VALUE POINTS SECTION - A SECTION - B

QUESTION PAPER CODE 65/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A Marks 1-10. 1. 3 2. – 2 3. x sin x 5. 1 6. – I 7. p = − 4. {1, 2, 3} 1 3 8. ...
Author: Claude Morrison
6 downloads 2 Views 91KB Size
QUESTION PAPER CODE 65/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A Marks 1-10. 1. 3

2. – 2

3. x sin x

5. 1

6. – I

7. p = −

4. {1, 2, 3} 1 3

8. r = (3ˆi − 4ˆj + 3kˆ) + λ (–5ˆi + 7ˆj + 2kˆ)

9. log 2

10. a = 5ˆi + 5kˆ

1×10 = 10 m

SECTION - B

11.

[

y = [x (x – 2) ] = x 2 – 2x 2

dy = 0 dx

(

)

dy = 2 x 2 – 2x (2x – 2 ) dx





1m

1m

x = 0, x = 1, x = 2

½m

Intervals are (– ∞ , 0), (0, 1), (1, 2), (2, ∞ )

½m

since ∴

2

dy = 4 x (x – 1) (x – 2 ) dx





]

dy > 0 in (0, 1) or (2, ∞ ) dx

f(x) is increasing in (0, 1) U (2, ∞ )

1m

OR

x2 y2 2x 2y dy dy b2 x – = 1 ⇒ – = 0 ⇒ = a2 b2 a 2 b 2 dx dx a2y

slope of tangent at

(

2a , b =

)

slope of normal at

(

2a , b = –

)

2b a

1m

½m

a 2b

½m

14 PDF created with pdfFactory trial version www.pdffactory.com

(

2b x– 2a a

Equation of tangent is y – b =

(

π

I =

½m

4x sin x dx 2 x π

π

4 (π – x) sin (π – x) 4 (π – x) sin x dx = ∫ dx 2 1 + cos (π – x) 1 + cos 2 x 0



x → (π – x) gives I =

0

π

sin x

∫ 1 + cos

2I = 4 π

2

0

x

dx

–1

I = 2π

1

∫ 1

– dt 1+ t2

[

]

= 2 π tan –1 t

1m

½m Put cos x = t ∴ sin x dx = – dt



½m

∫ 1 + cos 0



)

2 (a2 + b2)

2 by =

i.e. ax +

½m

a x– 2a 2b

and equation of normal is y – b = –

Let

½m

2 bx – ay = ab

i.e.

12.

)

dt

∫ 1+ t

or 2 π

½m

1m

2

–1

1 –1

 π  π  = 2 π  –  –  = π 2  4  4 

1m

OR I=∫

=

=

1 2

x +2 x 2 + 5x + 6



dx =

2x + 5 x 2 + 5x + 6

x 2 + 5x + 6 –



dx –

1 1 (2x + 5) – 2 2 dx 2 x + 5x + 6 1 2



1m

dx

(x + 5 2 ) –  12  2

2

1 5  log  x +  + x 2 + 5x + 6 + c 2 2 

15 PDF created with pdfFactory trial version www.pdffactory.com

½+½ m

1+1 m

13.

y = P e ax + Q e bx ⇒

dy = a P e ax + b Q e bx dx

1m

d2y = a 2 P e ax + b 2 Q e bx 2 dx

∴ LHS =

1m

d2y dy – (a + b) + aby 2 dx dx

{

}

{

= a 2 P e ax + b 2 Q e bx – (a + b) a P e ax + b Q e bx + ab P e ax + Q e bx

{

}

{

}

= P e ax a 2 – a 2 – ab + ab + Q e bx b 2 – ab – b 2 + ab

}

1m 1m

= 0 + 0 = 0. = R.H.S.

14.

Putting x = cos θ in LHS, We get  1 + cos θ – 1 – cos θ  LHS = tan–1    1 + cos θ + 1 – cos θ 

1m

 2 cos θ – 2 sin θ  2 2 = tan–1  θ θ   2 cos + 2 sin 2 2 

1m

 1 – tan θ  2  = tan −1  tan  π − θ  = tan–1   2  1 + tan θ  4  2  =

π 1 π 1 − θ = − cos −1 x = R.H.S 4 2 4 2

½+1 m

½m

OR Given equation can be written as  x – 2  = tan–1 1 – tan–1 tan–1  x – 4  

 x + 2    x + 4 16

PDF created with pdfFactory trial version www.pdffactory.com

½m

= tan–1





15.

 1–   1 + 

x+2  x+4 –1 x + 2  = tan x + 4 

 2     2x + 6 

x–2 1 = x–4 x+3

1+½ m

½m

x 2 + x – 6 = x – 4 or x 2 = 2 ∴ x = ± 2

½+1 m

Given differential equation can be written as –1 dy 1 1 + ⋅y = ⋅ e tan x 2 2 dx 1 + x 1+ x

1m

1

Integrating factor = e ∴ solution is, y ⋅ e tan



y ⋅ e tan

or

16.

–1

x

y=

–1

x

=

=

∫ 1+ x 2 dx 1

∫ 1+ x

2

= e tan e 2 tan

–1

–1

x

x

1m dx

1 2 tan –1x e +c 2

1m

1m

–1 1 tan –1x e + c e – tan x 2

A, B, C, D are coplaner, if AB ⋅ AC × AD = 0

AB = – 4ˆi – 6ˆj – 2kˆ, AC = − ˆi + 4ˆj + 3kˆ, AD = − 8ˆi – ˆj + 3kˆ

1m 1½ m

–4 –6 –2 AB ⋅ AC × AD =

–1 –8

4 –1

3 3

½m

= – 4 (15) + 6 ( 21) – 2 (33) = 0

OR

17 PDF created with pdfFactory trial version www.pdffactory.com

1m

Given that a ⋅

b+c b+c

=1

½m

a ⋅ b + a ⋅c = b + c

or

½m

(ˆi + ˆj + kˆ )⋅ (2ˆi + 4ˆj – 5kˆ ) + (ˆi + ˆj + kˆ )⋅ (λˆi + 2ˆj + 3kˆ ) = ⇒

(2 + 4 – 5) + (λ + 2 + 3) =



(λ + 6 )2

= (λ + 2 ) + 40

=

b+c

(λ + 2)2 + 36 + 4

⇒ λ =1

2

b+c

Hence

(λ + 2)ˆi + 6ˆj – 2kˆ

3ˆi + 6ˆj – 2kˆ 7

1m ½m

3ˆ 6ˆ 2 ˆ i+ j– k 7 7 7

or

½m

1m

2

17.

x   x  getting fog (x) = f   +2 =  x –1  x –1

1½ m

fog(2) = 6

½m

(

)

getting g of (x) = g x + 2 = 2

x2 + 2 x2 +1

g of (– 3) =

18.

1½ m

11 10

½m

Let probability of success be p and that of failure be q ∴

p = 3 q, and p + q = 1



p=

3 4

1 4

1m

P (atleast 3 successes) = P(r > 3) = P(3) + P(4) + P(5)

½m

2

=

5

and q =

3

1

4

1 3 1 3 3 C3   ⋅   + 5 C 4   ⋅   + 5 C5   4 4 4 4 4

18 PDF created with pdfFactory trial version www.pdffactory.com

5

1½ m

=

19.

10.27 5.81 243 918 459 + + = or 1024 1024 1024 1024 512

Operating C1 → C1 − (C 2 + C3 ), we get – 2a

c+a

– 2p r + p – 2x z + x

LHS =

C 2 → C 2 – C1 C3 → C3 – C1

a+b

c+a

a+b

p+q = –2 p r +p x+y x z+x

p+q x+y

a

a c b ⇒ LHS = – 2 p r q

1½+½ m

1m

x z y a

20.

1m

b c

C 2 ↔ C 3 = + 2 p q r = RHS x y z

1m

dx 2 = 2a cos 2t (1 + cos 2t) – 2a sin 2t dt

1m

dy = 2b cos 2t sin 2t – 2b sin 2t (1 – cos 2t) dt

1m



dy b  sin 2t cos 2t – sin 2t (1 – cos 2t)    = dx a  cos 2t (1 + cos 2t) – sin 2 2t 

1m

At t = π 4 , sin 2t = 1 and cos 2t = 0 ∴

21.

(

)

dy b  0 – 1 b = at t = π =  4 dx a  0 – 1  a

1m

Given equation can be written as x y dx – dy = 0 2 1+ x 1 + y2

1m

19 PDF created with pdfFactory trial version www.pdffactory.com

Integrating to get ⇒ ∴

(

22.

(

)

(

)

(

1m

)

log 1 + x 2 – log 1 + y 2 = log c12 = log c

½m

(1 + x ) = c (1 + y ) 2

2

x=0 y=1 ⇒ c=



)

1 1 log 1 + x 2 – log 1 + y 2 = log c1 2 2

1 2

1m

1 + y2 = 2 (1 + x2) or y =

2x 2 + 1

½m

Let the D.R’s of the required line be a,b , c ∴

    

a + 2b + 3c = 0

and –3a + 2b + 5c = 0 ⇒



1m

a b c = = ∴ DRs are 2, – 7, 4 4 – 14 8

Equations of line are

1m

x–2 y –1 z –3 = = 2 –7 4

(

) (

which, in vector form is, r = 2ˆi + ˆj + 3kˆ + λ 2ˆi – 7ˆj + 4kˆ

1m

)

1m

SECTION - C 23.

Let number of pieces of type A and type B, manufactured per week be x and y respectivily ∴

L.P.P. is

Maximise P = 80x + 120y

½m

subject to 9x + 12y < 180 or 3x + 4y < 60 x + 3y < 30 x>0 y>0

20 PDF created with pdfFactory trial version www.pdffactory.com

    

2m

For correct graph :

2m

Vertices of feasible region are A (0, 10), B (12, 6), C (20, 0) P(A) = 1200, P(B) = 1680, P(C) = 1600 ∴

For Max. P, No. of type A = 12 1m No. of type B = 6

Maximum Profit = Rs. 1680 24.

Let event E1 : choosing first (two headed) coin E2 : choosing 2nd (biased) coin E3 : choosing 3rd (biased) coin ∴

P(E1) = P(E2) = P(E3) =

    

1 3

½m

½m

1m

A : The coin showing heads. ∴

P(A/E1) = 1, P(A/E2) =

75 3 60 3 = , P(A/E3) = = 100 4 100 5

1 ⋅1 3 P(E1/A) = 1 1 3 1 3 ⋅1 + ⋅ + ⋅ 3 3 4 3 5

=

1½ m

1+1m

20 47

1m OR

Total number of ways of selecting two numbers = 6 C 2 = 15

½m

Values of x (larger of the two) can be 2, 3, 4, 5, 6

1m

P(x = 2) =

1 2 3 , P(x = 3) = , P(x = 4) = 15 15 15

4 P(x = 5) = 15

5 and P(x = 6) = 15

21 PDF created with pdfFactory trial version www.pdffactory.com





Distribution can be written as x:

2 3 4 1 2 3 P(x) : 15 15 15 2 6 12 x P(x) : 15 15 15 Mean = ∑ x P(x) =

25.

5 4 15 20 15

6 5 15 30 15

1m

70 14 = 15 3

1m

Equation of plane through the intersection of given two planes is : x + y + z – 1 + λ (2x + 3y + 4z – 5) = 0

1m

or (1 + 2λ ) x + (1 + 3λ ) y + (1 + 4λ ) z – 1 – 5λ = 0 .......................... (i)

½m

Plane (i) is perpendicular to the plane x – y + z = 0,

so, 1 (1 + 2λ ) – 1 (1 + 3λ ) + 1 (1 + 4λ ) = 0 ⇒

3λ = − 1 ∴ λ = –

1½ m

1 3

½m

5  2  4 ∴ Equation of plane is 1 –  x + (1 – 1) y + 1 –  z – 1 + = 0 3  3  3

i.e x – z + 2 = 0 Distance of above plane from origin =

½m 1m

2 = 2 units 2

1m

OR

(

)

Any point on the line r = 2ˆi – 4ˆj + 2kˆ + λ 3ˆi + 4ˆj + 2kˆ is

(2 + 3λ )ˆi + (– 4 + 4λ )ˆj + (2 + 2λ )kˆ

1½ m

For the line to intersect the plane, the above point must satisfy the equation of plane, for some value of λ ∴

{(2 + 3λ )ˆi + (– 4 + 4λ )ˆj + (2 + 2λ )kˆ}⋅ (ˆi – 2ˆj + kˆ ) = 0 22

PDF created with pdfFactory trial version www.pdffactory.com

1m



2 + 3λ + 8 – 8λ + 2 + 2λ = 0 ⇒ λ = 4



The point of intersection is 14ˆi + 12ˆj + 10kˆ

Required distance = 12 2 + 0 2 + 52 = 13 units

26.

Here

3x + 2y + z = 1600 4x + y + 3z = 2300 x



+

3 2 1   4 1 3 1 1 1  

y

+

z

=

1½ m 1m 1m



900

 x   1600       y  =  2300  or AX = B  z   900     

| A | = 3(–2) –2 (1) + 1 (3) = – 5 ≠ 0 ∴ X = A –1 B

½m

Cofactors are : A11 = – 2, A12 = – 1, A13 = 3 A 21 = – 1, A 22 = 2, A 23 = –1 A 31 = 5, A 32 = −5, A 33 = –5

1½ m

 – 2 − 1 5   1600   x       1  ∴  y  = –  – 1 2 − 5   2300  5      z   3 – 1 – 5   900    ∴ x = 200, y = 300, z = 400

1½ m

i.e. Rs 200 for sincerity, Rs 300 for truthfulness and Rs 400 for helpfulness One more value like, honesty, kindness etc.

23 PDF created with pdfFactory trial version www.pdffactory.com

1m

27.

Correct fiqure AB is : y =

1 (3x + 7) 2

½m

is : y =

1 (11 – x) 2

½m

is : y =

1 (x + 5) 2

½m

  Equation of BC   AC  Required area =

1

1 2

∫ (3x + 7) dx +

–1

1m

1 2

1

3

∫ (11 – x) dx – 1

[

1 1 2 (11 – x) 2 =  (3x + 7)  – 12  –1 4

]

3

1



1 2

I =

∫(

)

cot x + tan x dx =



cos x + sin x dx sin x cos x

Putting sin x – cos x = t, so that (cos x + sin x) dx = dt and sin x cos x =

∴ I =

=

29.

2



1 (1 – t2 ) 2

dt 1– t

2

=

∫ (x + 5) dx

1m

[



–1

1 (x + 5) 2 4

= 7 + 9 – 12 = 4 sq. units

28.

3

]

3 –1

1m

1m 1m 1m

2 sin –1t + c

1+1 m

2 sin –1 (sin x – cos x) + c

1m

Correct fiqure let the radius and height of cylinder be r and h respectively

24 PDF created with pdfFactory trial version www.pdffactory.com

½m



V = π r2 h ....................... (i)

½m

2 2 But r2 = R – h 4

  h2  h3  π h  R 2 –  = π  R 2 h –  4  4  



 2 3h 2  dv  = π  R – dh 4  



dv = 0 dh

⇒ h2 =

1m

½m

4R 2 2R or h = 3 3

½+1 m

 6h  d2v  < 0 ∴ Volume is maximum and 2 = π  – dh  4 

1m

 2 2R 1  2R 3  4π R 3 –   = Maximum volume = π ⋅ R ⋅ cubic units 3 4  3   3 3 

1m

25 PDF created with pdfFactory trial version www.pdffactory.com

Suggest Documents