The Use of Critical Process Parameters and Quality By Design to Improve Biopharmaceutical Product Quality

The Use of Critical Process Parameters and Quality By Design to Improve Biopharmaceutical Product Quality Howard L. Levine, Ph.D. BioProcess Technolo...
Author: Chrystal Gray
2 downloads 0 Views 1MB Size
The Use of Critical Process Parameters and Quality By Design to Improve Biopharmaceutical Product Quality

Howard L. Levine, Ph.D. BioProcess Technology Consultants, Inc.

Presented at BioProcess International Asia Pacific Mumbai, India October 21, 2008 and 2008 PDA Development and Regulation of Clinical Trial Supplies Conference Cambridge, MA November 11, 2008

What is Quality by Design? ¾ “Means that product and process performance characteristics are  scientifically designed to meet specific objectives, not merely  empirically derived from performance of test batches.” ¾ The product is designed to meet patient needs and performance  requirements ¾ The process is designed to consistently meet product critical  quality attributes ¾ The impact of starting raw materials and process parameters on  product quality is well understood ¾ The process is continually monitored, evaluated and updated to  allow for consistent quality throughout product life cycle ¾ Critical sources of variability are identified and controlled through  appropriate control strategies From Clone to Commercial®

Ref: H. Winkle, BPI Conference, Oct 1 – 4, 2007

Defining Critical Quality Attributes (CQAs) ¾ “…those molecular and biological characteristics found to be useful  in ensuring the safety and efficacy of the product…” (Q6B) ¾ Can these attributes be properly defined for biologics? • Often difficult due to complexity of biologic products • Default is to look at many attributes ¾ QbD focuses only on critical product attributes and the impact of  those attributes across their ranges on safety and efficacy • Product specifications based on mechanistic understanding of  how formulation and process factors impact product  performance ¾ Need to develop a design space to be documented in application  which is based on CQAs

From Clone to Commercial®

What are Critical Process Parameters (CPPs) ¾ CPPs are independent process parameters most likely to affect the  quality attributes of a product or intermediate ¾ CPPS are determined by sound scientific judgment and based on  research, scale‐up or manufacturing experience ¾ CPPS are controlled and monitored to confirm that the impurity  profile is comparable to or better than historical data from  development and manufacturing ¾ Quality attributes derived from CPPs include: • Chemical purity • Qualitative and quantitative impurities • Physical characteristics • Microbial quality

From Clone to Commercial®

QbD for Small Molecules vs. Biologics Small Molecule Drugs

Biologic Products

Variability derived from  formulated Drug Product

Variability derived from Drug  Substance

Quality Attributes determined  early in product development

Quality Attributes difficult to  determine; defined late in  product development

Readily Characterized

Characterization Complex 

Process control readily defined  and achieved

Process control more difficult to  define and implement

From Clone to Commercial®

The Application of QbD to Biologic Products ¾ Quality by Design is an important element in achieving desired  state, however, we’re not there yet • Determining relationship between ƒ Quality specifications and safety or efficacy results ƒ Clinical Activity and Critical Quality Attributes  ƒ Product Attributes and Critical Process Parameters ƒ Process Validation and the Design Space • Insufficient Data on “Key” versus “Critical” • Strong Conservatism on both sides • “Traditional” development and validation approaches can be  applied to QbD, especially in identifying CPP and defining the  Design Space

From Clone to Commercial®

Knowledge Space

From Clone to Commercial®

Ref: B. Davis, FIP Conference 2007

Defining CQAs Throughout a Product Life Cycle Critical aspects throughout product life cycle define what is needed: ¾ To release product ¾ To control the process ¾ For post‐approval changes Preclinical

Estimates Based on Experience

From Clone to Commercial®

Phase 1

Refined Based on Preclinical and Safety Data

Phase 2

Phase 3

Refined Based on Clinical and Process Data

Post Approval

Continually Reviewed and Refined Based on Increased Clinical

Linking Design Space and Control Strategies Design space is based on our  Knowledge Space ¾ Control Strategy: Maintaining the  process within the Design Space ¾ Design Space is not intended to define  critical attributes, rather these will  follow from the “process flow” ¾

¾

The control strategy for a CQA is the selection and combination of  different types of controls applied to the manufacturing process and  associated systems to assure the right product quality at an acceptably  low level of risk of manufacturing failure

From Clone to Commercial®

Defining Control Strategies

From Clone to Commercial®

Range of Raw Material And Facility Attributes

CPP Drive CQA to Create the Design Space

Process Designed to Limit Product Variability

Define API in terms of CQAs ¾ Identify CPP that affect the CQAs ¾ Determine range of each CPP that produces  acceptable product to establish the Design Space ¾

From Clone to Commercial®

Comparing CQAs and CPPs Process validation should provide “documented evidence that the  process, operated within established parameters, can perform effectively  and reproducibly to produce an intermediate or API meeting its  predetermined specifications and quality attributes…” (ICH Q7A)

Critical Quality Attributes derive from …… Critical Process Parameters From Clone to Commercial®

Graphic adapted from Kozlowski and Swan (2006)

Flow Rate

Glycoform

Design Space: Identification of CPPs

eld Yi

Impurity 1

pH

Column Loading Capacity

¾ Using data from development identify parameters that affect the  defined product characteristics, for example • Level of key impurity • Desired glycoform content • Desired yield From Clone to Commercial®

Flow Rate

Flow Rate

Design Space: Process Optimization

pH

pH

Column Loading Capacity

Column Loading Capacity

¾ Use Factorial Analysis without interactions to map boundary  conditions ¾ Use Full Factorial to fully define response surfaces and examine interactions From Clone to Commercial®

Design Space: Putting it All Together

Agitation Rate

Glycoform

¾ Summarize results of multiple  experiments to define response  surface

eld Yi

[Fe] in Media

lO na Fi

D

¾ Validate the process within the  Design Space to demonstrate  consistent production of  product with desired  characteristics

Impurity 1

Design Space

From Clone to Commercial®

Application of QbD to Cell Culture ¾ Optimizing clone selection to achieve maximal product titer within  a Design Space ¾ Potential Critical Process Parameters in cell culture production… • Temperature • pH • Agitation • Dissolved oxygen • Medium constituents • Feed type and rate

From Clone to Commercial®

Optimization of Cell Culture ¾ Many potential process parameters can impact the Critical Quality  Attributes of the cell culture process, including: • Cell viability and number • Product titer • Product Characteristics (e.g. glycosylation) • Impurity profile ¾ Identify those which are critical through process development  evaluating impact of each parameter on the CQA ¾ Create Design Space by optimization of these parameters through  a two factorial design of experiment

From Clone to Commercial®

Optimization of Cell Culture Conditions Two factorial design  monitoring product titer  (yield) as a function of pH  and temperature ¾ 50 conditions (10 T x 5 pH) ¾ n=9 (450 total chambers)

Optimization performed using SimCellTM technology from BioProcessors Corp.

From Clone to Commercial®

Mapping Downstream Process Design Space ¾ Critical Process Parameters in column chromatography… • Column bed height and packing efficiency • Media selectivity • Dynamic capacity for product and total protein • Buffer conditions  (pH, conductivity) • Temperature • Flow rate ranges • Sample load ranges • Media particle size and size range ¾ All impact product purity and yield

From Clone to Commercial®

Defining Ion Exchange Column Conditions ¾ Purification of a natural protein by anion exchange chromatography ¾ Anion exchange column equilibrated with 10 mM TRIS‐Phosphate buffer ¾ Variation of load solution pH will impact product yield and purity

From Clone to Commercial®

Anion Exchange Column Yield and Purity ¾

Best yield at pH 7.0,  however, additional  contaminant present in  pool not seen at higher  pH’s

Product Contaminant

From Clone to Commercial®

¾

Can subsequent process  steps remove this  contaminant?

Final Product Purity Subsequent purification of Anion Exchange Column pool removes  process contaminant regardless of pH at which Anion Exchange  column is run

A – Anion exchange column pool, pH 7.0 B – Anion exchange column pool, pH 8.6 C – Column 2 pool following loading with “A” D – Column 2 pool following loading with “B”

From Clone to Commercial®

Summary and Conclusions ¾ Application of QbD to biopharmaceutical products is often difficult  reflecting the complexity of these products ¾ Process development of biologics has always included some  aspects of QbD, including science‐based decisions and the use of  scale down process models  ¾ Once optimized, CPP ranges can be used to define the design  space for biologic manufacturing processes

From Clone to Commercial®

Summary and Conclusions ¾ Combining DOE with science‐based decisions can decrease the  time required to optimize production, speed the development of  robust processes, and reduce risk in biologics product  development ¾ Using QbD can facilitate the technology transfer by describing the  design space for complex products and allowing process variability

From Clone to Commercial®

Acknowledgements ¾ BioProcess Technology Consultants • Sheila Magil, Ph.D. • Susan Dana Jones, Ph.D. • Alex Kanarek, Ph.D. ¾ BioProcessors, Inc. • Cell culture optimization ¾ Neurobiological Technologies, Inc. • Chromatography optimization

From Clone to Commercial®

THANK YOU! For more information, contact Howard L. Levine, Ph.D. BioProcess Technology Consultants, Inc. 289 Great Road, Suite 303 Acton, MA 01720 978‐266‐9153 978‐266‐9152 (fax) [email protected] www.bioprocessconsultants.com

From Clone to Commercial®

Suggest Documents