Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 Køben...
Author: Miles Neal
1 downloads 1 Views 3MB Size
Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen

Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peayush Choubey, Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611, USA

Tom Berlijn

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

arXiv:1401.7732 arXiv:1407.1846

Scanning tunnelling microscopy Tunnelling current: 4¼e I(V; x; y; z) = ¡ ½t (0)jM j2 ~

STM tip

eV

½(x; y; z; ²)d²

0

Local Density Of States (LDOS) of sample at given energy

sample e.g. SC J. Hoffman 2011 Rep. Prog. Phys. 74 124513 (2011)

density of states of FeSe TC=8 K

Z

J. Tersoff and D. R. Hamann, PRB 31, 805 (1985)

Topograph of Fe centered impurity in FeSe at V=6 mV

Song et al., Science 332, 1410 (2011)

Can-Li Song, et al. PRL 109, 137004 (2012)

LDOS and conductance map: Zn impurity in BiSCCO at V=-1.5 mV

Pan et al., Nature 403, 746 (2000)

Theory: State of the art methods T-matrix ●

Hamiltonian

H = H0 + HBCS + Himp

impurity scatterer (non)magnetic potential / T2 scatterer

band structure kinetic energy

H0 =

X

RR

X

cyR ¾ cR ¾

Himp =

superconductivity gap function / pairing

0 ;¾

¡ ¹0 ●

tR R 0 cyR ¾ cR 0 ¾

HBCS = ¡

R ;¾

T-matrix calculations

X

R ;R

0

X

Vimp cyR ¤ ¾ cR ¤ ¾

¾

¢R R 0 cyR " cyR 0 # + H:c:;

“resolution”: one pixel Zn impurity in BSCCO per elementary cell



lattice Green's function



Local Density of States (LDOS)

minimum on impurity, maximum at NN

T-matrix calculation + Bi-O filter function Martin et al., PRL 88, 097003 (2002)

Theory: State of the art methods Bogoliubov-de Gennes (BdG) ● ●

Hamiltonian H = H0 + HBCS + Himp self-consistent solution in real space (NxN grid, determine gaps) ¢R R 0 = ¡R R 0 hcR 0 # cR " i



eigenvalues En, eigenvectors (un,vn)



lattice Greens function

G¾ (R ; R 0 ; !) =

Xµ n

n¾¤ un¾ u R R0

! ¡ En¾ +

i0+

+

vRn¡¾ vRn¡¾¤ 0



! + En¡¾ + i0+

BdG+Wannier method ●

first principles calculation – –

band structure

H0 =

Wannier functions: wavefunctions in real space

X

tR R 0 cyR ¾ cR 0 ¾

R R 0 ;¾

Fe Se ●

continuum Green's function 0

G(r; r ; !) =

X

R ;R continuum position

¡ ¹0

elementary cell of FeSe

X

cyR ¾ cR ¾

R ;¾

Wannier function with phases centered at Fe(I)

Fe(I)-dxy

G(R ; R 0 ; !)wR (r)wR¤ 0 (r0 )

0

lattice Greens function

nonlocal contributions

local density of states (LDOS)

½(r; !) ´ ¡

1 Im G(r; r; !) ¼

Application to FeSe ●



homogeneous superconductor

lattice LDOS (conventional: 1 pixel per Fe atom)

- 2 meV

+ 2 meV

FeSe: Results 4¼e I(V; x; y; z) = ¡ ½t (0)jM j2 ~



continuum density of states –

Z

eV

½(x; y; z; ²)d²

0

at Fe plane C4 symmetry! 2 meV



at STM tip position

-2 meV

C2 symmetry!

+2 meV

+30 meV

FeSe: Comparison to experiment STM topography on FeSe with Fe-centered impurity C2 symmetry

C4 symmetry

BdG

BdG+W

experiment Can-Li Song, et al. PRL 109, 137004 (2012)

Application to BSCCO ● ●

first principles calculation (surface) 1 band tight binding model: 1 Wannier function

Cu dxy

band structure

NN apical O tails

O Cu Bi Sr Ca

at surface: only contributions to NN

Fermi surface

BSCCO: Results ● ●

d-wave order parameter

DOS of homogeneous superconductor experiment

Zn impurity resonance at -3.6 meV

Zhu et al., PRB 67, 094508 (2003)

Pan et al., Nature 403, 746 (2000)

resonance at NN

resonance at impurity

Quasi Particle Interference (QPI) ●

Fourier transform of differential conductance maps energy integrated maps: trace back Fermi surface

¤(q) =

Z

¢0

d! Z(q; !) :

0

K Fujita et al. Science 344, 612 (2014)

octet model: 7 scattering vectors between regions of high DOS

QPI simulation no intra-unitcell information

BSCCO: weak potential scatterer

atomic scale local density of states at STM tip position

full information for all scattering vectors spots from octett model

no information beyond first BZ

Fourier transform

Comparison to experiment no large q information

Z(r; !) =

g(r; !) ½(r; !) = g(r; ¡!) ½(r; ¡!)

relative conductance map, Fourier transformation

¤(q) =

Z

¢0

d! Z(q; !) :

0

energy integrated relative conductance maps K Fujita et al. Science 344, 612 (2014)

Recapitulation: BdG+W ●

simple: just a basisX transformation of the Green's function G(r; r0 ; !) = G(R ; R 0 ; !)wR (r)wR¤ (r0 ) 0

R ;R







0

powerful tool for calculation of local density of states at the surface (STM tip position) of superconductors

takes into account interunitcell information and symmetries of the elementary cell and the contained atoms shown to work in –

FeSe: geometric dimer



BSCCO: Zn impurity resonance, QPI pattern

Summary Kreisel et al. arXiv:1407.1846

Choubey et al. arXiv:1401.7732

Acknowledgements