The silicon photomultiplier and its possible applications

The silicon photomultiplier and its possible applications P.Buzhan, B.Dolgoshein*, A.Ilyin, V.Kantserov, V.Kaplin, A.Karakash, F.Kayoumov, E.Popova, S...
8 downloads 0 Views 270KB Size
The silicon photomultiplier and its possible applications P.Buzhan, B.Dolgoshein*, A.Ilyin, V.Kantserov, V.Kaplin, A.Karakash, F.Kayoumov, E.Popova, S.Smirnov (MEPhI, Moscow) L.Filatov, S.Klemin (“Pulsar” Enterprise, Moscow) *) Email: [email protected] Supported by ISTC project No.1275-99 and INTAS grant No. YSF00-150

Silicon photomultiplier (SiPM)

42µm 20µm

pixels hν

Resistor Rn=400 kΩ

2 mV

Al Depletion Region 2 µm

R 50Ω

2 ns

substrate

Ubias ∼50V

For further details see: «Advanced study of SiPM» http://www.slac.stanford.edu/pubs/icfa/fall01.html B.Dolgoshein

SiPM main features: • Sensitive size 1x1mm2 on chip 1.5x1.5 mm2 • Gain 2⋅106 • Ubias~50V • Recovery time ~ 100 ns/pixel • Number of pixels: 576 • Nuclear counter effect: negligible (due to Geiger mode • Insensitive to magnetic field • Dynamic range ~103/mm2

"SiPM possible applications"

2

Single photoelectron (single pixel) spectra SiPM

VLPC

HPD

NIM A 477 (2002) 172-178

10000

0 pe 1 pe

1 pe

0 pe

160

1 pe

800 Pedestal

8000

2 pe

2 pe

120

600

2 pe

6000

Counts

NIM A 442 (2000) 164170

3 pe

4000

3 pe

80

400 3 pe

4 pe

2000

40

200 4 pe

0

0

100

200

300

400

0

0

200

400

600

800

Channel

Channel

0

200

300

400

500

600

Channel

SiPM: • excellent single photoelectron resolution • low ENF expected B.Dolgoshein

"SiPM possible applications"

3

More about pixel signal resolution: tens of photoelectrons 2000 1800

=46

1600 1400

Counts

1200 1000 800 600 400 200 0 200

400

600

800

1000

Channel

• SiPM consists of a large number of pixel photoelectron counters with binary readout for each pixel, working as analogue device • signal uniformity from pixel to pixel is quite good B.Dolgoshein

"SiPM possible applications"

4

20

40

30

10

20

5

10

One pixel gain M, 10

5

15

Detection efficiency ε, %

one pixel gain (exp. data) one pixel gain (linear fit) detection efficiency (λ=565nm)

operating voltage

0

0 0

1

Ubreakdown=48V

2

3

4

Overvoltage ∆U=U-Ubreakdown, V

Photon detection efficiency B.Dolgoshein

5

6

ε = QE⋅εgeom

"SiPM possible applications"

5

Photon detection efficiency Spectral dependence of quantum efficiency for different photodetectors (room temperature) 80 APD EG&G C30626E (NIM A428 (1999) 413-431)

QE, %

60

40

PMT XP2020Q number 40979 (according to Philips Photonics)

QE•εgeom

20

SiPM 0 200

300

400

500

600

700

800

Wavelengthλ, nm

SiPM:

ε = QE⋅εgeom, εgeom~0.3 (possible improvement up to ~ 0.5) B.Dolgoshein

"SiPM possible applications"

6

SiPM noise 0

+20 C

6

2,5x10

Noise frequency fnoise, Hz

6

2,0x10

6

1,5x10

0

0 C 6

1,0x10

0

-20 C 5

5,0x10

0

-60 C

0,0 0,0032

0,0034

0,0036

0,0038

0,0040

0,0042

0,0044

0,0046

0,0048

-1

Temperature 1/T, K

• Electronics noise - negligible (less than 0.1e - because the SiPM gain ~106) • dark rate noise Even for room temperature the contribution of the dark rate is rather low (less than 1 ph.e. for a gate of 50 ns) B.Dolgoshein

"SiPM possible applications"

7

SiPM gain: temperature and voltage dependence Photodetector

∆T for ∆M/M=1%

∆V/V0 for ∆M/M=1%

PMT

~10o

0.5V/1500V= =3⋅10-4

APD EG&G C30626E*

0.15o

0.4V/400V= =10-3

0.3o

0.04V/300V= =1.5⋅10-4

2.5o

0.05V/50V= =10-3

APD Hamamatsu S5345 (high capacitance)* SiPM M=2⋅106

*) for APDs M=100 /Karar et al NIM A428(1999) 413/ B.Dolgoshein

"SiPM possible applications"

8

SiPM dynamic range Dynamic range is limited due to finite total number of pixels m

Signal ~ m(1-exp(-Nph.e/m))



⇒ “Dispersion limit” of dynamic range: Nph.e/m < 1 B.Dolgoshein

"SiPM possible applications"

9

SiPM application for sci fiber MIP detection Kuraray SCSF-3HF(1500)M

100

NIM A 459 (2001) 440-447

APD

∅ 1mm =6 T=+20°C ε=15%

60 Events

∅0.75mm =22 T=+28°C QE=75%

Events

SiPM

80

0

80

120

NIM B 44 (1995) 332-339

40

VLPC 0.03

Events

20

0 100

40

200

300

400

500

600

0.02

∅0.835mm =10 T=6.5K ε=60%

0.01

C h a n n e ls

Channels

• SiPM is better than APD for room temperature • SiPM at room temperature is good enough even compared to VLPC at 6.5oK B.Dolgoshein

"SiPM possible applications"

10

SiPM application for scintillator + wavelength shifter (WLS) readout SiPM

300

Sr90 β-test PMT (FEU-143)

1 GeV pion beam signal noise

250

100

QE=10% 4.7 ph.e

80

7 ph.e

Events

Counts

200 150 100

60 40

50

20

0

0 0

50

100

150

200

0

Channels

100

200

300

400

500

600

C hannels

SiPM: ε=15%, M=2⋅106, Npixel=576, Ubias=53V Tile: Bicron BC-404, 50x50x5 mm3 WLS: Kuraray Y11 ∅1mm x 34 cm B.Dolgoshein

"SiPM possible applications"

11

More about Sci+WLS readout: TESLA Hadron Tile calorimeter beam test of 3tile+WLS cell 225 200

from 3 tiles: signal (19 ph.e.) noise

175 150 Counts

1 GeV π detection with 3 tiles of Bicron BC-404 and 1 mm diameter 34 cm long WLS Kuraray Y11 (with aluminized mylar mirror) coupled to 3 SiPMs

125 100 75 50 25 0 0

50

100

150

200

250

90% efficiency Channels -6 3.5•10 noise detection efficiency

B.Dolgoshein

"SiPM possible applications"

12

Timing by SiPM: possible application for Cherenkov Imaging Counters SiPM

PMT R-5320

1200 1000

Single Photoelectron

Counts

800 600

123 ps fwhm

400 200 0 500

1000

1500

2000

Time (ps)

SiPM: • position sensitive (~1 mm2) • a single photon detection capability with background hits density : 2⋅10-3 1/ns⋅mm2 (room temperature) 3⋅10-4 1/ns⋅mm2 (-50oC)

• insensitive to magnetic field • good time resolution (~50 ns rms)

FWHM: Laser (40 ps) + electronics (60 ps) => SiPM (100 ps) B.Dolgoshein

"SiPM possible applications"

13

Conclusion The R&D developments of SiPM show that after tuning of some parameters (photon detection efficiency, gain, timing, dynamic range etc.) one can consider the SiPM as a suitable photodetector for a number of applications

B.Dolgoshein

"SiPM possible applications"

14