Today:  Start  chapter  14   •  Oscilla(ons  in  terms  of  amplitude,  

period,  frequency  and  angular   frequency  

•  Simple  harmonic  mo(on   •  Simple  harmonic  mo(on  with  energy  

and  momentum  

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Introduc)on   •  Periodic  mo(on  is  any  type  of  mo(on  that  repeats  itself   §  heartbeat   §  musical  vibra(ons   §  rocking  chair`   §  pendulum  swinging     §  vibra(ons  of  molecules  in  a  solid   §  AC  current     •  We  will  concentrate  on  a  par(cular  type  of  periodic  mo(on,  called  simple  harmonic   mo(on  (SHM)   •  Spring-­‐mass  systems   •  Pendulums  

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Spring-­‐Mass  System   k

m 0

-A

x

A

•  The  force  of  a  spring  is  given  by  Hooke’s  Law   F = !kx     •  If  we  apply  Newton’s  2nd  law  we  get  a  2nd  order  differen(al  equa(on     k •  Define  the  angular  frequency  as     !=

d2x !kx = m 2 dt

m

•  Second  order  differen(al  equa(on  for  simple  harmonic  mo(on  

d2x 0 = 2 +!2x dt •  In  general  simple  harmonic  mo(on  occurs  whenever  a  mechanical  system  gives  rise  to  a   differen(al  equa(on  of  this  form.       T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Variables  of  periodic  mo)on   •  A  body  undergoing  periodic  mo(on  always  has  a  stable  equilibrium  posi(on.   •  When  it  is  displaced  from  this  posi(on  there  is  a  force  or  torques  that  will  pull  it  back   towards  its  equilibrium  posi(on.   •  This  force  causes  the  oscilla(on  of  the  system.  When  it  is  directly  propor,onal  to  the   displacement  from  equilibrium,  the  resul(ng  mo(on  is  called  simple  harmonic  mo,on.  

•  •  •  •  •  T.  S(egler

Amplitude  =  A  è  magnitude  of  maximum  displacement  [m  or  rad]   Cycle  è  a  complete  “lap”  of  the  mo(on,  back  to  it’s  star(ng  point   Period  =  T  è  the  (me  to  complete  one  full  cycle  [s]   Frequency  =  f  è  the  rate  of  comple(ng  a  cycle;  or  #  of  cycles  per  unit  of  (me  [Hz  =  #/s]   Angular  frequency  =  ω  è  2π  x  frequency  [rad/s]    

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Rela)ons  in  SHM   •  Frequency  and  Period  are  related  (as  we  have  seen  before)    

f=

1 1 !T = T f

•  The  units  of  frequency  are  cycles  per  second.  A  cycle  is  just  a  number,  i.e.  unit-­‐less,  so   the  frequency  is  measured  in  inverse  seconds:  Hertz  =  1/s   •  Angular  frequency  isn’t  necessarily  related  to  the  angular  velocity;  it  is  the  rate  change   of  the  angular  quan(ty  (whatever  “quan(ty”  happens  to  be)  measured  in  radians.  

2" ! = 2" f = T

 

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

In  case  you’re  not  so  good  with  differen)al  equa)ons…   Simple  harmonic  mo(on  viewed  as  mo(on  in  a  circle:   •  we  want  to  describe  the  periodic  mo(on  mathema(cally  but  we  can’t  use  the  constant   accelera(on  equa(ons  of  mo(on   •  instead  we  can  look  at  simple  harmonic  mo(on  as  a  projec(on  of  circular  mo(on  onto  a   diameter  

Since  ϕ  =  ωt  is  the  angle  swept  out   in  a  (me  t,  we  can  say  that  the   posi(on  at  any  (me  is:   x(t) = A cos(! t) T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Simple  harmonic  mo)on  in  a  circle   The  period  of  the  mo(on  is  T  =  2π/ω  which  does  not  depend  on  the  amplitude.  

x(t) = A cos(! t) when  ωt  =  2π  rad    

x(t)   +A  

π/ω   2π/ω  

t  

-­‐A   π/(2ω)  

3π/(2ω)  

when  ωt  =  π  rad    

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Simple  harmonic  mo)on  w/  arbitrary  star)ng  posi)on   If  we  started  at  ϕ0  instead  of  at  x  =  A,   there’s  an  offset  and  the  curve  looks   like  this:  

x(t) = A cos(! t + "0 ) x(t)   +A   ϕ0   t  

-­‐A   ϕ0  

ϕ0  is  called  the  phase  angle,  or  the  posi(on  in  the  cycle  when  t  =  0   T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Clicker  Ques)on   This  is  an  x-­‐t  graph  for  an   object  in  simple  harmonic   mo(on.  

At  which  of  the  following  (mes  does  the  object  have  the  most  nega,ve  accelera,on  ax?   A.  t  =  T/4   B.  t  =  T/2   C.  t  =  3T/4   D.  t  =    T  

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Example  Mo(on  on  a  spring  



A  spring  agached  at  one  end  is  stretched  by  a  6.0N  force  which  causes  a  displacement  of  0.30m.     A  glider  of  mass  0.50kg  is  agached  to  the  end  of  the  spring  and  pulled  to  the  right  a  distance  0.020m   then   eleased   nd   1 1scillate.   I =2 r12 M L2 from  Irest   = 13aM L2allowed  Ito   =o12 M (a2 +   b2 ) I = 31 M a2 2πR a)  =Fvind  tThe   arad = force  constant  of  the  ideal  spring   R v b)  Find  the  angular  frequency,  frequency,  and  period  of  the  resul(ng  oscilla(on.   vtan = Rω

atan = Rα

L

#vA/B = −#vB/A

a

sions:

slender rod, axis 2

slender rod, axis

32.15 ft/s (on Earth’s through centre surface) through one end N · m2 /kg2 M⊕ = 5.98 × 1024 kg 30 2 M I =&1= M1.99 (R×2 10 + Rkg ) I = 1 M R2 1

2

214 mi 1 mi = 048 m 1m= 0s 1s= 248 lb 1 lb = ·m R1 1 W = R=2 radians 1 hp

b

L

#vA/C = #vA/B + #vB/C

2

2

1.609 km 3.281 ft 0.0002778 hr 4.448 N 1 J/s 745.7 W

hollow cylinder

R solid cylinder

b a

rectangular plate, axis through centre I = M R2

R thin-walled hollow cylinder

thin rectangular plate, axis along edge I = 52 M R2

R

I = 23 M R2

R

solid sphere thin-walled n 103 kilok hollow sphere µ 106 mega- M m 109 gigaG c ! For a point-like particle of mass M a distance R from the axis of rotation: I = M R2 ,# # # F = m#a! , FParallel −Ftheorem: B on A = A on B axis Ip = Icm + M d2 F#elas = −k(#r − #requil ) Damped/forced: SHM: |f#s | ≤ µs |#n|, |f#k | = µk |#n| ω = 2πf = 2π/T x(t) = A cos (ω " t)e−(b/2m)t ! ! x(t) = A cos (ωt + φ◦ ) ! I/mgd pend m1#r1T+ m2= #r22π + . . L/g . + m=n#r2π n v(t) = −ωA sin (ωt + φ◦ ) ω " = k/m − b2 /4m2 ! " m + mn Tspring 2π. . . m/k 1 + m= 2+ a(t) = −ω 2 A cos (ωt + φ◦ ) ! A = Fmax / (k − mωd2 )2 + b2 ωd2 T = 2π I/κ torsion similarly for #v and T.   S(egler   #a)              11/24/2014        

 

 Texas  A&M  University  

Velocity  and  accelera)on  in  SHM   •  We  can  use  calculus  to  derive  the  equa(ons  for  velocity  and  accelera(on  as  a  func(on   of  (me  for  simple  harmonic  mo(on.   ! ! !   ! ! dx dv d 2 x =   =    and  a(t)     = •  Star(ng  with   x(t) = A cos(! t) we  already  know v(t) dt dt dt 2

" d! % d •  The  deriva(ves  of  the  trig  func(ons  that  we  need  are   (cos! ) = !sin ! $ ' # dt & dt       ! d! $ d (sin ! ) = cos! # &    and   " dt % dt   •  Therefore:      

x(t) = A cos(! t) v(t) = !A! sin(! t) a(t) = !A! 2 cos(! t)

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Example  SHM  mass  and  spring  system   1

1

1

I =simple-­‐harmonic-­‐mo(on   ML I = 3M L I t=o  12 +abgached   ) M a the  period  T  =  0.20  s.     12 3 For   due   aM  m(aass   to  aI  s=pring   Released  from  rest,  2.4  cm  from  the  equilibrium  posi(on.   1 1 2 = 3 Ma)   L2What  aIre   = t12 Mf(a + b2 ) = 31 M af2requency  ω  for  this  system?       he   requency   f  and  aIngular   L L A  and  what  are  v b  and  a b b)  What   is  the  amplitude   max max?       a c)  What  are  x(t),  v(t)  and  a(t)  at  at  =  0.22  s  aker  release?     2

L slender rod, axis through centre a

2

b slender rod, axis through one end

a

2

b rectangular plate, axis through centre

thin rectangular plate, rod, axis 1 2 I = 2 M (Rrectangular + R22 ) Iplate, = 12 M R2 =M R2 1 axis Ialong edge one end axis through centre

=

1 M R2 2

R1

I = MR R2

hollow cylinder

R ylinder

2

R solid cylinder

I = 52 M R2

1

2

2

thin rectangular plate, axis along edge I = 52 M R2

I = 23 M R2

I = 23 M R2

R thin-walled hollow cylinder R

R

R solid sphere

thin-walled hollow sphere

R R hollow solidMsphere !thin-walled For a point-like particle of mass a distance R from the axis of rotation: I = M R2 thin-walled cylinder 2 hollow sphere ! Parallel axis theorem: Ip = Icm + M d

Damped/forced: SHM: icle of mass a distance R from the axis of rotation: I = M R2 ω =M2πf = 2π/T m: Ip = Icm + M! d2 x(t) = A cos (ω " t)e−(b/2m)t ! x(t) = A cos (ωt + φ◦ ) ! Tpend = 2π L/g = 2π I/mgd v(t) = −ωA sin (ωt + φ◦ ) ω " = k/m − b2 /4m2 ! Damped/forced: " Tspring = 2π m/k a(t) = −ω 2 A cos (ωt + φ◦ ) ! A = F / (k − mωd2 )2 + b2 ωd2 max Tx(t) = cos 2π (ωt I/κ x(t) = A cos (ω " t)e−(b/2m)t torsion =A + φ◦ ) ! " & ' () v(t) = −ωA sin (ωt + φ◦ ) ω = k/m − b2 /4m2 Waves: travelling : y(x, t) = A cos 2π x ∓ t " 2 2 vstring = FT /µ wave 2π/λ a(t) = −ω kA=cos (ωt + φ◦ ) λ T A = Fmax / (k − mωd2 )2 + b2 ωd2 T.  S(egler v =   ±λf          11/24/2014       µ =   M/L   = A cos (kx ∓ ωt)

 

 

 Texas  A&M  University  

Prelecture:  SHM  ques(on  1  

The  above  curve  represents  the  displacement  versus  (me  of  a  mass  oscilla(ng  on  a  spring.  The  axes   cross  ωt  =  0.  Which  of  the  following  func(ons  best  describes  this  curve?   a)  A  sin(ωt)     b)  A  sin(ωt+π/2)     c)  A  sin(ωt-­‐π/2)    

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Clicker  Ques)on   and  Prelecture:  SHM  Problem  2  

A  block  having  mass  m  is  agached  to  a  spring  having  a  spring  constant  k  and  oscillates  with   simple  harmonic  mo(on.  In  Case  2  the  amplitude  of  the  oscilla(on  is  twice  as  big  as  it  is  in   Case  1.?     Compare  the  period  of  oscilla(on  in  the  two   cases:     k a)  T2  =  T1   !=   m b)  T2  =  2T1   2" m   T= = 2" c)  T2  =  4T1     ! k T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Checkpoint:  SHM  Problem  1  

A  mass  on  a  spring  moves  with  simple  harmonic  mo(on  as  shown.     Where  is  the  accelera(on  of  the  mass  most  posi(ve?   x(t)     a)  x  =  -­‐A     +A   b)  x  =  0     t   c)  x  =  +A     -­‐A   amax    =  d2x/dt2  max  value   T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Checkpoint:  SHM  Problem  2  

Suppose  the  two  sinusoidal  curves  shown  above  are  added  together.  Which  of  the  plots  shown   below  best  represents  the  result?    

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Energy  in  SHM   Use  mass  on  a  spring  as  an  example   •  As  it  has  been  the  total  mechanical  energy  is  conserved  throughout  the  mo(on.  

1 1 ! E = mv 2 + kx 2 2 2 •  At  the  maximum  displacement,  x  =  A  and  v  =  0  

1 1 1 2 2 2 ! E = m(0) + k(A) = kA 2 2 2 •  So  at  any  other  (me:  

1 2 1 2 1 2 kA = mv + kx = constant   2 2 2

mv 2 = k(A 2 ! x 2 ) k 2 2 "v=± (A ! x ) m T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Checkpoint:  SHM  Problem  3  

In  the  two  cases  shown  the  mass  and  the  spring  are  iden(cal   but  the  amplitude  of  the  simple  harmonic  mo(on  is  twice  as   big  in  Case  2  as  in  Case  1.     How  are  the  maximum  veloci(es  in  the  two  cases  related?     a)  Vmax,2  =  Vmax,1     b)  Vmax,2  =  2  Vmax,     c)  Vmax,2  =  4  Vmax,1     T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

1 2 1 2 1 2 kA = mv + kx 2 2 2 k 2 2 !v=± (A " x ) m vmax (x = 0) =

 

 

k 2 A m

 Texas  A&M  University  

Example  Energy  in  SHM  

If f (t) = atn , then

% t2    t1 f (t)dt =

a n+1

&

' 1 tn+1 −Itn+1 2 1=

12

I = 13 M L2

M L2

Equations of motion: translational rotational

Circular motion:

arad =

I= v2 R

T =

1 M 12

2πR v

A  glider  with  mass  0.500kg  is  agached  to  constant the  end   of  a  spring   with  konly:  =  450N/m  undergoes   simple  vtan = Rω atan (linear/angular) acceleration s = Rθ L harmonic  mo(on  with  an  amplitude  #ro(t)f  0=.040m.   #r◦ + #v◦ t + 12 #at2 θ(t) = θ◦ + ω◦ t + 12 αt2 L Relative velocity: #vA/C = #vA/B + #v (t) = #v◦ + #at ω(t) = ω◦ + αt a)  what  is  the  maximum  speed  of  the   glider?   a #vB/C 1 1 2 2 2 2 2 I = 1 M L2 I = 3 M L #vA/B = −#vIB/A = 12 M( vf = v◦ + 2a(r − r◦ ) ωf = ω◦ + 2α(θ12 − θ◦ )   1 1 slender rod, axis #r(t) = #r◦ + 2 (#vi + #vf )t θ(t) = θ◦ + 2 (ω i + ωf )t slender rod, axis rectangu Constants/Conversions:   through centre always true: through one end axis throu 2 2 g = 9.80 m/s = 32.15 ft/s (on Earth’s su θ −θ r d! r dθ &ω' = &#v ' = !rt −! # v = ω =   −t dt t −t dt G = 6.674 × 10−11 N · m2 /kg2 ! v −! v ω −ω d! v d ! r dω d θ 2 Ldt α = dt 1= &α' = t −t b)  what  is  the  speed  at  x  =  -­‐.015m?   &#a' = t −t #a = dt = dt 2 R⊕ =2 6.38 × 106L × 10 R2 ) I =8 12mM R2 M⊕ = 5.98 I= M3 %t % t I = 2 M (R1 + R = 6.96 × 10 m M = 1.99 × 10 & & #r(t) = #r◦ + 0 #v (t) dt θ(t) = θ◦ + 0 ω # (t) dt   a %t %t #v (t) = #v◦ + 0 #a(t) dt ω(t) = ω◦ + 0 α # (t) dt 1 km = 0.6214 mi 1 mi = 1.609   1 ft =axis 0.3048 m 1 m = 3.281p slender rod, axis slender rod, rectangular Forces, Energy and Momenta:   through centre 1 hr = 3600 s 1 sthrough = 0.0002 through one end axis translational rotational m 1 kg = 1 N = 0.2248 lb 1 lb = 4.448 c)  magnitude  of  the  maximum  accelera(on?   s #τ = #r × F# and R |#τ |1= F⊥ r R 1 J = 1 N·m 1 W = 1 J/s % % 2 R 2   R 1 τ dθ 2 1 2 2 W =I τ ∆θ = W = F# · ∆#r = F# · d#r ◦ = 2 Mcylinder (R1 + R12 )rev = I 360 = 2M Rradians ==M R = 2π 1Ihp 745.7 hollow thin-walled h solid cylinder # · #v P = dW = #τ · ω #   P = dW = F dt dt cylinder 10−9 nanon 3 # = I1 ω p # = m # v + m # v + . . . 10 kilo L # + I ω # + . . . cm 1 1 2 2 1 2 2   10−6 micro- µ 6 10 meg = M#vcm = Itot ω # 10−3 millim 9   % 10 ! For a point-like particle of mass Rgiga fro 10−2 centic M a distance = #r × p# J# = F# dt = ∆# p 2 ! Parallel axis theorem: I = I + M d ( , p cm ( d)  accelera(on  at  x  =  -­‐.015m?   ! L Rα F# = m#a, F#B on A = Forces: Newton’s: #τext = Itot #1 = ddt F#ext = M#acm = d!pdt R 2 (   R Hooke’s: F#elas = −k(#r R ( SHM: − #requil ) #τint hollow =0 F#int = 0 cylinder thin-walled solid cylinder ω = 2πf = 2π/T # friction: |fs | ≤ µs |#n|, |f#khollo |=µ   ! ! 2 x(t) = A cos (ωt + φ◦ ) cylinder Krot = 21 Itot ω 2 Ktrans = 12 M vcm Tpend = 2π L/g = 2π I/mgd Centre-of-mass: v(t) = −ωA sin (ωt + φ◦ )   ! m1#r1 + m2#r2 + . . . + mn#rn — Both translational and rotational —= 2π m/k Tspring #rcm =a(t) = −ω 2 A cos (ωt + φ ) e)  the  total  energy  at  any  point?   ! m1a+distance m2 + . . R . +from mn◦ th ! For a point-like particle of mass M 2

1

2

1

2

1

2

1

2

2

1

2

1

2

2

2

2

1

1

2

2

cm

T.  S(egler

 

 

 

 

 

W = ∆K = Ktrans,f + Krot,f − Ktrans,i − Krot,i Ttorsion = 2π I/κ ! Parallel axis theorem: Ip = Icm + M d2 Etot,f = Etot,i + Wother ⇔ Kf + Uf = Ki + Ui + Wother 1 (and 1similarly1for #v and #a) ) kA 2 = mv 2 + kx 2 = const.tra Waves: Gravity: 2v 2 SHM: 2 2 w = 2π/λ )2 U = − F# · d#r ; Ugrav = M gycm ; Uelas = 21 k(r − rkequil string = FT /µ ω = 2πf = 2π/T M M M M 1µ 2 1 2 v = ±λf + !F * = M/L AU cos (ωt=+−G φ◦ ) grav = G x(t) grav # = − ∂U ˆi + ∂U ˆj!+ ∂U kˆ 2 =k Fx (x) = −dU (x)/dx F# = −∇U 2 2 R12 R ∂x ∂z = 2π I/mgd Tpend = ∂y 2π L/g 12 !  =(kx) ± =sin−ωA (A ! x ) !  y(x, t) = ASW v sinv(t) (ωt)sin (ωt + φ◦ ) P = m Tspring standing = 2π m/k a(t) = −ω 2 A cos (ωt + φ◦ ) !  vexas   2L        11/24/2014   T   =wave       T &M   λ = ⇔ f = n , n =A1, 2, 3,U.niversity   .. n 2π I/κ n torsion

Clicker  Ques)on   This  is  an  x-­‐t  graph  for  an  object   connected  to  a  spring  and  moving   in  simple  harmonic  mo(on.  

At  which  of  the  following  (mes  is  the  kine,c  energy  of  the  object  the   greatest?  

A.  t = T/8

1 2 1 2 1 2 K = mv = kA ! kx 2 2 2 K max when x = 0

B.  t = T/4

C. t = 3T/8

D. t = T/2

E. more than one of the above

1 K max = kA 2 2

1 2 1 2 1 2 kA = mv + kx = const. 2 2 2 T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University  

Example  Energy  in  SHM   I =

1

I = 1 M L2

M L2

1

I =

I = 1 M a2

M (a2 + b2 )

3 12 3 A  1.6  12 kg  mass  agached   to  a  spring  oscillates   with  an  amplitude   of  7.3  cm  and  a  frequency  of   2.6  Hz.    What  is  the  total  energy  of  the  system?    How  fast  is  the  mass  moving  when  it  is  3.0   cm  from  the  equilibrium  posi(on?     b

L

L

b

a slender rod, axis through centre

slender rod, axis through one end

I = 21 M (R12 + R22 )

R1

R2

rectangular plate, axis through centre

I = 12 M R2

thin rectangular plate, axis along edge I = 52 M R2

I = M R2

I = 23 M R2

R

R

R thin-walled hollow cylinder

R solid cylinder

hollow cylinder

a

solid sphere

thin-walled hollow sphere

! For a point-like particle of mass M a distance R from the axis of rotation: I = M R2 ! Parallel axis theorem: Ip = Icm + M d2 Damped/forced:

SHM: ω = 2πf = 2π/T ! ! Tpend = 2π L/g = 2π I/mgd ! Tspring = 2π m/k ! Ttorsion = 2π I/κ

1 2

2

kA = Waves:

1 2 1 2 mv + kx = const. 2k = 2π/λ 2 v2

T.  S(egler v = ±λf  

a(t) = −ω 2 A cos (ωt + φ◦ )

string

 

 

x(t) = A cos (ω " t)e−(b/2m)t ! ω " = k/m − b2 /4m2 " A = Fmax / (k − mωd2 )2 + b2 ωd2

x(t) = A cos (ωt + φ◦ ) v(t) = −ωA sin (ωt + φ◦ )

travelling : wave

= FT /µ

µ =  M/L

 

 

 

& ' () x t y(x, t) = A cos 2π ∓ λ T

 11/24/2014   = A cos   (kx ∓ ωt)

 

 

 

 Texas  A&M  University  

Clicker  Ques)on   A  mass  oscillates  up  &  down  on  a  spring.    Its  posi(on  as  a   func(on  of  (me  is  shown  below.    At  which  of  the  points  shown   does  the  mass  have  posi(ve  velocity  and  nega(ve  accelera(on?   dx > 0 (moving in +x-dir) dt d2x a(t) ! 2 < 0 (slowing down) dt

v(t) !

y(t) (A)   (C)  

t (B)  

T.  S(egler

 

 

 

 

 

 

 

 11/24/2014  

 

 

 

 

 Texas  A&M  University