What is going on? Where are we going to? What will be the Next?

2015/2/19 IEEE Com Soc NA Region Distinguished Lecturer Tour Concordia University, Montreal, Canada 2/18/2015 Trends and Issues of FTTH and G-PON K...
1 downloads 0 Views 2MB Size
2015/2/19

IEEE Com Soc NA Region Distinguished Lecturer Tour Concordia University, Montreal, Canada 2/18/2015

Trends and Issues of FTTH and G-PON

Koichi Asatani, PhD Chair Professor, Nankai University IEEE Distinguished Lecturer

• What is going on? • Where are we going to? • What will be the Next?

Koichi Asatani 2015

1

2015/2/19

What is happening.

Koichi Asatani 2015

Global Internet Penetration

Source: ITU World Telecommunication/ICT Indicators Note: * Estimate Koichi Asatani 2015

2

2015/2/19

Global Wired Broadband Penetration

Source: ITU World Telecommunication/ICT Indicators Note: * Estimate Koichi Asatani 2015

Global Mobile Broadband Penetration

Source: ITU World Telecommunication/ICT Indicators Note: * Estimate Koichi Asatani 2015

3

2015/2/19

Global IP Traffic 2013-2018 PB/Month 140 120 CAGR

100 80

Managed IP

20% 15%

60

Fixed Internet

61%

Mobile data

40 20 0

2013

2014

2015

2016

2017

2018

Source: CISCO VNI 2014 Koichi Asatani 2015

Wired and Wireless Global IP Traffic 2013-2018

PB/Month

100

CAGR Mobile 62% Fixed 20%

80 60 40 20 0

2013

2014

2015

2016

2017

2018

Source: CISCO VNI 2014 Koichi Asatani 2015

4

2015/2/19

Koichi Asatani 2015

Introduction to Access Networks

Koichi Asatani 2015

5

2015/2/19

Network Evolution toward NGN

Circuit-mode & packet mode integration

-Digital terminals, & media -Digital Access

Digital Core Network

Digital Telephone Network

Analog Telephone Network

All IP

B-ISDN (ATM)

ISDN

NGN

dial up access

Triple play

broadband Internet

always on access

broadband access (ADSL, FTTH Cable)

streaming service integration

QoS control security

Koichi Asatani 2015

淺谷 情報通信ネットワーク 2012

Basic Network Configuration -Simple ModelOther Core NW

LAN Data Center

LAN

Access NW

Access NW

Core NW

Access NW

AP

WAP

Access NW

Access NW

PBX

PBX On-premises NW Private NW

Home NW

Access NW

On-premises NW

Public NW Local NW

Wide Area NW

Local NW

Private NW Koichi Asatani 2015

6

2015/2/19

Access Evolution Scenario Toward B-ISDN Service dedicated NW(~1980s) 64kbit/s Switched Circuit NW

Telephone Data

Packet NW

TV Conference

Leased Lines

ISDN(1980s~ ) 64kbit/s Switched Circuit Cap >64kbit/s Switched Circuit Cap

Telephone FAX

Packet Cap

Data

Permanent Connection Cap

TV Conference

Signaling Cap

NGN(2000s~)

ISDN

Telephone FAX Data(Internet)

B-ISDN/ATM

TV Conference Video Telephone TV Mobile Devices

AP/BS

Mobile Network

AP/BS

Koichi Asatani 2015

Access Evolution Scenario -Real StoryService dedicated NW(~1980s) 64kbit/s Switched Circuit NW

Telephone Data

Packet NW

TV Conference

Leased Lines

ISDN(1980s~ ) 64kbit/s Switched Circuit Cap >64kbit/s Switched Circuit Cap

Telephone FAX

Packet Cap

Data

Permanent Connection Cap

TV Conference

Signaling Cap

NGN(2000s~)

ISDN

Telephone FAX Data(Internet) TV Conference Video Telephone

AP/BS

NGN/ IP Network

AP/BS

TV Mobile Devices Koichi Asatani 2015

7

2015/2/19

Broadband Access Technologies FTTx Access

Network access by using Fiber to the Home, Building, Curb, and Cabinet (FTTH, FTTB, FTTC, FTTCab)

DSL Access

Network access by using twisted pair cables for telephone(ADSL)

CATV Access

Network access by using cables for CATV including HFC(Hybrid Fiber-Coaxial)

Fixed Wireless Access (FWA)

Wireless network access for fixed user devices

Broadband Wireless Access (BWA)

Broadband network access by using WiMAX at 2.5GHz band

4G Access

Network access by using 4G Cellular phone (LTE)

Koichi Asatani 2015

Access Configurations -ADSL & Cables

Metallic Cable

Access Node

ADSL

Access Node

cable modem

Cables

(ADSL: Asymmetric Digital Subscriber Line) Koichi Asatani 2015

8

2015/2/19

FTTx in Telecom •FTTP: Fiber-To-The-Premises •FTTH: Fiber-To-The-Home •FTTB: Fiber-To-The-Building (Basement) •FTTC: Fiber-To-The-Curb •FTTD: Fiber-To-The-Desktop Service Node

Curb

Building Premise Network

Desk Top

FTTC

Home

FTTB FTTH

FTTP

FTTD Koichi Asatani 2015

Access Configurations – FTTC(FTTCab)

ONU Metallic Optical fiber Curb/Cabinet

FTTC(FTTCab)/VDSL

Access Node FTTC: Fiber To The Curb VDSL: Very High-speed Digital Subscriber Line)

Koichi Asatani 2015

9

2015/2/19

Access Configurations - FTTH & PON ONU

ONU Optical fiber

Access Node

ONU

FTTH(SS, PtP)

ONU

Optical splitter Optical fiber

ONU

SS: Single Star PtP: Point to Point

ONU

FTTH(PDS, PON)

Access Node

PDS: Passive Double Star PON : Passive Optical Network Koichi Asatani 2015

Why Fiber (FTTH/PON)?

Koichi Asatani 2015

10

2015/2/19

Because FTTH/PON features • High-speed and Stable Throughput: Better than ADSL and Cables • Technical Maturity: Optical access deployments happening worldwide, with regional customized flavors built on generic transmission • Cost Effective: Most cost effective solution found to be PON – Sharing opto-electronic devices in the central office – Sharing part of the fiber infrastructure through passive splitters – Energy efficient

• Better Opex

Koichi Asatani 2015

Transmission loss vs. subscriber line length

transmission loss (dB)

60

50 40 30 20 10

0

0

1 2 3 4 5 Subscriber Line Length (km) Source:http://www.bspeedtest.jp/stat1_1.html Koichi Asatani 2015

11

2015/2/19

ADSL Throughput vs subscriber line length 10Mbps 24Mbps 8Mbps

Throughput

1.5Mbps

1Mbps

0.1Mbps 0

1

2

3

4

5

6

Line length(km)

Source:http://www.bspeedtest.jp/stat1_1.html Koichi Asatani 2015

ADSL Throughput Variation vs subscriber line length 10Mbps 24Mbps 1.5Mbps

Throughput

10% value 1Mbps

50% value

90% value

0.1Mbps 0

1

2

3

4

5

6

Line length(km) Source:http://www.bspeedtest.jp/stat1_1.html Koichi Asatani 2015

12

2015/2/19

FTTH/PON Advantages • Very high speed data up to 10Gbps to home and businesses • Maintenance cost reduction due to no electronics between CO and customers • Low cost due to fiber and CO interface shared by multiple customers (32-256) • Constant data rate regardless of reach/EMC immunity • Multiple applications supports including data (IP), video and voice (triple play) Koichi Asatani 2015

Benefits of WDM PON • Capacity increases of existing networks (sparse WDM) – introducing new 10G systems into existing networks on new wavelengths, coexisting with legacy systems on the same ODN – 4 x G-PON on parallel wavelengths having 4 times reduced split factor

• Optimized utilization of fiber infrastructure (massive WDM) – parallel operation of many TDM-PONs – add services – high speed connections in overlay for select customers (business, FTTB) – point-to-point links for many users – flexible reconfiguration of optical links – suitable wavelength ranges: 1260 – 1360 nm, 1460 -1625 nm Koichi Asatani 2015

13

2015/2/19

Optical Fiber Loss Attenuations 25 20

Attenuation (dB/km)

0.8 15 10

0.6

5 0.4

0 –5

0.2

Chromatic dispersion (ps/nm/km)

1

–10 O-band 0 1250

1300

E-band 1350

old fibre (pre 1990)

S-band

1400 1450 1500 Wavelength/nm new fibre (~ 2000)

C 1550

L-band 1600

U –15 1650 G.989.1(13)_F8-1

new fibre (post 2003)

Koichi Asatani 2015

Why GPON • Standardized by telecom operators and telecom vendors in ITU-T • Various operation and management capability inherited from conventional proved telecom technologies • Future-proof bandwidth – 2.4 G / 64 users = 35 M per user – 35 M = 6 M (HDTV-MPEG4) x 4 ch + 10 M (Internet)

• Suitable for business users because of various • QoS and bandwidth management Koichi Asatani 2015

14

2015/2/19

Requirements to GPON • Key requirements • 1 Gb/s capacity minimum • Full service (including legacy) support • Oriented towards IP services • Cost effective and FCAPS manageable • Key “non-requirements” • Compatibility with B-PON not required FCAPS:Fault Management, Configuration Management, Accounting Management, Performance Management , Security Management Koichi Asatani 2015

Key Elements for Innovation • • • • • •

meet new requirements CAPEX, OPEX technical maturity forward compatibility backward compatibility ecology

Koichi Asatani 2015

15

2015/2/19

G.980 series Recs • • • • • • • • • • • • • • • • • • • • • • •

G.981: PDH optical line systems for the local network G.982: Optical access networks to support services up to the ISDN primary rate or equivalent bit rates G.983.1: Broadband optical access systems based on Passive Optical Networks (PON) G.983.2: ONT management and control interface specification for B-PON G.983.3: A broadband optical access system with increased service capability by wavelength allocation G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment G.983.5: A broadband optical access system with enhanced survivability G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Long reach G.985: 100 Mbit/s point-to-point Ethernet based optical access system G.986: 1 Gbit/s point-to-point Ethernet-based optical access system G.987: 10-Gigabit-capable passive optical network (XG-PON) systems: Definitions, abbreviations and acronyms G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.987.4: 10-Gigabit-capable passive optical networks (XG-PON): Reach extension G.988: Optical network unit management and control interface specification G.989.1: 40-Gigabit-capable passive optical networks (NG-PON2): General requirements

Koichi Asatani 2015

PON Market

Koichi Asatani 2015

16

2015/2/19

Broadband Access in Japan 45,000,000

42.0M

Total

40,000,000

(Total)

35,000,000 30,000,000

24.6M

FTTH

(FTTH)

25,000,000 20,000,000

DSL

15,000,000

6.0M (CATV)

10,000,000

4.9M

5,000,000

CATV

(DSL)

2004/6 2004/9 2004/12 2005/3 2005/6 2005/9 2005/12 2006/3 2006/6 2006/9 2006/12 2007/3 2007/6 2007/9 2007/12 2008/3 2008/6 2008/9 2008/12 2009/3 2009/6 2009/9 2009/12 2010/3 2010/6 2010/9 2010/12 2011/3 2011/6 2011/9 2011/12 2012/3 2012/6 2012/9 2012/12 2013/3 2013/6 2013/9

0

Source: Ministry of Internal Affairs and Communications, Japan Koichi Asatani 2015

FTTH/FTTB Penetration Ranking Japan Korea Sweden Slovak Republic Estonia Norway Iceland

As of June 2012

Slovenia Denmark Czech Republic Hungary Portugal United States Turkey Netherlands Switzerland Poland United Kingdom Italy Spain Finland Luxembourg Canada France Australia Austria Germany Ireland New Zealand Greece Chile Belgium 0%

1000%

2000%

3000%

4000%

5000%

6000%

7000%

http://dx.doi.org/10.1787/888932798506 Koichi Asatani 2015

17

2015/2/19

Fixed, Mobile and Broadband Access in OECD Subscriptions (millions) 2 500

Fiber Fiber

Fibre Fiber

2 000

DSLFiber

DSL

1 500

Cable

Cable

Mobile

1 000

Mobile

ISDN

ISDN

500

Analog

Analogue

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

http://dx.doi.org/10.1787/888932798829 Koichi Asatani 2015

Market Growth of PON Billions USD 4.5 B-PON

Revenue

0 1997

3 G-PON

1.5 E-PON

0

Source: Dell’Oro Group Koichi Asatani 2015

18

2015/2/19

PON Standardization ITU-T

100G

NG-PON3 Up 40G Down 100/250G

IEEE

40G

NG-PON2

10G

Up 1/10G Down 10G

Down

10G

G-PON Up 1.25G Down 2.5G

1G-EPON

1G

Up Down

1.25G 1.25G

B-PON Up 155/622M Down 155/622M

A-PON

100M

Up 155M Down 155M

1995

2005

2000

2020

2015

2010

Year Koichi Asatani 2015

Wavelength Allocations for PONs

NG-PON2 U (Narrow)

NG-PON2 D

RF-Video 10GE/XG-PON U/S 10GE/XG-PON D/S

1640

1620

1600

1580

1560

1540

RF-Video

1520

1500

1480

1460

1440

B/GPON GE-PON D/S

1420

1400

1380

B/GPON GE-PON U/S

1360

1340

1320

1300

1280

GPON U/S (Narrow/Reduced)

1260

Bit Rate(bit/s)

Up 10G Down 40G

NG-PON1 XG-PON 10G-EPON Up 2.5G

Wavelength (nm) O-Band

E-Band S-Band C-Band L-Band U-Band Source: Figure 8-2 , ITU-T Rec. G.989.1, March 2013. Table 9-1, Draft new Recommendation ITU-T G.989.2, 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) Koichi Asatani 2015 layer specification, TD 170 Rev.2 (PLEN/15) , April 2014.

19

2015/2/19

IEEE PON vs ITU-T PON Organization

IEEE

Group

PON Specs

Management System

Frame Services

ITU-T

IEEE 802.3ah IEEE 802.3av IEEE 802.3bk

ITU-T SG15 Q2

1G-EPON 10G-EPON Extended EPON

B-PON G-PON XG-PON NG-PON2

SIEPON

OMCI

Gbps based Ethernet Frame

GEM

Ethernet Service

Full Service (Ethernet, TDM, POTS)

SIEPON: Service Interoperability in Ethernt Passive Optical Networks OMCI: ONU Managmeent and Control Interface GEM: G-PON Encapsulation Method GTC: G-PON Transmission Convergence Koichi Asatani 2015

PON Specifications System Standard Service

B-PON

G-PON

GE-PON

10G-EPON

XG-PON1

(Broadband PON)

(Gigabit-capable PON)

(Gigabit Ethernet PON)

(10Gigabit Ethernet PON)

(10Gigabit-capable PON)

ITU-T G.983 (1983/2005)

ITU-T G.984 (2003/2008)

IEEE802.3 ah EFM (2004/2005))

IEEE802.3 av EFM (2009)

ITU-T G.987 (2010)

Ethernet Data

Ethernet Data

Ether, TDM, POTS

Ether, TDM, POTS Ether, TDM, POTS

MAC Frame

ATM Frame

GEM Frame

Ethernet Frame

Ethernet Frame

XGEM Frame

Distance

10/20km

10/20km (logical 60km)

10/20km

10/20km

10/20km

Maximum Splitting

64

64

16 or over

16/32

64

Up

156M, 622Mbps

156M, 622M, 1.25G

1.25Gbps

1.25G, 10.3Gbps

2.5Gbps

Down

156M, 622Mbps

1.25G, 2.5Gbps

1.25Gbps

10.3Gbps

10.3Gbps

Code

Scrambled NRZ

Scrambled NRZ

8B10B

64B66B

Scrambled NRZ

Optical Link Budget

25/30dB

15/20/25dB

20/24dB

20/24/29dB

29/31dB

Up

1260-1360nm

1260-1360nm

1260-1360nm

1260-1280nm(10Gbps) 1260-1360nm(1Gbps)

1260-1280nm(XG-PON1) 1290-1330nm(G-PON)

Down

1480-1500nm

1480-1500nm

1480-1500nm

1575-1580nm(10Gbps) 1480-1500nm(1Gbps)

1575-1580nm(XG-PON1) 1480-1500nm(G-PON)

RF-TV

1550-1560nm

1550-1560nm

1550-1560nm

1550-1560nm

1550-1560nm

Speed Physical Layer

Wavelength Allocation

Remarks

EFM: Ethernet in the First Mile

also called NG-PON1

Koichi Asatani 2015

20

2015/2/19

Requirements for NG-PON2 (1/2) • Wide Applications: – Residential, business, mobile backhaul and others

• Base system: 40Gbps downstream, 10Gbps upstream – 4 channels in each direction – Compatible with G-PON, XG-PON, and RF video overlay – 20km @ 1:64 split ratio fully passive plant capable

• Optional extra capabilities – 8 channels in each direction – 10Gbps upstream – DWDM overlay

Koichi Asatani 2015

Requirements for NG-PON2 (2/2) • Power saving; Sleep modes and eco devices • Long reach and high splitting ratio • Synchronization in frequency and time – Application to support mobile backhaul

• Highly reliability – Cost effective redundant configuration

• Upgradability and Unbundling; WDM – Regulators impose an obligation to provide access to third parties in the European Union – G-PON/XG-PON coexistence

• Conformance and multi-vendor Interoperability Koichi Asatani 2015

21

2015/2/19

Wavelength Allocations for PONs NG-PON2 U (Narrow)

10GE/XG-PON U/S

10GE/XG-PON D/S

1640

1620

1600

1580

1560

1540

RF-Video RF-Video

1520

1500

1480

1460

1440

B/GPON GE-PON D/S

1420

1400

1380

B/GPON GE-PON U/S

1360

1340

1320

1300

1280

GPON U/S (Narrow/Reduced)

1260

NG-PON2 D

Wavelength (nm) O-Band

E-Band

S-Band

C-Band

L-Band

U-Band

Source: Figure 8-2 , ITU-T Rec. G.989.1, March 2013. Table 9-1, Draft new Recommendation ITU-T G.989.2, 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification, TD 170 Rev.2 (PLEN/15) , April 2014. Koichi Asatani 2015

NG-PON2(draft) NG-PON2 (Next Generation PON2)

System Standard

ITU-T G.989 (2015)

Application

BASIC

EXTENDED

BUSINESS

Service

Ether, TDM, POTS

Frame

XGEM Frame/TWDM

Mobile Backhaul

MAC Distance

40km(60km)

Maximum Splitting Up

256

-

10Gbps(2.5Gx4WDM) 20Gbps(2.5Gx8WDM) 40Gps(10Gx4WDM)

1.25G, 2.5G, 10Gbps

Speed Down 40Gbps(10Gx4WDM) Physical Layer

80Gbps(10Gx8WDM) 40Gps(10Gx4WDM)

Code

Scrambled NRZ

Optical Link Budget

25/30dB

1.25G, 2.5G, 10Gbps

1603-1625nm (shared) Up 1524-1544nm(Wide) 1528-1540nm(Reduced) 1532-1540 (Narrow) 1524-1625nm(expanded) Wavelength 1596-1603nm 1603-1625nm (shared) Allocation Down RF-TV Remarks

1550-1560nm

1550-1560nm

XGEM: XG-PON encapsulation method Koichi Asatani 2015

22

2015/2/19

NG-PON2 standards arrangement • G.989.1 : Requirements – Consented at Sep 2012 meeting

• G.989.2 : Physical medium dependent layer – Draft in progress

• G.989.3 : TC layer – NG-PON2 specific TC features

• G.987.3 : Transmission convergence layer – 10Gbps upstream to be added to this base standard

• G.multi : Multiple Wavelength Passive Optical Networks (MW-PON), wavelength control layer • G.988 : ONU management and control interface

Koichi Asatani 2015

NG-PON2 Coexistence with Legacy PON

G.989.1 Figure 5-1 Functional reference architecture and points for NG-PON2 system coexistence with legacy systems Koichi Asatani 2015

23

2015/2/19

TWDM standards arrangement • G.ngpon2.1 = Requirements – Consented at Sep 2012 meeting

• G.ngpon2.2 = Physical medium dependent layer – Draft in progress

• G.ngpon2.3 = TC layer – NG-PON2 specific TC features

• G.987.3 = Transmission convergence layer – 10G upstream to be added to this base standard

• G.multi = Wavelength control layer – Draft already started in Q2/15

• G.988 = ONU management and control interface – Standard in force, can be easily reused for TWDM

Koichi Asatani 2015

PON Standards related Organizations IEEE

ITU-T

IEEE Com Soc

MOU

802.3ah 1G-EPON 802.3av 10G-EPON P1904.1 SIEPON

Liaison

Study Group 15

Contributions Broadband Forum (BBF)

Joint Work

FSAN

Koichi Asatani 2015

24

2015/2/19

Future Issues

Core Transmission Systems 1E G.652

G.653

G.656

G.655

SDM

Transmission Bit Rate (bit/s)

G.654

Digital Coherent

1P

Capacity Limit WDM

1T

TDM 1G

1.3um LD

1.5um LD

G.657

EDFA

1M 1980

1990

2010

2000

2020

2030

2040

Year Koichi Asatani 2015

25

2015/2/19

Multi-Core Fibers

Koichi Asatani 2015

Multi-Core Fiber with WDM Lambda Channels

multi-core fiber

Koichi Asatani 2015

26

2015/2/19

Summary • PON is one of the most successful technologies from view point of economy and ecology based on global standards developed by ITU-T and IEEE. • Further development for higher bandwidth and lower cost is essential to meet rapidly growing traffics. • Regulations?

Koichi Asatani 2015

Merci! Thank you!

Koichi Asatani 2010

27

Suggest Documents