Value from Waste. Amsterdam s 4Year Experience with High-Efficiency Waste-to-Energy

Value from Waste Amsterdam’s 4Year Experience with High-Efficiency Waste-to-Energy Ir. M.A.J. (Marcel) van Berlo Afvalenergiebedrijf Waste & Energy Co...
Author: Spencer Peters
11 downloads 0 Views 4MB Size
Value from Waste Amsterdam’s 4Year Experience with High-Efficiency Waste-to-Energy Ir. M.A.J. (Marcel) van Berlo Afvalenergiebedrijf Waste & Energy Company City of Amsterdam [email protected]

Haus Der Technik,

ISWA WGER International Solid Waste Association Work Group Energy recovery Oslo 24 March 2011

1

Electrical Efficiency of Power Plants Efficiency depends on fuel quality: l Natural Gas

55 %

l Oil

50 %

l Coal

45 %

l Lignite

40 %

l Biomass

35 %

l Waste

15…22 %....30%

Current Average Current: State-of-the-Art Haus Der Technik,

Best Available Technology

5

Transport distance versus WtE-efficiency Electrical output :

Thermal output:

15,7

6,2

kg CO2/ ton waste

Truck (at 24 ton load) *

226

90

Km

Large truck (32 ton load) *

251

99

Km

Train electrical **

793

314

Km

Train diesel **

570

226

Km

River boat (32 TEU) **

235

93

Km

1% Efficiency difference in: Avoids the emissions of: Is equivalent to a transport:

A WtE installation with 8% higher efficiency can be 1600 km further away than the reference installation to give an equal reduction of greenhouse gases. * For the distances return is already included. ** At 50% productive km Source: CE Delft, september 2009, http://www.old.arnhem.nl/bi_brondoc/VROM/2010/01/11/VROM%20presentatie%20afvalverwerking.pdf

Energy-potential in Waste Waste in EU: Electricity:

182 MTon/year x 10 MJ/kg x 30% = 550 PJ / year = 150 TWh / year = 17.300 MW-continuous =

Avoided CO2 Haus Der Technik,

8%

of total EU-production

= 200 million tons per year

7

Energy output / energy in waste

Energy efficiency

Haus Der Technik,

80,0% 70,0% 60,0% 50,0% 40,0% 30,0% 20,0% 10,0% 0,0% -10,0%

Energy efficiency Heat from Waste (net production) =

Electricity from Waste (net production) =

10

R1/D10 factor

R1/D10 factor 1,09

1,2

0,89

1,0 0,8 0,6

0,6 0,65

0,87

0,79

0,63

0,47

0,4 0,2

-

0,1

0,0

Haus Der Technik,

11

R1-D10

Heat delivery [kWh/ton]

R1/D10 and Exergy Heat as function from electricity WtE heat only

2.000

Slope at 120°C

Slope at 90°C

Slope at 200°C

1.500

1.000 WtE Conv.+CHP

WtE Optim.+CHP

500

0

DUMPSITE LANDFILL+ biogas engines 0

100

200

WtE Existing

WtE Conventional

21%

300

400

500

600

WtE 30%Optimised

25%

700

800

Net Elektr. production [kWh/ton] Haus Der Technik,

12

EXergy output / energy in waste

EXergy efficiency 50,0% 45,0% 40,0% 35,0% 30,0% 25,0% 20,0% 15,0% 10,0% 5,0% 0,0% -5,0%

Haus Der Technik,

EXergy efficiency Exergy equ. Recovered metals = Exergy in heat from waste = Exergy in Electr. from waste =

14

Efficiency breakdown

Boiler losses (stack) 100%

100%

100%

80%

80%

80%

60%

60%

Boiler losses (stack) Cooling = Loss

100%

Boiler losses (stack) Cooling = Loss

60%

80%

Cooling = Loss

Heat

Heat

40%

20% el

30% el

Derating of electricity by heat delivery

20% el

30% el 40%

40%

Cooling = Loss

60%

20% el 40%

Boiler losses (stack)

20% el 20%

20%

20%

20%

0%

0%

0%

0%

Conventional

Haus Der Technik,

WFPP

Conv+ heat

WFPP+ heat

Derating of electricity by heat delivery 15

Greenhouse effect overall

Haus Der Technik,

17

4th-generation Incineration = WFPP l l

Cost must go down Reliable, proven technology

l

Energy Optimisation Leap from 22%

to the max !! to >30%

l

Material reuse to the max !! Fe, Al, Cu, Gypsum, CaCl2, Washed bottom ash = N1 quality building material Washed fly ash = inert

Gemeente Amsterdam

Afval Energie Bedrijf

18

CONCEPT for RECOVERY 850 kWh/ton =

30 % of energy in waste

Energy utilisation rate = 0,84 EU discussion on R1/D10

Chemicals 10 kg

Fluegass Municipal Solid Waste

Incineration

Fluegass cleaning

SAI Output per ton of waste: Gemeente Amsterdam

Afval Energie Bedrijf

Non Ferro 5 kg Iron 25 kg Sand 100 kg Granulate 100 kg Fines 20 kg

Salt 7 kg Gypsum 5 kg Fly-ash 10 kg Residue 5 kg 19

HR-AVI project

=

WFPP

l Systematic approach to optimise recovery l Using proven technologies in new combination l Net Electrical efficiency >30%

l 530.000 ton/year

ηGross=34,5%

@ 10MJ/kg  56MWnet-el

l Budget:

400 M€

l Construction start:

Begin 2004

l Completion:

Aug 2007 22

Main data WFPP® Waste: 2x 33,6 t/h@10MJ/kg = 1600 t/d = 530.000t/y Thermal capacity:

2x 93,4 MWth

Live steam:

125 bar / 440°C (option 480°C)

Steam-Steam reheating:

14 bar / 330°C

Sea water cooling:

0,03 bar condenser

Flue gas recirculation:

25% of total air

Excess air ratio λ:

1,39 = 6% O2-dry

Electric efficiency:

30,6%net

Flue gas cleaning:

Dry + wet

ISWA

at acceptance test

Starting boiler design Sketch boiler design

2nd 3rd

1st

Evaporator Superheater

1st and 2nd pass: All inconel 625 cladding

Economiser

Large 1st Pass: Height >20m, Flue-gas velocity < 3m/s

850°C

1st

2nd

650°C

4th

3rd

SSH 1

terti

a

secu

Boiler ash 1

SSH SSH 2 3

SSH ECO ECO ECO 4 1 2 3

180°C

 Large 2nd and 3rd-Pass  Super-heater: Flue-gas velocity < 2,5 m/s  Flue-gas recirculation (secondary air)

Boiler ash 2

Second Economiser to 130°C after fabric filter

1 2 3 4 Prim

Haus Der Technik,

Bottomash

25

Outline steam reheating Turbine

Superheater 135 bar 335°C

130 bar 480°C

14 bar 13 bar 190°C 320°C

0,03 bar 25°C

Drum

x1

x2

Boiler Reheater Superheated steam 440-480°C Steam pressure 125-130 bar Steam reheating after HP-turbine Second and Third economiser Haus Der Technik,

26

Thermodynamic model Available for efficiency calculation Temperature / Entropy Diagram

700

WtE modelling software: [email protected] Using X Steam Macro's from www.x-eng.com 600 ─── Pressure in bar absolute ─── Vapour fraction

500 4: WtE-Reheat cycle

Temperature °C

2: Amsterdam HR-AVI

1: Amsterdam AEC

3: Complete

400

300

200

100

Atm. Boiling liquid

Atm. Boiling Vapour

0

0

1

2

Haus Der Technik, Essen, 6 okt 2009

3

4 5 Specific entropy (kJ/kg°C)

6

7

8

9

27

Net plant efficiency Comparison of typical performance of WtE-plant related to design steam parameters. Comparison between normal Water-Steam-cycle and the results with an intermediate steam reheater. Net Plant efficiency with reheater

Net Plant efficiency

37,0%-38,0%

37,0%-38,0%

36,0%-37,0%

36,0%-37,0%

35,0%-36,0%

35,0%-36,0%

38,0%

37,0%

34,0%-35,0%

38,0% 37,0%

34,0%-35,0%

36,0%

36,0%

33,0%-34,0%

33,0%-34,0%

35,0%

35,0%

32,0%-33,0%

34,0%

32,0%-33,0%

34,0%

31,0%-32,0%

33,0%

31,0%-32,0%

33,0%

32,0%

30,0%-31,0%

31,0%

29,0%-30,0%

30,0%

28,0%-29,0%

29,0%

500 450

28,0%

27,0%-28,0%

27,0%

26,0%-27,0%

400

26,0%

25,0%-26,0%

32,0%

550 30,0%-31,0%

350

25,0%

550

31,0%

29,0%-30,0%

30,0%

28,0%-29,0%

29,0%

500 450

28,0%

27,0%-28,0%

27,0%

26,0%-27,0%

400

26,0%

25,0%-26,0%

350

25,0%

300

300 Pressure [ BarA ]

250 200

Haus Der Technik,

Pressure [ BarA ]

Superheater Temperature [ °C ]

250 200

Superheater Temperature [ °C ]

28

Super heater temperatures over last 40 year Concern over super heater corrosion has made 400°C / 40 bar the most used steam temperature over the last 40 years. Experiences begin 70’s and end 80’s have been disappointing. New boiler design with much lower flue gas speeds appears to solve these old concerns. The increased boiler size gives longer residence times and brings the flue gas into a thermochemical equilibrium that reduces corrosion potential. Lower flue gas temperatures and less fly ash further help to reduce corrosion.

B.Kamuk-Ramboll, WtERT 2010

29

Gross plant efficiency Comparison of typical performance of WtE-plant related to design steam parameters. Comparison between normal Water-Steam-cycle and the results with an intermediate steam reheater.

Gross Plant efficiency

37,0%-38,0% 36,0%-37,0% 38,0% 35,0%-36,0% 37,0% 36,0% 34,0%-35,0% 35,0% 34,0% 33,0%-34,0% 33,0% 32,0%-33,0% 32,0% 31,0% 31,0%-32,0% 30,0% 29,0% 30,0%-31,0% 28,0% 27,0% 29,0%-30,0% 26,0% 28,0%-29,0% 25,0% 27,0%-28,0% 26,0%-27,0% 25,0%-26,0% Pressure [ BarA ]

Gross Plant efficiency with reheater

37,0%-38,0% 36,0%-37,0% 38,0% 35,0%-36,0% 37,0% 36,0% 34,0%-35,0% 35,0% 34,0% 33,0%-34,0% 33,0% 32,0%-33,0% 550 32,0% 31,0% 31,0%-32,0% 500 30,0% 29,0% 30,0%-31,0% 450 28,0% 27,0% 400 29,0%-30,0% 26,0% 350 28,0%-29,0% 25,0% 30027,0%-28,0% 250 26,0%-27,0% Superheater 200 25,0%-26,0% Temperature [ BarA ] [ °CPressure ]

550 500 450 400 350 300 250 Superheater 200 Temperature [ °C ]

Turbine humidity tolerance range Comparison of typical performance of WtE-plant related to design steam parameters. Comparison between normal Water-Steam-cycle and the results with an intermediate steam reheater.

Xdryness LP-outlet

Xdryness LP-outlet 99,0%-100,0% 98,0%-99,0% 97,0%-98,0% 96,0%-97,0% 95,0%-96,0% 94,0%-95,0% 93,0%-94,0% 92,0%-93,0% 91,0%-92,0% 90,0%-91,0% 89,0%-90,0% 88,0%-89,0% 87,0%-88,0% 86,0%-87,0% 85,0%-86,0%

100,0% 99,0% 98,0% 97,0% 96,0% 95,0% 94,0% 93,0% 92,0% 91,0% 90,0% 89,0% 88,0% 87,0% 86,0% 85,0%

99,0%-100,0% 98,0%-99,0% 97,0%-98,0% 96,0%-97,0% 95,0%-96,0% 94,0%-95,0% 93,0%-94,0% 92,0%-93,0% 91,0%-92,0% 550 90,0%-91,0% 89,0%-90,0% 500 88,0%-89,0% 450 87,0%-88,0% 40086,0%-87,0% 350 85,0%-86,0% 300

100,0% 99,0% 98,0% 97,0% 96,0% 95,0% 94,0% 93,0% 92,0% 91,0% 90,0% 89,0% 88,0% 87,0% 86,0% 85,0%

200

450

400 350 300 250

250

Pressure [ BarA ]

550

500

SuperheaterPressure [ BarA ] Temperature [ °C ]

200

Superheater Temperature [ °C ]

EXergie loss: Heat transfer boiler

Voor OVO 7

ECO 8

Verdamper 5

Water / Steam

800 700 600 500 400 ECO II rgww 203 Neutrale wasser EDV 13

Sproeiabsorb 9

Luvo 2

1298

300

200

Temperature [°C]

] -[ T / 0 T - 1

2 o vu L

1 - T 0 / T [-]

Eind OVO 6

Flue gas

100 Schoorsteen

15

310.6 6.13 0

85.9

97.3

109

130

138 143 148 151

180

Transmitted heat [MW]

Haus Der Technik, Essen, 6 okt 2009

33

Energy flows

Haus Der Technik,

34

Heat transfer surfaces (relative size)

Ing. Martin Murer, TU München

Boiler WFPP

Flue-gas cleaning WFPP

WFPP status report: Problems • • • • • • • • • •

Documentation Emergency condenser: Pipe rupture Steam valves: Actuator Cranes: Unreliable Flue gas cleaning Blow down treatment :Size/process Fabric filter Bag problem Condensate pump Leakage Fly ash Loading Empty pass fly ash Transport ID-fan El-drive el-brake

design failure design failure Electrical drive change Lot contractor AC-dosing software change change change change freq.conv

WFPP status report: Problems • Automation • Feed water pump • Cooling water

incomplete damage water hammer

optimise repair modify

• Turbine shaft broken civil problem repair took 1 year • Condensate pumps NPSH problem better control

WFPP status report: Performance Operation • Set point • Real

100-105% Load 98-100% load

• Turbine • Efficiency

68-73MW 30% reached easily With heat delivery: 30+2% Average approaching 30%

• Emissions

CO: NOx:

5-10 mg/Nm3 60-80 mg/Nm3

with ammonia slip to flue gas cleaning

PLANT IS DOING WELL !

Inconel 625 membrane wall: 0,1-0,3 mm/y corros Lifetime 5-10 years add sacrificing layer

Pictures after >8000hrs of operation at full load.

50

Test Panels in Research program Roof

Intermediate Wall Haus Der Technik 06 Oktober

Front Wall 50

Inconel: local corrosion defects

B = little pit (as a result of poor weld bead)

A = brown colour (high % Fe) - repair B = little pit (as a result of poor weld bead)

At strip: A = brown colour (high % Fe) – repair D = long run of deterioration ~0,1 mm

Welding quality is important local defects needed repair. No shutdowns needed within scheduled interval of 2 year.

A = Brown colour (high % Fe) repair E = Inconel disappeared (by corrosion/poor adhesion)

G = sharp weld transition strip-pipe (incomplete welding at start)

General lifetime >10 year before sacrificing layer needed

Operational conditions Waste input:

11,5 -13 MJ/kg Chlorine 2500 mg/Nm3 in fluegas

+30% +110%

Flyash transport

2nd pass out of order ~8000 hrs

+ >>?

Fluegas Temp

710°C for >20.000 hours

+100°C

Superheater result 3 times extremely bad condition for high temperature superheater, but now after 30.000 hrs still in good condition, no repairs. Expected lifetime 8 years for first and hottest SH, other bundles >10years. Will install waterjet: positive experiences exisiting plant. Also possibly positive for membrane inconel wall.

Efficiency achieved

over 1 year of operation

Electrical efficiency [%]

Electricity price as driving force for efficiency increase large plants small plants OPTIMISATION: •Local conditions •Cooling water •Type of waste

•Size of installation •Electricity price

2003

Now

•Depreciation time •Subsidies •Environmental profile •Permit conditions

Investment for 4th-generation: Calculation model available for quick Business Case estimate Waste Part = Bunker, grate, lower furnace, Design CAPACITY capacity refractory, flue gas cleaning, stack, MSW throughput 530.000Ton/yr utilities, terrain, infrastructure, Estimated availability 90% relevant part of building and E&I. MSW MSW throughput Net electric efficiency (design) Electricity net output

Electrical performance

10 MJ/kg 1.612ton/day 30,0%

441.667MWh/year 56,0MW electrical

Energy part = Boiler, turbine, water-steam-cycle, extra economisers, condenser, cooling, water preparation, relevant part of building and E&I.

833kWh/ton waste

Total investment *

Contracting price

Specific investment overall Specific investment Waste Part Specific investment Energy Part

679€ / (ton/year) 353€ / (ton/year) 3.087€ / kW

389€ / (ton/year) 202€ / (ton/year) 1.769€ / kW

Specific investment 20% efficiency

4.421€ / kW

2.534€ / kW

Specific investment 20-30% improvement

2.476€ / kW

1.419€ / kW

187M€ 173M€

107M€ 99M€

360M€

206M€

Split in Waste related part Split in Energy related part

Rated Investment All-in Investment energy improvement 20-30%

File: WFPP seize and project Cost Estimation 9.80

42M€

24M€

Cost price versus efficiency

AEB

Financial parameters Interest 5,0% Opex: cost per year 5,78% perc. of invest Depreciation time 25 years Extra operation time - years Electricity price 50 €/MWh

Cost price -- sustainability

Dutch Green Electricity Basis: 0 – 22% Extra: 22 – 30% Period

MEP 0 € /MWh + 1–17 € /MWh 10 years

Additonal energy is emission-free

ISWA

WFPP® is the most cost-effective renewable option… 1033

140 120 100 80



€ / avoided ton of CO2

Cost per avoided ton CO2

60 40 20 0

Waste-2-Energy WFPP®

Wind on land

Biomass

Wind on sea Photo-voltaic

Sources: EZ, Regeling subsidiebedragen milieukwaliteit elektriciteitsproductie; VROM, personal communication; ECN, 2002, Duurzame Energie en Ruimte, M. Menkveld; analysis Deloitte

Haus Der Technik,

60

Business case for 4th-generation Income from waste and energy Extra lifetime 4thgeneration

60 2

M€ / year

50

Gain on permiting HE

1

40

3

30

4

Green Fee Aditional Electricity

20 Electricity

10 0

Waste

-10 -5 0 5 10 15 20 25 30 35 40 45 50 110 Haus Der Technik,

Year (before/after scheduled startup) 61

6. CONCLUSION  High Efficiency concept has proved itself in full scale commercial operation for difficult waste: >1,7 Mtons have been burned already.  30% net electrical efficiency in continuous operation.

 Membrane wall Inconel corrosion is low (as designed), Super heater corrosion extremely low.  Higher investment is paid with electricity revenue; Cost price per ton equal at current electricity prices.  Amsterdam experience takes the risk out of consideration elsewhere, cost savings possible. ISWA, Hamburg, 16 november 2010

62

Nothing is waste! Nothing is to be wasted! [email protected]

Picture WFPP

Haus Der Technik, Essen, 6 okt

65