UC Santa Cruz, 1156 High St, Santa Cruz CA 95064

Innovative Teaching Strategies for Large‐Enrollment Science Courses  (Reviews available at: http://tiny.cc/large_course_strategies)  Focus on: Collab...
Author: Posy Eaton
0 downloads 0 Views 198KB Size
Innovative Teaching Strategies for Large‐Enrollment Science Courses 

(Reviews available at: http://tiny.cc/large_course_strategies)  Focus on: Collaborative and Cooperative Learning a

b

Kristin McCullyab, Cheryl M. Zurbrickac, Doris B. Asha

Education Department;  Department of Ecology and Evolutionary Biology; cDepartment of Environmental Toxicology;   UC Santa Cruz, 1156 High St, Santa Cruz CA 95064 

“Individual commitment to a group effort – that is what makes a team work, a company work, a society work,  a civilization work.”     –   Vince Lombardi, Former Green Bay Packers Coach “Nothing new that is really interesting comes without collaboration.”          –    James Watson, Nobel Prize winner for discovering the double‐helix DNA molecule  Collaborative learning is an instructional method in which students work in small groups toward a common  goal.  Instructor and teaching assistants move around the classroom listening and, when necessary, asking  questions to help the students in their thinking.  Collaborative learning has a rich history in higher education,  including efforts by the Jewish Talmud, Socrates, John Dewey, and Benjamin Franklin (Johnson et al. 1998).   Collaborative learning is also one of the best studied pedagogical strategies in the history of education, with  over 1,000 research studies on the topic dating as far back as 1898 (Tanner et al. 2003).  Cooperative learning  is a very well‐studied type of collaborative learning in which group activities are more structured and students  are assessed individually in addition to or instead of collaboratively (Johnson et al. 1998). According to instructors who have used them and published on their  research, goals include: ● increasing and managing student‐student and student‐ instructor interaction ● enhancing student learning of content and scientific skills ● developing more positive attitudes towards learning,  science, and schooling ● developing social and collaboration skills essential for  science, business, and many other careers ● particularly encourage members of underrepresented  groups (such as African Americans, Latina/os, and women)

Collaborative learning in UCSC’s METX 80E:  Aquatic Toxicology (Cheryl Zurbrick) 

Evidence for Effectiveness of Collaborative Learning   Johnson and Johnson (1989, 1993, in Johnson et al. 1998) performed a meta‐analysis of over 1200 studies  across a wide variety of ages, subjects, cultures, and countries which showed that cooperative learning  strategies promoted higher individual knowledge, greater retention of knowledge, better attitude toward the  subject and learning, and better social and communication skills in comparison to traditional methods, such as  the lecture method. Similarly, a meta‐analysis of 39 studies (1980‐1998) of small‐group learning in undergraduate science,  technology, engineering, and math (STEM) courses showed that students who learn in small groups generally  demonstrate greater academic achievement, express more favorable attitudes towards learning, and persist  through STEM courses or programs to a greater extent than students who experienced more traditional  teaching methods (Springer et al. 1999).  The effects were consistent across genders, STEM fields, majors and  non‐majors, first‐year and other students, but significantly greater for members of underrepresented groups  (African Americans and Latina/os).   Many other papers, meta‐analyses, and reviews show similar results. 1 

Some instructors report that attendance is dramatically improved from traditional lectures because students  are reluctant to disappoint their groups and enjoy class much more (Herreid 1998). Instructors who routinely have students work in groups reduce needs for materials and provide opportunities  for students to engage in more substantial projects or a larger number of smaller projects than they could  achieve individually. As well, most careers and projects (as well as life in general) require the ability to communicate, cooperate,  assess, and delegate. Challenges and Mitigation ● Most scientists have been trained by and succeeded with the lecture method, so they may not know how  to lead a discussion or properly implement collaborative learning.  Including the 5 elements and following  the tips below will help, but you may also want to read some of the resources below.  You should also start  with using collaborative learning occasionally with informal strategies such as Think‐Pair‐Share, Peer  Instruction with clickers, and Jigsaws (see below). ● Designing group exercises takes time and work, so you may want to find exercises others have designed.   You can talk to your colleagues who teach similar courses or find a huge variety of activities online.   Beyond the resources listed below, you may find useful: National Science Digital Library (nsdl.org), and  Journal of College Science Teaching (available thru UCSC Library), and our reviews on case study and  problem‐based learning.   ● Cooperative learning reduces time available for traditional lecturing and therefore the amount of  information that can be covered.  You can use strategies such as Just‐in‐Time Teaching (JiTT) and clicker  questions to hold students responsible for their own learning before class and cover just as much  information (see our reviews on JiTT and clickers).  You can use collaborative learning strategies primarily  outside normal class time in peer‐led team learning groups or workshops (Stanger‐Hall et al. 2010, Born et  al. 2002).  Collaborative learning tends to emphasize higher‐order learning skills, such as analysis,  synthesis, evaluation, and critical thinking, rather than just facts.  Students experiencing collaborative  learning generally learn more effectively and retain what they learn better. ● Large lecture halls with rows of fixed seats are badly designed for collaborative learning.  However,  students can work with their neighbors and people behind and in front of them and on steps and the floor,  as well as in laboratory or discussion sections. ● Students can be threatened by a new approach to learning.  Science majors are usually survivors of the  traditional lecture system and may be hostile to new strategies.  Student evaluations may slump for the  first few years while instructors experiment with collaborative learning and students become more used to  collaborative learning.  However, you can minimize this by explaining early and often the goals and  evidence behind collaborative learning and evaluating learning in your course with pre‐ and post‐tests you  design or based on published concept inventories. ● Students may not have the social skills to survive the stress of small group learning.  Instructors can  encourage development of these skills, such as active listening, constructive criticism, and asking clarifying  questions, by defining, expecting, modeling, and discussing these skills.   Elements of Effective Cooperative Learning: Beyond Working in Groups Not all group efforts are collaborative ‐ simply assigning students to groups and telling them to work together  does not in and of itself result in collaborative effort.  Students can compete with groupmates, students can  work individually while ignoring groupmates, or students can work cooperatively with groupmates.  Based on  their research, cooperative learning pioneers David W. Johnson and Roger R. Johnson have proposed five  essential elements that are necessary to construct positive, effective cooperative group learning situations  (Johnson et al. 1998): 2 











Positive Interdependence: Students must see that their success is dependent on the contributions,  inclusion, and success of the other students in the group.  This requires faculty to carefully craft tasks that  actually require the insights and efforts of more than one person and that can’t be easily divided up.  For  example, an instructor might give students a certain number of points in addition to their individual exam  score if all group members score at or above a certain grade or give students in the group different  resources, roles, or tasks. Face‐to‐Face Promotive Interaction:  Students should have time and opportunity to exchange ideas orally  and discuss the concepts during class, with the help of scaffolding questions posed by the instructor.   Students should encourage and support each other as they practice cognitive and interpersonal processes  such as verbally explaining how to solve problems, connecting present with past learning, and challenging  one another’s reasoning and conclusions.  Instructors can ensure student discussion by requiring groups to  report to the class about common confusions and differing opinions and assigning procedural roles, such  as facilitator or reporter. Individual and Group Accountability: Students must be accountable both for contributing their share of  work as well as for the group reaching its common goal.  A common student complaint about group work  is that one person does all the work for their group.  Individual and group accountability is achieved by  grading students both on their individual work and on the work of the group, for example, both on an  individual laboratory report and on a group scientific poster presentation.  Interpersonal and Small‐Group Skills: Instructors can encourage development of these skills, such as active  listening, constructive criticism, and asking clarifying questions, by defining, expecting, modeling, and  discussing these skills.   Group Processing: Long‐term groups should have the opportunity to discuss and improve their processes  as a group.  Strategies include asking each team to list three things the group has done well and one that  needs improvement, explicit conversation by the group, and anonymous written responses that are  synthesized and returned to the group by the instructor.

How to: Collaborative Learning in Practice Common Strategies ● Think‐Pair‐Share: Ask a challenging (often open‐ended) question or ask students to prepare a list of  concepts they find confusing.  Give students a minute or two to think about the question and work out an  answer.  Ask students to get together in groups of 2‐4 students.  Ask for responses from some or all of the  pairs or small groups.  This can take as little as 3 minutes for simpler questions and tasks.  (Resource:  http://serc.carleton.edu/sp/library/interactive/tpshare.html) ● Peer Instruction with clickers: After a short lecture, ask a related challenging (usually multiple‐choice)  question.  Ask students to answer individually using clickers, cards, or hand‐raising.  If >~30% of class  answered incorrectly, ask students to discuss question in small groups or pairs for 2‐4 minutes and answer  again.  Lead whole class discussion.  This can take as little as 5 minutes. Peer discussion of classroom  response systems (clicker) questions, followed by an instructor’s explanation, helps students learn far  more than just an instructor’s explanation (Smith et al. 2011, our review on classroom response systems).   ● Jigsaw: For laboratory investigations and the discussion of readings, each group is assigned to a related but  different reading or task and then students move to jigsaw groups in which each student has completed a  different assignment and reports to the others.  Each student shares his or her expertise and gathers  information from peers who have completed a different task.  Finally, the group engages in a culminating  task that requires actively using all team members’ contributions.  This inherently uses the first four  elements described above.  (resource: http://serc.carleton.edu/sp/library/jigsaws/index.html) ● Peer‐led team learning: Undergraduate students who have done well in the class previously are recruited  and trained as workshop/peer leaders who guide the efforts of a group of 6‐8 students. These peer‐led  groups meet weekly to work together on problems that are carefully structured to help the students build  conceptual understanding and problem‐solving skills. (resource:  http://serc.carleton.edu/sp/library/pltl/index.html) 3 







Collaborative testing: Students learn from testing by working together on a test/quiz immediately after  completing it individually.  Instruct students to discuss each question and arrive at a consensus on each  answer.   Add points to individual scores based on group score. Collaborative testing improves  performance and motivation, decreases test anxiety, effectively evaluates student learning, and is viewed  positively by students, although the ability of collaborative testing to improve content retention is still in  question (Leight et al. 2012).  Often most groups score higher than the top individual in each group,  indicating that students work together to pool their knowledge and understanding. Collaborative writing: Students can work together on a writing assignment using Wikispaces or other tools  in which the instructor can see who contributes which content.  For example, in a course on “Plants and  People,” groups could focus on promoting plants or a particular plant’s use in art and design, industry,  landscaping, or medicine (Sawey and Sawey 2013). Team‐based learning: This is a comprehensive instructional system designed by Larry Michaelsen at  University of Oklahoma Business School.  Students work in permanent groups of 5‐7 students throughout  the course.  For each lesson, students complete reading before class, take short tests as individuals and  then as teams, listen to lectures briefly as needed, and work together in teams on application activities  that promote both critical thinking and team development.  Research reports increased test performance,  attendance/engagement, retention, student attitudes towards group work, and student satisfaction with  learning experience, as well as equal or better content coverage compared to traditional lecturing  (Resource: http://www.teambasedlearning.org, Michaelsen and Sweet 2011).

Best Practice Tips ● Before you first use collaborative learning strategies, explain why you’re using collaborative learning (or  any active learning strategies) and what you expect students to gain from the experience. You may even  want to show data on student learning gains from the references below.   ● Start small – add a collaborative learning exercise occasionally until you gain proficiency and are secure  with the method. ● During peer discussion, instructor and teaching assistants should move around classroom listening and,  when necessary, asking questions to help the students in their thinking.  The instructor’s role shifts from  lecturer (“sage on the stage”) to facilitator (“guide on the side”).  This gives the instructor the opportunity  for student observation and assessment of student learning. ● The size of groups formed is directly dependent on the activity to be pursued and the length of time the  group will stay together. Typically, for in‐lecture informal activities, group size is often kept small (two to  four students) since larger groups have insufficient time to become cohesive. In contrast, a complex  semester‐long project may require the resources of a larger group (four to six students) and there is  enough time for the group to become effective. ● Groups can be ad‐hoc (based on location in the room), self‐selected, randomly‐selected, or strategically‐ selected based on the purpose and length of the task.   ● Peer evaluation strategies for long‐term groups with group‐grading include: asking students to distribute  points among their teammates or to “appreciate” and “request” things about teammates.  Instructor  processes forms and sends anonymous results to each student (Michaelsen and Sweet 2011).  Make sure  you do this multiple times during the course so that students have a chance to improve. ● Use an absolute or criterion/rubric‐based grading scale instead of a norm‐referenced (curve) grading scale  to establish a non‐competitive atmosphere within the classroom so that students do not fear they will  jeopardize their own grades by working with their classmates (Johnson et al. 1998 and many others). Theoretical Basis (Johnson et al. 1998) Cooperative learning is based on four major psychological and learning theories: ● Social interdependence theory – Morton Deutsch (1949, in Johnson et al. 1998) suggested that groups are  dynamic wholes in which interdependence within a group can be positive (cooperation), negative  4 

● ●



(competition), or nonexistent (individualistic efforts).  Positive interdependence results in individuals  encouraging and facilitating each other’s efforts to learn. Constructivism – Swiss cognitive psychologist Jean Piaget (1896‐1980) taught that students construct  knowledge based on their experiences rather than receive knowledge from the teacher. Sociocultural theory – Soviet psychologist Lev Vygotsky (1896‐1934) believed that cooperative efforts to  learn, understand, and solve problems are essential for constructing knowledge.  Vygotsky proposed the  concept of the zone of proximal development (ZPD) which suggested that students learn subjects best just  beyond their range of existing experience with assistance from the teacher or another peer to bridge the  distance from what they know or can do independently to what they can know or do with assistance. Behaviorist learning theory ‐ Students will work hard on tasks for which they secure a reward of some sort,  so collaborative learning should provide incentives for working as a group.

Want more info? ● National Institute for Science Education.  Collaborative Learning: Small Group Learning Page.  http://www.wcer.wisc.edu/archive/cl1/CL/default.asp ● Science Education Resource Center.  Cooperative Learning.  http://serc.carleton.edu/sp/library/cooperative/index.html References:  Born, W. K., Revelle, W., & Pinto, L. H. (2002). Improving biology performance with workshop groups. Journal  of Science Education and Technology, 11(4), 347–365. Herreid, C. F. (1998). Why isn’t cooperative learning used to teach science? BioScience, 48(7), 553–559. Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998). Cooperative learning returns to college: What evidence is  there that it works? Change, 39(4), 26–35. Leight, H., Saunders, C., Calkins, R., & Withers, M. (2012). Collaborative testing improves performance but not  content retention in a large‐enrollment introductory biology class. CBE ‐ Life Sciences Education, 11(4),  392–401. doi:10.1187/cbe.12‐04‐0048 Michaelsen, L. K., & Sweet, M. (2011). Team‐based learning. New Directions for Teaching and Learning, (128),  41–51. doi:10.1002/tl Sawey, M. and A. Sawey. 2013. Using Wikispaces for collaborative content creation in a non‐major’s biology  lab. Life Discovery Conference. http://www.esa.org/ldc/wp‐content/uploads/2013/03/UsingWikispaces.pdf  Smith, M. K., Wood, W. B., Krauter, K., & Knight, J. K. (2011). Combining peer discussion with instructor  explanation increases student learning from in‐class concept questions. CBE—Life Sciences Education,  10(1), 55–63. doi:10.1187/cbe.10‐08‐0101 Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small‐group learning on undergraduates in  science, mathematics, engineering, and technology: A meta‐Analysis. Review of Educational Research,  69(1), 21–51. doi:10.3102/00346543069001021 Stanger‐Hall, K. F., Lang, S., & Maas, M. (2010). Facilitating learning in large lecture classes: testing the  “teaching team” approach to peer learning. CBE ‐ Life Sciences Education, 9(4), 489–503.  doi:10.1187/cbe.09‐12‐0093 Tanner, K., Chatman, L. S., & Allen, D. (2003). Approaches to cell biology teaching: cooperative learning in the  science classroom‐‐beyond students working in groups. Cell Biology Education, 2(1), 1–5.  doi:10.1187/cbe.03‐03‐0010



Suggest Documents