Vesicles and Red Blood Cells under Flow

Vesicles and Red Blood Cells under Flow Gerhard Gompper Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Ju¨lich,...
10 downloads 2 Views 6MB Size
Vesicles and Red Blood Cells under Flow Gerhard Gompper Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Ju¨lich, Germany

Soft Matter Hydrodynamics • Red blood cells in microvessels:

– Flow behavior depends on cell elasticity. – Diseases such as diabetes reduce deformability of red blood cells!

Soft Matter Hydrodynamics Example: Flow behavior of malaria-infected red blood cells in microchannels Just after infection:

Late stage:

Diameter: 8 µm

6 µm

J.P. Shelby et al., Proc. Natl. Acad. Sci. 100 (2003)

4 µm

2 µm

Some Facts about Blood One micro-liter of blood contains • liquid called blood plasma, 55% by volume • blood cells suspended within the plasma, 45% by volume – 5 million red blood cells (RBCs) – 5,000 white blood cells (leucocytes) – 250,000 platelets (thrombocytes)

Red blood cells contain hemoglobin, iron-containing protein which facilitates transportation of oxygen by reversible binding.

Red Blood Cells • RBCs are produced in the red bone marrow • at rate of 2 million per second • production stimulated by hormone erythropoietin (EPO) • lifetime in human vascular system about 120 days • heart pumps volume of about 5 liters/min • RBCs travel through the human body about 180,000 times • corresponds to traveled distance of 180 km!

Mesoscale Flow Simulations Complex fluids: length- and time-scale gap between • atomistic scale of solvent • mesoscopic scale of dispersed particles (colloids, polymers, membranes) −→ Mesoscale Simulation Techniques Basic idea: • drastically simplify dynamics on molecular scale • respect conservation laws for mass, momentum, energy

Examples: • Lattice Boltzmann Method (LBM) • Dissipative

Particle

Dynamics

(DPD) • Multi-Particle-Collision Dynamics (MPC)

Alternative approach: Hydrodynamic interactions via Oseen tensor

Mesoscale Hydrodynamics Simulations Multi-Particle-Collision Dynamics (MPC)

• coarse grained fluid • point particles • off-lattice method • collisions inside “cells” • thermal fluctuations

A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999) A. Malevanets and R. Kapral, J. Chem. Phys. 112 (2000)

Multi-Particle Collision Dynamics (MPC) Flow dynamics: Two step process Streaming

• ballistic motion ri(t + h) = ri(t) + vi(t)h

Multi-Particle Collision Dynamics (MPC) Flow dynamics: Two step process Streaming

Collision

i

• ballistic motion ri(t + h) = ri(t) + vi(t)h

• mean velocity per cell Pni 1 ¯ i(t) = n v j∈Ci vj (t) i • rotation of relative velocity by angle α ¯ i + D(α)(vi − v ¯ i) vi′ = v

Mesoscale Flow Simulations: MPC • Lattice of collision cells: breakdown of Galilean invariance • Restore Galilean invariance exactly: random shifts of cell lattice

T. Ihle and D.M. Kroll, Phys. Rev. E 63 (2001)

Mesoscale Flow Simulations: MPC • Lattice of collision cells: breakdown of Galilean invariance • Restore Galilean invariance exactly: random shifts of cell lattice

T. Ihle and D.M. Kroll, Phys. Rev. E 63 (2001)

Low-Reynolds-Number Hydrodynamics • Reynolds number Re = vmaxL/ν ∼ inertia forces / friction forces For soft matter systems with characteristic length scales of µm: Re ≃ 10−3 • Schmidt number Sc = ν/D ∼ momentum transp. / mass transp. Gases: Sc ≃ 1, liquids: Sc ≃ 103 1000

α=130,ρ=30 α=130, ρ=5 α=90, ρ=5 α=45, ρ=5 α=15, ρ=5

Sc

100 10 1 0.1 0.01

0.1

h

1

10

M. Ripoll, K. Mussawisade, R.G. Winkler and G. Gompper, Europhys. Lett. 68 (2004)

Multi-Particle Collision Dynamics Advantages: • Unconditionally stable • Galilean invariance • Boundary conditions easily implemented ◮ Curved wall ◮ Deformable boundaries ◮ Slip / no-slip walls • Thermal fluctuations naturally included • High Schmidt numbers

Multi-Particle Collision Dynamics Some applications:

• Vesicles in flow • Red blood cells in flow • Microswimmers • Rod-like colloids in shear flow • Colloid sedimentation • Semi-dilute polymer solutions • Polymers in microchannels • Star polymers in flow

Do it Yourself — Colloidal Hydrodynamics Get a feeling for hydrodynamic interactions: Interactive MPC Simulations

See webpage: http://www.fz-juelich.de/ics/ics-2/EN/Forschung/HydrodynamicsSimulation/ node.html

Membranes Hydrodynamics of Membranes and Vesicles

Simulations of Membranes Dynamically triangulated surfaces

Hard-core diameter σ Tether length L: σ < L < √3 σ --> self-avoidance

Dynamic triangulation:

G. Gompper & D.M. Kroll (2004)

Capillary Flow: Red Blood Cells

• Spectrin network induces shear elasticity µ of composite membrane • Elastic parameters: κ/kB T = 50, µR02/kB T = 5000

Equilibrium Vesicle Shapes Minimize curvature energy for fixed area A = 4πR02 and reduced volume V ∗ = V /V0, where V0 = 4πR03/3:

stomatocyte

discoctyte

U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44 (1991)

prolate

Membrane Hydrodynamics Interaction between membrane and fluid: • Streaming step: bounce-back scattering of solvent particles on triangles • Collision step: membrane vertices are included in MPC collisions

implies impenetrable membrane with no-slip boundary conditions.

H. Noguchi and G. Gompper, Phys. Rev. Lett. 93 (2004); Phys. Rev. E 72 (2005)

Membrane Hydrodynamics Red Blood Cells in Shear Flow

Blood Viscosity (DPD) Blood viscosity at physiological conditions (hematocrit 45%)

Relative viscosity

a)

10

MS-RBC (no aggregation) MS-RBC (aggregation) LD-RBC (no aggregation) LD-RBC (aggregation)

2

x x x 10

10

Experiments: ◦ Chien et al., Science (1967)  Skalak et al., JBE (1981)

x

1

x

no attraction: xx

x

without fibrinogen xx

aggregation: whole blood

0

10

-2

10

-1

10

0

10

1

10

2

10

3

Shear rate (s-1) D.A. Fedosov, W. Pan, B. Caswell, G. Gompper, G.E. Karniadakis, Proc. Natl. Acad. Sci. USA 108 (2011)

Blood Viscosity (DPD) • Two shear-thinning regimes: attraction / deformation dominated • Estimate attraction strength: shear stress ≃ 0.02P a; force ≃ 2pN • Blood cells: shape and energy (c)

(b) mean (no aggregation) mean (aggregation) +/- standard deviation +/- standard deviation

RBC asphericity distribution

25

0.045 s-1 (no aggregation) 45 s-1 (no aggregation) 1424 s-1 (no aggregation)

20

15

Equilibrium - 0.154

10

5

0

0

0.1

0.2

0.3

Asphericity

0.4

0.5

0.6

Average membrane bending energy (k BT)

30 5500

5000

4500

4000

3500

value in equilibrium

3000

10

-2

10

-1

10

0

10

1

Shear rate (s-1)

10

2

10

3

Membrane Hydrodynamics Vesicle and Cells in Capillary Flow

Capillary Flow: Fluid Vesicles

(fluid particles not shown)

• small flow velocities: vesicle axis perpendicular to capillary axis −→ no axial symmetry! • discocyte-to-prolate transition with increasing flow H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA 102 (2005)

Capillary Flow: Elastic Vesicles Elastic vesicle:

• curvature and shear elasticity (κ = 20 kB T , µ = 110 kB T /R02 ) • model for red blood cells

parachute shape

Capillary Flow: Elastic Vesicles Elastic vesicle:

• curvature and shear elasticity • model for red blood cells

Tsukada et al., Microvasc. Res. 61 (2001)

Capillary Flow: Red Blood Cells Shear elasticity suppresses prolate shapes (large deformations) Flow velocity at discocyte-to-parachute transition

bending rigidity Implies for RBCs: vtrans ≃ 0.2mm/s for Rcap = 4.6µm

shear modulus

RBC Clustering & Alignment in Flow Physiological conditions: Hematocrit (volume fraction of RBCs) H = 0.45 Lower in narrow capillaries HT = 0.1...0.2 Therefore: Hydrodynamic interactions between RBCs very important Note: No direct attractive interactions considered!

RBC Clustering & Alignment in Flow Low hematocrit HT :

• Single vesicles more deformed → move faster • Effective hydrodynamic attraction stabilizes clusters J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

RBC Clustering & Alignment in Flow Low hematocrit HT :

G(z*nb)

6

v*0=7.7 =10 =10

4

Positional correlation function a

2 0 0

1

2

3

4

5

z*nb

0.7

Probability for cluster size ncl

0.6 P(ncl)

0.5 0.4

b

0.3 0.2 0.1

Clustering tendency increases with

0 0

1

2

3

4 ncl

5

6

7

increasing flow velocity

RBC Clustering & Alignment in Flow Low hematocrit HT :

G(z*nb)

6

v*0=7.7 =10 =10

4

Positional correlation function a

2 0 0

1

2

3

4

5

z*nb

0.7

Probability for cluster size ncl

0.6 P(ncl)

0.5 0.4

b

0.3 0.2 0.1

Clustering tendency increases with

0 0

1

2

3

4 ncl

5

6

7

increasing flow velocity

RBC Clustering & Alignment in Flow High hematocrit HT :

disordered discocyte

aligned parachute

zig-zag slipper

J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

RBC Clustering & Alignment in Flow High hematocrit HT :

disordered discocyte

aligned parachute

zig-zag Skalak, Science (1969)

Clustering & Alignment in Flow Phase diagram (Rcap = 4.6µm):

Hematocrit HT = 0.28/L∗ves Transition to zig-zag phase despite higher flow resistance than alignedparachute phase! 2

4

6

8

10

flow velocity v0∗

12

RBC Clustering & Alignment in Flow Larger capillary radius Rcap = 5.2µm: Phase diagram: 1.6

D

0.2

Pc

New phase: Asymmtric lane (Al) HT

0.25

*

L RBC

1.4 S,Al

1.2

0.3

1

0.35

0.8 6

8

10

g*

12

14

16

18

J.L. McWhirter, H. Noguchi, and G. Gompper, New. J. Phys., submitted (2012)

White Blood Cell Margination White blood cells: • important for immune response • requires interaction with vessel wall

(a)

(b)

WBC margination for • low shear rate

• intermediate hematocrit

D.A. Fedosov, J. Fornleitner, G. Gompper, Phys. Rev. Lett. 108 (2012)

Vesicles and Cells with Viscosity Contrast near Wall

1.08 1.04

FL Rp /(kB T )

Vesicle in gravitational field near wall:

100

 

                 

1.00 10

rcm FG

0.96 ycm

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 (a)

λ=1: λ=2: λ=3: λ=4: λ=7: λ = 10 : Oseen: −2 ycm :

(a)

1

0.5

0.92

2

(b) 180

Lift force FL balanced by gravitational

Lift force depends on viscosity

Simulation Oseen

160 140 2 /(kB T Rp ) FL ycm

force FG

contrast λ = ηin/ηout

5

ycm /Rp

120 100 80 60 40 20 0 0

2

4

6 λ

S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E 80 (2009)

8

10

White Blood Cell Margination Phase diagram: hematocrit and shear rate ’hard’ WBC

(b)

1

20

y/W

0.8

15

0.6 0.4

H t = 0.45

γ*

0.2 0

10

1

P(x,y)

P(x,y) 0.0024

y/W

0.8 0.8 0.6 0.6

y/H

5

0.4 0.4

0.1

0.2

0.3

H

0.4

0.5

H t = 0.5

0.2 0.2

0.6

t

0 1

Mechanism: push WBC towards wall

y/W

• non-spherical RBCs experience lift force,

0.8 0.6 0.4 0.2 0

• large hematocrit: RBCs invade space in front of WBC, act as stepping stone

H t = 0.55

0.0024 0.0018 0.0018 0.0012 0.0012 0.0006 0.0006 0 0

Vesicles in Structured Channels

Vesicle motion through zig-zag shaped channel (Lx = 100µm): time-dependent flow

Vesicles in Structured Channels

Vesicle motion through zig-zag shaped channel (Lx = 100µm): time-dependent flow

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, EPL 89 (2010)

Vesicles in Structured Channels

s1

s2

s4 e4

e3 s3

e2 e1

∆l /

0.2

ly

e1

0.3

0.1

Large reduced volume V : ∗

e2

• Fast flows: Symmetric shape oscillations

0

s1

0.8

lx V*

0.9

1

s3

s4

• Slow flows: Orientational oscillations Smaller reduced volume V : ∗

s2

e3

• Symmetric double tail • Asymmetric single tail e4 e2 20µm

Synchronization and Bundling of Rotating Helical Flagella Bacteria swim by a bundle of rotating helical flagella. Synchronization and bundling due to hydrodynamic interactions: P5

5

4 /R

h

P4

3

P3

2

P1

1

P2

0

-1 0

50

100

150

200

t

• synchronization before bundling • end-distance initially increases • synchronization time ∼ d2

S.-Y. Reigh, R.G. Winkler, and G. Gompper, Soft Matter 8 (2012).

Summary • Mesoscale simulation techniques are powerful tool to bridge the length- and time-scale gap in complex fluids • Multi-particle-collision dynamics well suited for hydrodynamics of embedded particles: colloids, polymers, vesicles, RBCs, microswimmers • Red blood cells in shear flow: roleaux formation, shear thinning • Red blood cells in capillary flow: shear elasticity implies parachute shapes, hydrodynamic clustering and alignment • White blood cell margination: interaction with RBCs • Vesicles in structured channels: single- and double-tailed shapes Review Multi-Particle Collision Dynamics: G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)

Acknowlegments Many thanks to: Daniel M. Kroll

Triangulated surfaces; membrane defects NDSU, Fargo (USA)

Tamotsu Kohyama

Membrane defects; scars

Shiga University

Gerrit A. Vliegenthart Virus buckling; crumpling

FZ Ju¨lich

Hiroshi Noguchi

Vesicles & RBCs in flow

ISSP, U Tokyo

Dmitry Fedosov

Blood flow

FZ Ju¨lich

Roland Winkler

Mesoscale hydrodynamics

FZ Ju¨lich

Liam McWhirter

RBCs in Microchannels

U Helsinki

Sebastian Messlinger

Vesicle in shear flow

PhD student

Benjamin Schmidt

Vesicle in shear flow

DAAD (U Toronto)

Thomas Franke

Vesicle experiments

U Augsburg

and all other members of Theoretical Soft Matter and Biophysics group at FZ Ju¨lich.

Suggest Documents