='2500mm' dB(S(2,1)) Setup1 : Sw eep1 D1='3000mm' dB(S(2,1)) Setup1 : Sw eep1 D1='3500mm' dB(S(2,1)) Setup1 : Sw eep1 D1='4000mm' dB(S(2,1)) Setup1 : Sw eep1 D1='4500mm' dB(S(2,1)) Setup1 : Sw eep1 D1='5000mm'

XY Plot 4

Ansoft LLC 0.00

Ring_resonant_Two_dist

ANSOFT

Curve Info dB(S(2,1)) Setup1 : Sw eep1 Freq='0.031GHz'

-2.50

Freq=31MHz

-5.00

10.00

20.00

Freq [MHz]

30.00

40.00

50.00

Frequency

dB(S(2,1))

-7.50

-10.00

-12.50

-15.00

-17.50

Distance (D1)

HFSS / Transfer efficiency

Transfer efficiency calculated by S21 XY Plot 5

oft LLC

.50

Ring_resonant_Two_dist

efficiency Setup1 : Sw eep1 Freq='0.0314GHz'

.00

  S 21 100[%] 2

.50

.00

.50

.00

ANSOFT

Curve Info

Distance (D1)

HFSS / Transfer characteristics XY Plot 3

Y

m1 0.0031.0100 -4.6050

Ring_resonant_Two_ang

ANSOFT

Curve Info

m1

dB(S(2,1)) Setup1 : Sw eep1 dB(S(2,1))_1 Setup1 : Sw eep1 Rot='0deg'

S21

-25.00

dB(S(2,1))_1 Setup1 : Sw eep1 Rot='10deg' dB(S(2,1))_1 Setup1 : Sw eep1 Rot='20deg' dB(S(2,1))_1 Setup1 : Sw eep1 Rot='30deg'

-50.00

Y1

dB(S(2,1))_1 Setup1 : Sw eep1 Rot='40deg' dB(S(2,1))_1 Setup1 : Sw eep1 Rot='50deg'

-75.00

dB(S(2,1))_1 Setup1 : Sw eep1 Rot='60deg' dB(S(2,1))_1 Setup1 : Sw eep1 Rot='70deg'

-100.00

dB(S(2,1))_1 Setup1 : Sw eep1 Rot='80deg' dB(S(2,1))_1 Setup1 : Sw eep1 Rot='90deg'

Frequency

-125.00

-150.00 0.00

10.00

20.00

30.00

Freq [MHz]

40.00

XY Plot 4

Ansoft LLC 0.00

50.00

Ring_resonant_Two_ang

ANSOFT

Curve Info dB(S(2,1)) Setup1 : Sw eep1 Freq='0.031GHz'

-10.00

-20.00

-30.00

S21

dB(S(2,1))

otated secondary coil

Ansoft Name LLC X

-40.00

-50.00

-60.00

Rotation angle(0~90deg)

-70.00

-80.00 0.00

10.00

20.00

30.00

40.00

Rot [deg]

50.00

60.00

70.00

80.00

90.00

HFSS / Rotated Antenna(Cont.) otated secondary coil

ransfer null point at 90deg Rotation S21

Ansoft LLC

Ring_resonant_Two_ang

-5.00

ANSOFT

Curve Info dB(S(2,1)) Setup1 : Sw eep1 Freq='0.031GHz'

S21

-17.50

dB(S(2,1))

-30.00 -42.50

-55.00

回転角度(0~90deg)

-67.50

-80.00

0.00

10.00

0deg

20.00

30.00

40.00

50.00 Rot [deg]

60.00

70.00

70deg

80.00

90.00

100.00

90deg

Designer/NEXXIM with HFSS Direct Link

HFSS + Designer/NEXXIM

– HFSS model direct link to Designer

– S‐parameter model by electromagnetic link to circuit  simulation – Push Excitation : Get excited condition for HFSS by Designer simulation

Push Excitation

S-parameter model

HFSS

Designer/NEXXIM circuit

HFSS – Designer/NEXXIM System Simulation

Inverter

Rectifier

Coil Antenna XY Stacked Plot 1

Curve Inf o

With_Inverter

ANSOFT

15.00

V(S4) Transient

10.00 5.00 0.00 15.00

V(S2) Transient

10.00 5.00 0.00 15.00

Curve Info

V(S3) Transient

XY Stacked Plot 1

With_Inverter

10.00

5.00

5.00

0.00 15.00

V(S1) Transient

0.00 15.00

10.00

V(S2) Transient

10.00

5.00

5.00

0.00 125.00

V(Vin) Transient

V(S3) Transient

0.00 15.00

0.00

10.00 5.00

-125.00 75.00

V(Vout1) Transient

V(S1) Transient

0.00 15.00 10.00

-25.00

5.00

-125.00 V(Vout) Transient

V(Vin) Transient

0.00

25.00

50.00

75.00 Time [us ]

100.00

125.00

0.00 125.00

50.00

V(Vout1) Transient

ANSOFT

15.00

10.00

V(S4) Transient

25.00

0.00

0.00

-125.00 75.00

150.00

-25.00 -125.00

V(Vout) Transient

50.00 25.00 0.00 64.31

64.38

64.50

64.63

64.75

Time [us]

64.88

65.00

65.13

65.25

Suggest Documents