The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

59: 31 – 43 12 Sept 2013 © Senckenberg Gesellschaft für Naturforschung, 2013. The sediments of the Bautzen Elbe River: distribution, composition and ...
Author: Walther Brandt
6 downloads 2 Views 5MB Size
59: 31 – 43 12 Sept 2013 © Senckenberg Gesellschaft für Naturforschung, 2013.

The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course Die Sedimente der Bautzener Elbe: Verbreitung, Zusammensetzung und Rekonstruktion des Flusslaufes Katja Eckelmann 1, 2 and Jan-Michael Lange 1 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Petrographie, Königsbrücker Landstraße 159, 01109 Dresden, Germany; [email protected] — 2 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany 1

Revision accepted 19 June 2013. Published online at www.senckenberg.de/geologica-saxonica on 10 September 2013.

Abstract Between Dresden and the Neiße River different gravel deposits with pebbles of predominantly Bohemian and eastern Erzgebirge provenance are observed. Genieser (1955) firstly combined these deposits in the so-called Bautzen Elbe River stratigraphically belonging to the Tegelen Complex of Early Pleistocene age. Due to the distribution of these sediments, three arms (Rietschen, Weißwasser and Kamenz arms) of the Bautzen Elbe River have been differentiated (Wolf & Schubert 1992). Since the investigations done by Fliegner (1955) and Buchwald (1966), no detailed analyses were made of these fluvial sediments. Modified outcrop conditions and new sediment-petrographic interpretations give reason for further analyses of the deposits. Based on various studies by Genieser (1955, 1957, 1962) and the different relating map sheets from Koch & Alexowsky (1999a, b) and Standke (1994, 1999), 15 deposits were explored and documented. In eight outcrops sampling was successful. In total, 27 samples have been analysed for composition, granulometry and morphometry (Reichelt 1961, Zingg 1935). The deposits of the Cunnersdorf outcrop were identified as probably not representing sediments of the Bautzen Elbe River.

Kurzfassung Verschiedene Schottervorkommen mit Geröllen vorwiegend böhmischer und osterzgebirgischer Herkunft zwischen Dresden und dem Grenzfluss Neiße wurden erstmals von Genieser (1955) als Ablagerungen der sogenannten Bautzener Elbe zusammengefasst. Stratigraphisch wird die Bautzener Elbe dem frühpleistozänen Tegelen-Komplex zugeordnet. Aufgrund der Verbreitung der Sedimente werden drei Verläufe der Bautzener Elbe unterschieden: ein Rietschener, ein Weißwasserer und ein Kamenzer Arm (Wolf & Schubert 1992). Seit den Bearbeitungen von Fliegner (1955) und Buchwald (1966) wurden keine detaillierten Untersuchungen mehr an diesen fluvialen Sedimenten vorgenommen. Veränderte Aufschlussbedingungen und neue sedimentpetrographische Interpretationen geben Anlass für eine erneute Analyse dieser Ablagerungen. Auf der Basis verschiedener Studien von Genieser (1955, 1957, 1962) und mehrerer Kartenblätter von Koch & Alexowsky (1999a, b) sowie Standke (1994, 1999) wurden 15 Aufschlüsse aufgesucht und dokumentiert. In acht Aufschlüssen war eine Beprobung erfolgreich. Insgesamt wurden 27 Proben bezüglich Zusammensetzung, Granulometrie und Morphometrie analysiert (Reichelt 1961, Zingg 1935). Die bei Cunnersdorf aufgeschlossenen Schottervorkommen sind voraussichtlich nicht der Bautzener Elbe zuzuordnen.

ISBN 978-3-910006-37-9 | ISSN 1617-8467

31

K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

Fig. 1. Typical outcrop situation of the Bautzen Elbe River deposits exemplified at Roter Berg near Strohschütz. The quartz-rich fluvial sediments cause a relief inversion due to their weathering resistance.

1. Introduction and geological setting At the beginning of the Pleistocene (Quaternary) strong climate changes with decreasing temperatures effected several ice ages of different intensities and extensions and influenced the distribution of the different fluvial deposits in Saxony, also concerning the Bautzen Elbe River. The largest expansion of the ice mass was reached during the Elster glacial period and it is marked by the so-called Feuersteinlinie (Grahmann 1934, Wagenbreth & Steiner 1990). South of this line deposits contain no Nordic components. At the pass of Jítrava the ice crossed the watershed of Bohemia and Nordic sands and gravels were transported into the Bohemian Basin (Eißmann 1997). In the following, these materials were partly fed into the Elbe River by smaller streams and returned to Saxon territory this way (Pietzsch 1956). During the cold periods the ice cover reduced or stopped the water flow of many rivers, so banded clay layers could develop in glacial lakes and later were covered by the basal moraine. Thereafter, rising temperatures led to a warmer and maybe more humid climate causing a stronger weathering and thus a loamification and a reddish colouration of the sediments (Pietzsch 1962). Reviving rivers effected stronger erosion, formed the relief and changed the flow regime (Präger 1976). At some places, due to their weathering resitance the overlaying quartz-rich sediments saved the underlying kaolinitic layers and form single hills in the present landscape (Buchwald 1966; Fig. 1). The study area has not been reached by the ice during the follow32

ing Weichsel glacial period. Nevertheless, it was periglacially influenced and covered with loess, sand loess and quicksand (Pietzsch 1962). Before 10,000 years, during the Pleistocene – Holocene boundary interval, the northern regions of Germany became iceless and therefore the influence of the ice on climate, vegetation and sedimentation decreased. First findings of terraces of the Elbe River are reported from Engelmann (1911) and Grahmann (1934) showing very different classifications. Genieser (1955) continued Grahmann’s work but followed the former course of Elbe River further to the north. He tried to correlate the terraces of northern Bohemia with the gravel deposits of the Elbe River and gave them their names still used today, like the Bautzen Elbe River. Heavy mineral analyses and searching for climate notes followed and additionally, he tried to interpret and determine the ages of palaeocourses of the Elbe River (Genieser & Diener 1958). Later terrace classifications were made by Präger (1976, 1984) and Wolf (1980). According to Genieser (1955, 1957, 1962) gravel deposits of the Bautzen Elbe River have been preserved in Kleingießhübel, Struppen, Coblenz, Kamenz, Bautzen, Rietschen, Gozdnica (Freiwaldau, Poland), Weißwasser, Großwig, Roitzsch and Neiden. Additionally, there are also some outcrops with redepostited gravel material of the Bautzen Elbe River. The distribution of these gravels makes it necessary to distinguish between three arms of the Bautzen Elbe River: a Rietschen, a Weißwasser and a Kamenz arm (Wolf & Schubert 1992; Fig. 2). Eißmann (1997: 21) described the composition of the Bautzen Elbe River deposits as a “varying, typical Quater­ nary pebble association” with quartz-lydite content of

GEOLOGICA SAXONICA — 59: 2013



Abb. 1. Typische Aufschlusssituation der Bautzener Elbeschotter am Beispiel Roter Berg bei Strohschütz. Die quarzreichen fluvialen Sedimente bedingen durch ihre Verwitterungsresistenz eine Reliefumkehr.

usually less than 75%. Heavy minerals such as sillimanite, staurolite, andalusite and augite dominate and allow inferences for the determination of corresponding drainage areas of the Elbe River. On the one hand, a high percentage of feldspar components in crystalline rocks is transformed into kaolinite. On the other hand, fresh components exist, thus showing that the sources for the material must have been very different. Within the river deposits all typical, classifying index components from Bohemia and the eastern Erzgebirge are included, especially quartz-lydite conglomerate, tephrite, microgranite or granite porphyry and Tharandter Wald rhyolite pebbles (Genieser & Diener 1958). Furthermore, remarkable are cryoturbations and ice-wedge pseudomorphosis as observed at several localities (Schubert 1980). Palaeomagnetic measurements done by Wiegank (1982) on clay layers at Kleingießhübel indicate a normal magnetisation (probably Olduvai Event). Therefore, the deposits of the Bautzen Elbe River fit into the Tegelen Complex of Early Pleistocene age.

2. Samples

2.1. Cunnersdorf

(33U, 435438 N, 5684676 E; 185 m)

The outcrop at Roter Berg, situated between Biehla and Cunnersdorf, 5 km northwest of Kamenz, is an open kao-

lin pit with an up to 14 m thick gravel package on top. The pit is operated by the Stephan Schmidt Meißen GmbH. The underlying yellowish-beige to brown-black kaolin emerged from the greywackes of the Radeburg-Kamenzer Grauwackenzug and was formed in situ during the Late Cretaceous and Early Tertiary. It is capped by some sediments of Late Tertiary to Early Pleistocene age probably belonging to the Senftenberg Elbe River. These ca. 3 m thick fluvial deposits mainly consist of coarse-grained gravels and gravelly sands, partially bigger boulders are observed. As the upper 2 m thick part of this unit obviously differs in composition from the lower portion, three samples were taken from distinct levels to separate a possible Bautzen Elbe River from the older Senftenberg Elbe River (CUN 2 – 4). At the western and northern edge of the pit an erosional edge is formed causing a local sediment thickness of up to 14 m. During the Elster glacial period, the kaolinitic units and the river deposits were partly eroded and redeposited (Schellenberg & Kleeberg 1997).

2.2. Wiesa

(33U, 439320 E, 5679162 N; 200 m)

This open kaolin pit is located ca. 1 km south of Kamenz (no. 1 in Fig. 2; Pl. I, Fig. A). It also belongs to the Stephan Schmidt Meißen GmbH. The granodio­ rite at the base of this pit is part of the Lausitz Granitoid Suite (Linnemann & Romer 2002). During the Late Tertiary, the upper portions of this complex weathered to a varicoloured kaolinitic succession of a total thick33

K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

Table 1. List of unsampled localities. Tabelle 1. Liste der unbeprobten Aufschlüsse. UTM-coordinates (WGS 84)

Locality

Altitude

Map

Current situation

Guhra (no. 5 in Fig. 2)

33U, 450410 E, 5676874 N

203 m

Koch & Alexowsky (1999) map sheet 2569 Kamenz

Refilled with construction waste, entry to the pit is not allowed, the whole area is overgrown

Storcha (no. 6 in Fig. 2)

33U, 451143 E, 5674730 N

200 m

Koch & Alexowsky (1999) map sheet 2569 Kamenz

Placed in the middle of the village on a little hill, which is built-up

Großwelka (no. 8 in Fig. 2)

33U, 456614 E, 5673734 N

207 m

Koch & Alexowsky (1999) map sheet 2569 Kamenz

Ca. 500 m northwest of the village, used for agriculture

Cölln (no. 9 in Fig. 2)

33U, 457319 E, 5675029 N

200 m

Koch & Alexowsky (1999) map sheet 2569 Kamenz

Overbuilt

Teichnitz (no. 10 in Fig. 2)

33U, 458590 E, 5672334 N

210 m

Koch & Alexowsky (1999) map sheet 2569 Kamenz

Situated on a little hill below the abandoned factory buildings of the former VEB Plattenwerk Bautzen

Weißwasser (no. 12 in Fig. 2)

33U, 473685 E, 5704184 N

140 – 145 m

Koch & Alexowsky (1999) map sheet 2470 Weißwasser

Apparently refilled and completely covered by wood; perhaps sediments of the Bautzen Elbe River are still available in the neighbouring opencast lignite mine Nochten adjoining directly to the forest in the south

Niesky (no. 13 in Fig. 2)

33U, 488380 E, 5684387 N

185 m

Standke (1994, 1999)

The whole area is covered by wood, sampling was not possible

Delitzsch Delitzsch

10 km 10 km 10 km

Weißwasser arm

Delitzsch

rm

za

en

m

Ka

Riesa Riesa

Leipzig Leipzig

Weißwasser Weißwasser Hoyerswerda Weißwasser Hoyerswerda arm Rietschen Hoyerswerda

Riesa Meißen Döbeln Meißen Dresden Döbeln Dresden Meißen Dresden Pirna Döbeln Pirna Freiberg Freiberg Pirna Chemnitz Chemnitz Glauchau Glauchau Freiberg Zwickau Zwickau Chemnitz Glauchau

Leipzig

Bautzen Bautzen Bautzen

Görlitz Görlitz Görlitz Zittau Zittau Zittau

Weiß w Weiß asser arm wass er ar m Sp

ree

12 12 12

Weißwasser Weißwasser Weißwasser

Neiße Neiße

Neiß

e

14 14 14

Sp re Sp e re e

Zwickau Plauen Plauen

Bautzen Elbe River Bautzen Elbe River Contemporaneous rivers Bautzen Elbe River rivers Contemporaneous Contemporaneous rivers

Sch S ch w Sacrhw z warazrez E ls E t ls t

rm rm za a en nz m e Ka Kam

eerr lst eE er

e

SMZ SMZ 45% 45% SMZ 51% 45% 51% 51%

13 13 13

STZ STZ 42% 42% STZ 49% 42% 49% 49% 1% 55 6% 1% 6% 2% 5 7 2% 1% 6% 7 99 2% 9 6 7

Niesky Niesky Niesky

2% 22 Kamenz Kamenz 112% 2 2% 0% 33 Kamenz 1 2% 2% 0% 3 WSA 2% 0% WSA 42% 11 42% WSA 11 CRO 50% 42% CRO 6 11 KRF 50% 44% 8 44% CRO 8 48% 4 6 50% KRF 43% 48% 44% 4 8 10 43% KRF 50% 43% 48% 4 10 50% 5% COB Bautzen 5% 10 50% COB 1% Bautzen 44% 2%1% 5%2% 1% 50% 44% 5% 1% COB Bautzen 1% 50% 5% 2% 1% 2% 1% 1% 50% 44% 5% 1% 5% 2% 5% 1%1% 2% 5% 1% 1% 3% 1% 3% 2% 1% 3% 2% 2%

Legend Legend Legend Supposed Bautzen Elbe River (after Wolf & Schubert 1994) Supposed Bautzen Elbe River (after Wolf & Schubert 1994) Supposed Bautzen Elbe River (after Wolf & Elbe Schubert Recentgravel gravel occurences theBautzen Bautzen River1994) Recent occurence ofofthe Elbe River Recent gravel occurences of the Bautzen Elbe River Supposed fluviatile fan of the Bautzen Elbe River

GOZ GOZ 47% GOZ 51% 47% 51% 47% 51% 0% 2% 0% 2%0% 0% 2%0% 0%

Rietschen arm Rietschen arm

Görlitz Görlitz Görlitz

Local flow direction Outcrop 11 Outcrop 1 Outcrop

Explanation Explanation ofofof Explanation the charts the piepie charts the pie charts

Plauen

Quartzes Quartzes Sandstones Quartzes Sandstones Lydites Sandstones Lydites Feldspathiccomponents components Lydites Feldspathic Others Feldspathic components Others Others

Fig. 2. General map showing the three arms of the Bautzen Elbe River in the area of the eastern Lausitz (modified after Wolf & Alexowsky 2008). The sample locations are indicated by dots and numbers: 1 – Wiesa (WSA), 2 – Schmeckwitz (SMZ), 3 – Crostwitz (CRO), 4 – Coblenz (COB), 5 – Guhra (unsampled), 6 – Storcha (unsampled), 7 – Strohschütz (STZ), 8 – Großwelka (unsampled), 9 – Cölln (unsampled), 10 – Teichnitz (unsampled), 11 – Kronförstchen (KRF), 12 – Weißwasser (unsampled), 13 – Niesky (unsampled), 14 – Gozdnica (GOZ, Freiwaldau, Poland). Abb. 2. Übersichtskarte des Gebietes der östlichen Lausitz mit den drei Armen der Bautzener Elbe (verändert nach Wolf & Alexowsky 2008). Die Probenlokalitäten sind durch Punkte und Nummern markiert: 1 – Wiesa (WSA), 2 – Schmeckwitz (SMZ), 3 – Crostwitz (CRO), 4 – Coblenz (COB), 5 – Guhra (unbeprobt), 6 – Storcha (unbeprobt), 7 – Strohschütz (STZ), 8 – Großwelka (unbeprobt), 9 – Cölln (unbeprobt), 10 – Teichnitz (unbeprobt), 11 – Kronförstchen (KRF), 12 – Weißwasser (unbeprobt), 13 – Niesky (unbeprobt), 14 – Gozdnica (GOZ, Freiwaldau, Polen).

34

GEOLOGICA SAXONICA — 59: 2013



ness of 20 – 60 m. Thus, the kaolin is regarded as an autochthonous unit. The transition between the grano­ diorite and the kaolin is gradual. Although this transitional zone mostly is ca. 3 m thick, its thickness can increase enormously. Up-section, following a sharp transition, the kaolin is covered by a package of Tertiary sediments. These are represented by light to dark grey clays with some intercalations of Lower Tertiary coal layers. This unit strikes from north-northwest to south-southeast. According to Rascher & Plüschke (1999) the 4.5 m thick topmost portion of the succession is formed by Quaternary clays, sands and gravels. Within these sediments some single drift blocks as well as cryoturbatic formations document the influence of alternating icing and melting processes (Pl. I, Fig. B). Five samples from the Quaternary sandy and gravely intervals were taken at the south eastern edge of the pit (WSA 1 – 5; dipping: 15° – 35°).

gravel deposits is characterised by a mixture of fine- to medium-grained and partially coarse-grained gravelly sands containing scattered basaltic and phonolitic pebbles of diameters of up to 50 cm (CRO 1 – 3; Pl. I, Fig. D). These bigger components are mostly weathered intensely and thus, they crumble during the washing and sieving processes. Up-section, an interval of cryoturbatic, finegrained sandy to silty layers occurs. This is separated by an unconformity from the overlying 5 m thick package of melt water sediments. Moreover, Schubert (1978) mentioned involutions, syn- and epigenetic ice wedges. As reported, a ground moraine and a hillside loam have been exposed during a previous outcrop situation.

2.3. Schmeckwitz

Ca. 300 m west of Coblenz (no. 4 in Fig. 2), on the road to Pannewitz, remains of a small forest occur on the left hand side. Gravel deposits of the Bautzen Elbe River are supposed at this locality. The investigated sedimentary unit is ca. 0.5 – 1 m thick. Two samples were taken from this locality. The first sample comes from within the small forest, the second one is from ca. 50 m further to the street (COB 1 and 2).



(33U, 444485 E, 5679090 N; 185 – 190 m)

Neumann & Schmidt (1990) mentioned melt water deposits from the Elster glacial period and scattered gravel deposits of a former Elbe River with an Early Pleistocene age for the area northeast of Schmeckwitz (no. 2 in Fig. 2). The location is situated between Wendischbaselitz and Räckelwitz in the outer rim of the Lugewald. The glacial and fluvial sediments are underlain by Tertiary units also including thin bedded, but workable coal layers. These certainly gave the main reason for the mining of the gravel deposits some decades ago. The entire succession of the Lower Pleistocene sediments has a thickness of ca. 6 – 7 m. Currently, slope failure is proceeding. Nevertheless, it was possible to take a sample in the periphery from ca. 0.5 m below ground level (SMZ).

2.4. Crostwitz

(33U, 448131 E, 5677375 N; 205 m)

In this open kaolin pit, situated between Kamenz and Bautzen, sedimentary deposits of the Bautzen Elbe River show a thickness of ca. 4 m (Pl. I, Fig. C). The pit is located ca. 500 m northeast of Crostwitz in the area of the Galgen­berg (no. 3 in Fig. 2). The operating company is the Umwelt- und Baustoffaufbereitung Neschwitz GmbH. Up-section, the kaolin is covered by some sedimentary units, which contain no flints and were deposited before the Elster glacial period. Genieser (1955) classified them as deposits of the Bautzen Elbe River. Later they were described by Schubert (1978: 6) as “genetically and stratigraphically differentiated fluvial and glacio­fluvial gravelly sands, which are separated by a distinct erosional unconformity”. The composition of the

2.5. Coblenz

(33U, 449329 E, 5671927 N; 230 m)

2.6. Strohschütz

(33U, 454059 E, 5675176 N; 199 – 203 m)

Gravel deposits of the Bautzen Elbe River are reported from the Roter Berg close to the village of Strohschütz (Fig. 1; no. 7 in Fig. 2). Bastian et al. (2005) described a widespread sand mining from that locality in 1933. The resulting former outcrop exposing a 5 m thick sediment succession of Bautzen Elbe River deposits is still clearly identifiable, although the area is overgrown since many decades. The sampling conditions were good because the pit was not refilled and the rib sides were freely accessible. At the northwestern edge of the pit, sampling was successful (STZ 1 and 2; dipping: 10° – 17°).

2.7. Kronförstchen

(33U, 459606 E, 5674066 N; 203 m)

The Helaswald is located close to the village of Kron­ förstchen, on the road from Quatitz to Lubachau (no. 11 in Fig. 2). In the middle of this small forest ca. 1 m thick gravel deposits from the Bautzen Elbe River are assumed, due to the information from Koch & Alexowsky (1999a). Primarily, sampling (KRF) was successful for investiga35

K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

tions using compositional and sedimentary approaches. However, further selective excavations demonstrated that this occurrence probably represents just a small rest of a gravel deposit showing an incomplete succession. Additionally, the area in general is strongly overgrown or used for agriculture.

2.8. Gozdnica

(33U, 504672 E, 5699084 N; 171 m)

Another outcrop sediments were analysed from is located ca. 1 km west of Gozdnica (Freiwaldau, Poland) and ca. 25 km northeast of Niesky (Germany; no. 14 in Fig. 2; Pl. I, Fig. E). It is an open kaolin pit and since 2000 operated by CRH Klinkier Gozdnica. There, a dark grey kaolinitic unit at the base is up-section followed by an interval of fine- and medium-grained sandy alternations and a clay layer with some coal-bearing horizons. This succession is capped by a 6 m thick package of gravels on top, which Genieser (1955) defined as deposits of the Bautzen Elbe River (Pl. I, Fig. F). Samples for further analyses (GOZ 1: 2 m below ground level, GOZ 2: 4 m below ground level, GOZ 3: 6 m below ground level) were taken at the northwestern slope of the new pit. All unsampled localities are listed in Tab. 1.

3. Methods

Altogether, 15 outcrops were visited but only in eight of them sampling was successful. 20 samples were investigated by granulometric, morphometric and pebble analytical methods at the Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geo­­ logie, Sektion Petrographie. In addition, pebbles with sizes > 20 mm were collected and integrated as reference material into the collection of the Sektion Petro­ graphie. In some outcrops it was possible to measure the stratification (see discussion below). After washing and drying, pebbles were separated in individual grain sizes by 10 minutes of mechanical sieving and a following hand sieving. All pebbles were sorted according to their petrographic determination to get an overview about the composition. For several components, it was necessary to break them up, to remove their weathering crusts or to prepare thin-sections of them. The subsequent investigation and petrographic classification was achieved with a polarising microscope. The group of “granitoids” contains all granitoids, regional as well as Nordic ones. Volcanic rocks are distinguished by their composition (“feldspar-volcanic rocks” and “alkaline volcanic rocks”). The 36

group of “quartzites” only consists of metaquartzites. “Gneisses” form an own group and are separated from the group of “schistose quartzites, quartz-mica and mica schists”. Roundness analyses of all pebbles were made sensu Reichelt (1961). Four classes or categories are distinguished herein: angular, subangular, rounded and (very) well rounded (Fig. 3). We only used monocrystalline and polycrystalline quartzes of grain sizes from 6.3 – 10 mm and 10 – 20 mm for these investigations because of their weathering resistance and the possibility of long way transport. Shape analyses of all pebbles were made sensu Zingg (1935). Also depending on the axes’ lengths, he divides the pebbles into four different categories: oblate (disk), equiaxial (sphere), triaxial (bladed) and prolate (roller). The corresponding axial ratio defines the shape of the pebble. The values of the individual ratios lie between 0 and 1.The limiting value for the ratios of b/a and c/b is 2/3 (Fig. 3). These latter data provide no evidence for the grade of roundness.

4. Results and discussion

The results of the investigations for composition, roundness and morphometry conducted on 17 samples from seven localities (WSA 1 – 5; SMZ; CRO 1 – 3; COB 1, 2; STZ 1, 2; KRF; GOZ 1 – 3) are given in the following (Figs. 4, 5; Tab. 2, 3). The samples from Cunnersdorf (CUN 2 – 4) are not considered in this article as further investigation and analysis showed that they do not represent gravel deposits of the Bautzen Elbe River. Monocrystalline and polycrystalline quartzes are the dominant components in all analysed samples. Index pebb­les from all possible source areas occur: lydites from Bohemia, sandstones from the Elbsandsteingebirge as well as granitoides, gneisses and mica schists together with agates and amethysts from the eastern Erzgebirge. Ter­tiary quartzites as a distinctive feature are also present in almost all samples. Flints or characteristically red Scandinavian granites as Nordic pebbles are absent (Figs. 4, 5; Tab. 2). The observed typical and conspicuous siliceous crusts were already described by Schubert (1978) for the Crostwitz locality. In several samples “dove-blue pebbles” are recognised (see Genieser 1955). Microscopic investigations show that these special pebbles contain smallest amounts of mica, quartz and fragments of other rocks as well as remains of radiolaria. Particularly striking are the isolated, sponge spiculae as biogenic components. Currently, the rock material these pebbles originate from is not identified and thus, also their provenance is not yet clarified. During the cooperation with the Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG) in Freiberg, it has been suggested that the “dove-blue pebbles” derived from a source area with silicified sedimen-

GEOLOGICA SAXONICA — 59: 2013



Habit Sheer plan

Habit

Angular

Sheer plan Plan view Plan view Slice plane

Slice plane

b

Angular

c

b a

c b

b

a

b a

c

b b

a

b

SubangularSubangular Oblate 2/3 Rounded Rounded

b/a

Equiaxial Oblate

Equiaxial

Prolate Triaxial

Prolate

2/3 b/a Triaxial

Well rounded

Well rounded

c/b

Fig. 3. Classification of grain roundness (after Reichelt 1961) and shape (after Zingg 1935).

2/3

c/b

2/3

Abb. 3. Klassifizierung der Kornrundheit (nach Reichelt 1961) und Kornform (nach Zingg 1935).

tary rocks in the Czech Republic (e.g., Předni Kopanina, northwest of Prague). All analyses of roundness were made only on mono­ crystalline quartzes. The fractions of rounded and angular pebbles are highly variable in content. Well rounded pebbles are rare or absent. In nearly all samples more than 50% of all grains are classified as subangular. An exception makes sample COB 2 (10 – 20 mm) that lies faintly below this value with its 49% of subangular grains (Fig. 6; Tab. 3). Simultaneously, in this sample the portions of angular and rounded pebbles reach the highest percentage of about 25% for each of them. The advantage of the method of Reichelt (1961) is doubtlessly the rough and rapid determination of roundness, but the implied subjectivity possibly leads to incorrect conclusions and interpretations. The shape analyses sensu Zingg (1935) revealed no clear results (Fig. 7; Tab. 3). For a precise arrangement, the mean values of every shape analysis were separated into size clusters. Even though their plots in the larger scale equiaxial field are situated too close together as single tendencies would be identifiable. Along the whole course of the Bautzen Elbe River the morphometry of the pebbles changes only slightly or not at all. There is no significant increase of roundness downstream. That means that either the shaping was completed in the headwaters, or some tributaries brought fresh material.

Measurements relating to flow velocity and flow di­rec­­tion display controversial results (Fig. 2). The de­ po­sits in Wiesa show a direction of strike of 204 – 300° (dipping: 15 – 35°), thus implying a south- to northwestern flow direction and sedimentation trend. According to Wolf & Schubert (1992) Wiesa maybe marks the place of the third deflection of the Bautzen Elbe River (Kamenz arm). In Crostwitz the striking shifts to a northeastern to south­western direction (077 – 150°) with decreasing dip angles of 10 – 15°. Strohschütz shows northeastern striking trends (010 – 045°) with a dipping similar to Crostwitz (10 – 17°). In Gozdnica the direction of striking changes again to northwest (298 – 328°) and very low-angle dipping (3 – 10°) implicates a strong decrease of flow velocity. Probably a first deflection of the Bautzen Elbe River to a north­western direction is indicated here, represented by the Riet­schen arm. In conclusion, a continuous river system with eastwards decreasing transport and water energy is obvious. As the majority of the quartzes from Gozdnica shows rough and bumpy surfaces, problems in their classi­fi­cation of roundness were caused, predominantly in the clusters “rounded” and “subangular”. Additionally, some single, light bluish monocrystalline quartzes occur, especially in the small grain size fractions. Possibly, these pebbles were brought by a former Neiße River from the south. 37

c

K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

­Table 2. Numerical results of composition analyses from all samples: a, grain size 6.3 – 10 mm; b, grain size 10 – 20 mm. Tabelle 2. Numerische Ergebnisse der Zusammensetzungsanalysen aller Proben: a, Korngrößenbereich 6,3 – 10 mm; b, Korn­größenbereich 10 – 20  mm. Sample

WSA 1

Grain size Quartzes (monocr.) Quartzes (polycr.) Cell quartzes Vein quartzes Amethysts Agates/jaspers Feldspars Sandstones Conglomerates Cherts Greywackes Rhyolites Feldspar-volcanic rocks Alkaline volcanic rocks Granulites Granitoids Gneisses Lydites Quartzites Tertiary quartzites Schistose quartzites, quartzmica and mica schists “Dove-blue pebbles” Climate witnesses Undefined TOTAL

0.62% 9.76% 3.69% 0.62% 9.76% 3.69% 0.05% 0.05% 9.76% 0.62% 0.66% 3.69% 0.66% 0.24% 0.05% 0.24% 3.51% 0.66% 3.51% 0.24% 0.99% 0.99% 3.51% 4.36% 4.36%

0.99% 4.36%

3.46% 3.46% 9.24% 9.24%

4.84% 4.84% 3.89% 3.89%

6.53%

6.53% 6.53%

WSA 3

b 6

a 347 58

b 127 27

15 3 1

2 2

WSA 5 a 266 28

SMZ

b 36 6

a 786 132

2

CRO 1

b 346 50

a 554 106 1 2

1

CRO 2

b 234 18

a 259 36 1

b 300 37 1

6 2

26 7 2 4

1

1

1

1 2

15 3

3 1

30 3

3

25 8 1 5

1

5

1

6

12 1 16 35 1

1

6

2

8 2 2

11 12 1

10 5

1 7

30 5 1

1 1

1 1

9 1 19 8 1

15 5 1 2 6 10 1

1 3

30 1 20 9 5

9 1 18 2 2

1

1

1

1

3 4

32

3

21

1

31

13 8 2

2 5

48 57 3

11 28 2

32 6 2

2

1

1

7

10

5

5

1

3

30 1123

7 457

5 792

5 1 6 423

3 384

1

3 20

5

18 15

29 14

3

8 1 6 3 1

1 1 1 1

3

1

4

4 77 490

17 401

36 176

15

2

2

4

2

4

20 536

9 182

23 478

11 157

50 441

1.88% 0.09% 1.88% 0.09% 2.68% 0.09% 2.68% 0.09% 0.09%

0.09% 1.88% 0.09% 5.01% 5.01% 2.68% 0.09% 0.72% 0.72% 0.09% 2.24% 2.24% 5.01% 5.10% 0.72% 5.10% 2.24% 5.10% 11.81% 11.81%

70.30%

1.01% 1.11% 0.53% 1.01% 0.53% 1.11% 0.05% 1.35% 0.05% 1.35% 5.05 5.05 % %

1.01%0.29% 0.53% 1.11% 0.29% 0.05% 1.35% 4.09% 4.09% 5.05 1.11% 0.29% % 1.11% 4.09% 3.80% 3.80% 1.11% 1.59% 1.59% 3.80% 1.59%

SMZ 6.3–10 6.3–1012.17% SMZ CRO 6.3–10 70.30% 70.30%

5.80% 1.18% 0.55% 3.37% 1.80% 3.45%

5.80% 0.08% 5.80% 0.08% 0.08% 1.18%4.47% 1.18% 0.55% 0.55% 3.37% 3.37% 1.80% 1.80% 3.45% 3.45%

3.21%

3.21% 3.21%

11.05%

11.05% KRF 6.3–10 11.05%

65.65% 65.65%

Monochrystalline quartzes Monochrystalline quartzes Polycrystalline quartzes Monochrystalline quartzes Polycrystalline quartzes quartzes QuartzitesPolycrystalline Quartzites FeldsparsQuartzites Sandstones, conglomerates Feldspars Feldspars

Sandstones, conglomerates conglomerates Sandstones,

75

2.49% 0.17% 0.09% 0.34% 3.01% 1.03% 3.01%

4.04%

12.17% 12.17%

SMZ 6.3–10

STZ 6.3–10

65.65%

b 104 19

1

2 1 1

63.43% 63.43%

STZ 6.3–10STZ 6.3–10

WSA 4 a 328 64

1

WSA 6.3–10 6.3–10 WSA

0.58% 7.61% 0.58% 7.61% 7.61% 0.58% 5.13% 5.13% 5.13% 0.54% 0.54% 0.54% 0.08% 0.08% 0.08% 3.39% 3.39% 3.39% 1.78% 1.78% 1.78% 4.84%

a 95 12 2

WSA 6.3–10

63.43%

3.89%

WSA 2

b 287 38

11.81%

3.46% 9.24%

a 303 33

65.05%

67.87%

KRF 6.3–10 6.3–10 KRF

65.05% 65.05%

77.82%

0.69% 0.69% 5.93% 5.93%

3.01% 3.01% 5.93%

1.03% 1.03% 3.01% 3.01% 4.04% 4.04% 6.96% 6.96%

CRO CRO 6.3–10 6.3–10 COB 6.3–10 67.87% 67.87%

0.22% 0.22% 1.05% 0.13% 0.13% 0.13% 0.09% 1.27% 1.27% 3.37% 1.27% 0.52% 0.52% 0.52% 2.01% 2.01% 2.01% 2.19% 2.19% 2.19% 11.33% 11.33% 11.33%

GOZ 6.3–10

2.49% 2.49% 0.17% 0.09% 0.09% 0.17%

0.69% 0.34% 0.34%

6.96%

0.22%

4.47% 4.47%

1 296

1.05% 1.05% 0.09% 0.09%

72.25%

COB COB 6.3–10 6.3–10

72.25% 72.25%

3.37% 3.37%

GOZ 6.3–10 6.3–10 GOZ 77.82% 77.82%

Cherts, lydites, Greywackes Greywackes Cherts, lydites, lydites, Tertiary quartzites Greywackes Granitoides Cherts, Tertiary quartzites quartzites Granitoides Cell and vein quartzes, amethysts, Granulites Tertiary Granitoides agates, jaspersCell Feldspar-volcanicGranulites rocks, rhyolithes Granulites Cell and and vein vein quartzes, quartzes, amethysts, amethysts, Schistose quartzites, Undefined agates,quartz-mica, jaspers Feldspar-volcanic rocks, rocks, rhyolithes rhyolithes agates, jaspers Feldspar-volcanic mica schists, gneisses Schistose quartzites, quartz-mica, Undefined

Schistose quartzites, quartz-mica, mica schists, schists, gneisses gneisses mica

Undefined

Fig. 4. Graphical illustration of the results of composition analyses of grain sizes 6.3 – 10 mm. Abb. 4. Graphische Darstellung der Ergebnisse der Zusammensetzungsanalysen im Korngrößenbereich 6,3 – 10 mm (Legende siehe Abb. 5).

38

GEOLOGICA SAXONICA — 59: 2013



­Table 2 – continued.

CRO 3 a 598 111

COB 1

b 187 38

a 409 26

2­­­

2 1 1 25 1 1 1

2 34 11

4 6

2 6

6 3

b 156 14

COB 2 a 432 55

b 210 28

STZ 1 a 683 37

b 159 12

STZ 2 a 905 121

KRF

b 211 28

1

2 2

10 10

4

b 313 46

a 642 74

3

1

1

5 3 1 7

46 5

2 1

2

2

4

2 71 20

5 1

46 23

1 1 8

4 44 23

2

5

3

9

2

5

6

2

8

87 3 28 34 2

8 6 18 1

37 2 37 60 1

4

5

4

5

4

1 4

GOZ 1

a 830 141

1

b 131 12

GOZ 2 a 693 151

GOZ 3

Sample

b 154 37

a 444 34

B 34­­ 6

1

2

1

5

Grain size Quartzes (monocr.) Quartzes (polycr.) Cell quartzes Vein quartzes Amethysts Agates/jaspers Feldspars Sandstones Conglomerates Cherts Greywackes Rhyolites Feldspar-volcanic rocks Alkaline volcanic rocks Granulites Granitoids Gneisses Lydites Quartzites Tertiary quartzites Schistose quartzites, quartzmica and mica schists “Dove-blue pebbles” Climate witnesses Undefined TOTAL

2

2 1 44 1 21 18 3

6 1 25 18 1

9

2

11 872

4 303­­­

4

5

16 15

11 14

1

3

50 559

19 226

19 608

6

11

2

12

1

18 17 1

74 2 33 41 5

10 12 2

15 34 4

6 5 1

3 13

5

3

13

4

4

4

27 134 26 50 18 57 29 307 1116 251 1307 316 1280 432

0.22% 0.22% 1.54% 0.22% 0.22% 1.54% 0.22% 2.85% 2.85% 0.22% 1.75% 1.88% 0.09% 1.75% 0.22% 2.68% 0.22% 0.09% 6.14% 0.09% 6.14%

5.01% 0.72% 10.96% 10.96% 2.24% 5.10%

3

1

49 897

20 183

16 893

14 212

0.36% 0.36%

0.58% 7.61% 2.85% 2.85% 5.13% 1.42% 1.42% 0.54% 0.18% 0.18% 0.08% 5.52% 5.52% 3.39% 1.60% 1.78% 1.60%

69.91% 69.91%

7.83% 7.83%

1.07% 1.07%

0.93% 0.93%

3.21%

6.23% 6.23%

STZ STZ 10–20 10–20 STZ 6.3–10 65.65%

11.05%

65.84% 65.84%

6.71% 6.71%

8.80% 8.80%

8.03% 8.03%

CRO CRO 10–20 10–20

12.17%

75.88% 75.88%

1.39% 5.80% 0.08% 4.47%1.39% 0.23% 0.23% 1.18% 2.78% 2.78% 0.55% 0.93% 0.93% 3.37% 1.16% 1.16% 1.80% 2.78% 2.78% 3.45%

6 47

4.04%

6.96%

CRO 6.3–10

70.30%

12 499

0.51% 0.51% 0.71% 0.71% 2.44% 2.44% 0.81% 0.81% 1.02% 1.02% 1.53% 0.41% 1.53% 0.41% 6.82% 1.01% 0.53% 6.82%1.11% 2.49% 0.69% 0.19% 0.19% 0.05%1.02% 1.35% 1.02% 0.17% 0.09% 5.93% 5.54% 5.54% 5.05 0.61% 0.61% 0.34% 0.29% 1.15% % 2.85% 1.15% 2.85% 3.01% 4.09% 0.38% 0.38% 1.03% 1.11% 4.40% 4.40% 3.01% 9.46% 3.80% 9.46%

SMZ 6.3–10

WSA 6.3–10

7.12% 7.12%

1

11.81%

SMZ SMZ 10–20 10–20

1

3

1.59%

63.43%

6.53%

1

4.62% 4.62%

WSA WSA 10–20 10–20

9.24%

3.89%

16 9

8

11.24% 11.24%

3.46%

4.84%

3

1

1.50% 1.50% 0.37% 0.37% 0.25% 0.25% 6.87% 6.87% 9.76% 0.62% 0.75% 0.75% 3.69% 1.12% 1.12% 0.05% 3.37% 0.66% 3.37%

0.24% 3.51% 0.99% 4.36%

25 1 17 32 1

67.87%

COB COB 10–20 10–20 COB 6.3–10

73.35% 73.35%

0.22% 1.05%0.68% 0.68% 0.13% 0.09% 0.45% 0.45% 0.45% 0.45% 1.27% 3.37% 2.72% 2.72% 0.52% 2.01% 0.23% 0.23% 2.19% 0.45% 0.45% 11.33% 1.13%

72.25%

69.98% 69.98%

9.07% 9.07%

1.13%

12.47% 12.47%

10.65% 10.65%

KRF 6.3–10

65.05%

KRF KRF 10–20 10–20

72.45% 72.45%

GOZ 6.3–10

77.82%

GOZ GOZ 10–20 10–20

72.34% 72.34%

Monokristalline Quarze Monochrystalline quartzes Monochrystalline quartzes Polykristalline Quarze Polycrystalline quartzes Polycrystalline quartzes Quarzite Quartzites FeldspäteQuartzites Feldspars Feldspars Sandsteine, Konglomerate

Kieselschiefer, Lydite, Grauwacken Greywackes Cherts, lydites, petrified wood, Greywackes TertiärquarziteCherts, lydites, petrified wood, Granitoide Granitoides Tertiary quartzites Granitoides Tertiary quartzites Zell- und Gangquarze, Amethyste, Granulite Granulites Cell Granulites Cell and and vein vein quartzes, quartzes, amethysts, amethysts, Achate, Jaspise Feldspat-Vulkanite, Rhyolithe jaspers Feldspar-volcanic agates, jaspers Feldspar-volcanic rocks, rocks, rhyolithes rhyolithes Quarzschiefer,agates, QuarzglimmerUndefiniert Sandstones, arkoses, conglomerates Shistose quartzites, quartz-mica-, Undefined Sandstones, arkoses, conglomerates ShistoseGneisse quartzites, quartz-mica-, Undefined und Glimmerschiefer,

mica mica shists, shists, gneisses gneisses

Fig. 5. Graphical illustration of the results of composition analyses of grain sizes 10 – 20 mm (for legend, see Fig. 4). Abb. 5. Graphische Darstellung der Ergebnisse der Zusammensetzungsanalysen im Korngrößenbereich 10 – 20 mm.

39

Subangular

266

786

0.50 0.50

Rounded

0.40 0.40

661

295

0.40 0.40

709

0.30 0.30

409

0.30 0.30

432

0.20 0.20

Well rounded

683

0.20 0.10

0.70 0.70

905

0.10 0.10

830

0.70 0.70

10–20 mm

0.80

Lenght/width

Lenght/width

Lenght/width

Lenght/width

Lenght/width Lenght/width

0.40 0.40

0.85

Lenght/width Lenght/width

0.50 0.50

Lenght/width Lenght/width

328

Lenght/width Lenght/width

Angular

347

Lenght/width

95

Lenght/width Lenght/width

303

Lenght/width Lenght/width

n=

Lenght/width

10 mm 100 K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of6.3the– river course 100 1.00 90 90 80 80 1.00 1.00 0.90 70 70 1.00 0.90 0.90 0.80 60 6.3 – 10 mm 60 100 100 0.85 0.85 1.00 1.00 0.90 0.80 0.80 50 0.70 50 90 6.3 – 10 mm 90 100 40 100 40 0.85 0.85 1.00 1.00 0.90 0.90 0.80 80 0.70 0.70 0.60 80 90 90 30 30 80 70 80 70 0.85 0.85 0.60 0.80 0.80 1.00 1.00 0.90 0.90 0.80 0.80 0.70 0.60 0.50 20 20 70 60 70 60 60 10 60 10 0.85 0.85 0.80 0.80 1.00 1.00 0.80 0.80 0.90 0.90 0.70 0.70 0.60 0.50 0.50 0.40 50 50 50 0 50 0 40 KRF SMZ 0.80 2 GOZ 5 0.75 GOZ 1 GOZ WSA 1 WSA 2 WSA 3 WSA0.90 4 WSA 5 10.60 COB 2 STZ 10.50 STZ 2 40 40 40 0.80 0.80 0.40 0.90 0.80CRO 1 CRO 2 0.70 0.75 0.70CRO 3 COB 0.60 0.40 0.30 n = 303 95 347 328 266 786 661 295 709 409 432 683 905 30 830 642 693 444 30 30 30 0.80 0.80 0.80 0.80 0.75 0.75 0.70 0.70 20 20 0.60 0.60 0.50 0.50 0.40 20 0.30 0.30 0.20 20 10 10 10 0.75 0.75 0.70 0.70 0.70 0.70 10 0.60 0.60 0.50 0.50 0.40 0.40 0.30 0 0.20 0.20 0.10 0 SMZ CRO 1 CRO 2 CRO 3 COB 1 COB 2 STZ 1 STZ 2 KRF GOZ 1 GOZ 2 GOZ 5 WSA 1 WSA 2 WSA 3 WSA 4 WSA 5 10–20 mm Well rounded 0 n = 0303 95 Angular 347 328 266Subangular 786 661 295 709 Rounded 409 432 683 905 830 642 693 444 0.75 SMZ CRO 1 CRO 2 CRO 3 COB 1 COB 2 0.75 STZ 1 STZ 2 KRF GOZ 1 GOZ WSA 1 WSA 2 WSA 3 WSA0.60 4 WSA 5 0.70 0.702 GOZ 5 0.60 0.00 0.00 0.00 0.00

0.10 0.10

0.20 0.20

0.30 0.30

0.40 0.40

0.30 0.65 0.65 0.50 0.50

0.70

0.65

0.00

642 444 0.20 10–20 10–20693 mm mm 0.00 0.10

0.75

0.40

0.50

0.60

0.70

Depth/width

0.60 0.60

0.70 0.70

0.80 0.80

0.90 0.90

0.80 1.00 1.00

0.30 0.30

0.30 0.30

0.900.90 0.90 0.90 0.800.80 0.80 0.80 0.700.70 0.70 0.70

Lenght/width Lenght/width Lenght/width Lenght/width

0.850.85 0.85 0.85

0.20 0.20

0.20 0.20

0.10 0.10

0.10 0.10

0.00 0.00 0.00 0.00

6.3–10 6.3–10 mm mm

0.00 0.00 0.00 0.00

0.600.60 0.60 0.60 0.500.50 0.50 0.50 0.400.40 0.40 0.40

0.10 0.10

0.20 0.20

0.30 0.30

0.800.80 0.80 0.80

0.40 0.40

0.10 0.10

0.20 0.20 0.750.75 0.75 0.50 0.50 0.75 0.60 0.60

Depth/width Depth/width Wiesa Wiesa

Wiesa Wiesa

0.700.70

0.70 0.70 Schmeckwitz Schmeckwitz

0.10 0.10

0.10 0.10

0.00 0.00 0.00 0.00

STZ 1 STZ 2 159 211 0.10

0.70 0.70

0.00

0.10 0.10 0.20 0.20 0.65 0.65

0.30 0.30

0.10

0.20 0.30 0.65 0.65

0.40

0.40 0.40

0.50 0.50

0.70 0.70

0.60 0.60

Lenght/width Lenght/width

GOZ 1 GOZ 2 GOZ 5 0.00 6.3–10 6.3–10 mm mm 131 154 0.10 340.20

0.00 0.00

0.10 0.10 0.50

Lenght/width

Lenght/width

6.3–10 mm

6.3–10 6.3–10mm mm0.00

6.3–10 6.3–10mm mm

KRF

313 0.00 0.70 0.70 0.00

Lenght/width Lenght/width

Lenght/width

Lenght/width

Lenght/width Lenght/width

0.20 0.20

0.20 0.20 0.30 0.30 0.65 0.65 0.60

Depth/width

0.40 0.40

0.30 0.65 0.65

0.50 0.50

0.40

0.60 0.60

Schmeckwitz Schmeckwitz

Depth/width Depth/width

Coblenz Coblenz

Crostwitz Crostwitz Coblenz Coblenz

Strohschütz Strohschütz

Strohschütz Strohschütz

10–20 10–20mm mm 10–20 10–20mm mm

0.600.60 0.60 0.60 0.600.60 0.60 0.60

1.001.00 1.00 1.00

0.850.85 0.85 0.85

0.900.90 0.90 0.90 0.800.80 0.80 0.80

0.800.80 0.80 0.80

Depth/width Depth/width Depth/width

0.650.65 0.65 0.65

0.700.70 0.70 0.70

0.650.65 0.65 0.65

0.700.70 0.70 0.70

0.750.75 0.75 0.75

Kronförstchen Kronförstchen

Kronförstchen Kronförstchen Gozdnica Gozdnica

10–20 10–20mm mm 10–20 10–20mm mm 0.800.80 0.80 0.80

Depth/width Depth/width Depth/width Depth/width

0.850.85 0.85 0.85

Lenght/width Lenght/width Lenght/width Lenght/width

0.700.70 0.70 0.70 0.750.75 0.75 0.75

Lenght/width Lenght/width Lenght/width Lenght/width

0.600.60 0.60 0.60 0.500.50 0.50 0.50 0.400.40 0.40 0.40

0.700.70 0.70 0.70

0.300.30 0.30 0.30 0.200.20 0.20 0.20 0.100.10 0.10 0.10

0.650.65 0.65 0.65

6.3–10 6.3–10mm mm 6.3–10 6.3–10mm mm

0.000.00 0.00 0.00 0.000.00 0.100.10 0.200.20 0.300.30 0.400.40 0.500.50 0.600.60 0.700.70 0.800.80 0.900.90 1.001.00 0.00 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70 0.80 0.80 0.90 0.90 1.00 1.00

Depth/width Depth/width Depth/width Depth/width

0.600.60 0.60 0.60 0.600.60 0.60 0.60

0.750.75 0.75 0.75

6.3–10 6.3–10mm mm 6.3–10 6.3–10mm mm

Depth/width Depth/width Depth/width Depth/width

0.800.80 0.80 0.80

0.850.85 0.85 0.85

Fig. 7. Graphical illustration of the results of shape analyses ofStrohschütz grain sizes 6.3 – 10 mm and 10 – 20 mm after Zingg (1935). Wiesa Schmeckwitz Coblenz Kronförstchen Gozdnica Crostwitz Wiesa Schmeckwitz Coblenz Strohschütz Kronförstchen Gozdnica Crostwitz Wiesa Wiesa

Schmeckwitz Schmeckwitz

Crostwitz Crostwitz

Coblenz Coblenz

Strohschütz Strohschütz

Kronförstchen Kronförstchen

Gozdnica Gozdnica

Abb. 7. Graphische Darstellung der Ergebnisse der Formanalysen im Korngrößenbereich 6,3 – 10 mm und 10 – 20 mm nach Zingg (1935).

40

0.70

0.70 0.70 0.75 0.75 6.3–10 6.3–10 mm mm Coblenz

0.650.65 0.65 0.65

0.000.00 0.00 0.00 0.000.00 0.100.10 0.200.20 0.300.30 0.400.40 0.500.50 0.600.60 0.700.70 0.800.80 0.900.90 1.001.00 0.00 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70 0.80 0.80 0.90 0.90 1.00 1.00 Depth/width

0.60

0.80

0.70 0.70

6.3–1 6.3–

6.3–10 6.3–10 mm mm

Crostwitz Crostwitz

0.50

Depth/width

0.80 0.80 0.90 0.90 1.00 1.00 0.60 Depth/width Depth/width 0.60 0.6 0.70 0.80 0.90 Schmeckwitz 1.00 Wiesa Crostw 0.60 0.60 0.60 0.60 0.65 0.65 0.70 0.70 1.00 1.00 Cob Schmeckwitz Schmeckwitz Co Crostwitz Crostwitz

0.80 0.80 0.90 0.90 Wiesa Wiesa 0.60 0.60 0.00 0.00 Depth/width Depth/width 0.60 0.60 Crostwitz 0.65 0.65 0.00 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70 0.80 0.80 0.90 0.90Schmeckwitz 1.00 1.00 Wiesa 0.60 0.60 Depth/width Depth/width 0.60 0.60 0.65 0.65 0.70 0.70 0.75 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70Wiesa 0.80 0.80 0.90 0.90 1.00 1.00 Wiesa Schmeckwitz Schmeckwitz Coblenz Coblenz0.75 Crostwitz Crostwitz 0.60 0.60 Depth/width Depth/width Depth/width Depth/width 0.60 0.60 0.65 0.65 0.70 0.70 0.75 0.75 0.80 0.80Strohschütz 0.85 0.85 0.70 0.70 0.80 0.80Wiesa 0.90 0.90 1.00 1.00 Schmeckwitz Wiesa Schmeckwitz Coblenz Coblenz Strohschütz Crostwitz Crostwitz

6.3–10 6.3–10mm mm

0.300.30 0.30 0.30 0.200.20 0.20 0.20 0.100.10 0.10 0.10

CRO 2 CRO 3 COB 1 COB 2 337 0.30 1560.20 210 0.30 225 0.20

Lenght/width Lenght/width

0.40 0.40

CRO 1

0.40 0.40 252

Lenght/width Lenght/width Lenght/width Lenght/width

1.001.00 1.00 1.00

SMZ 346

Lenght/width

WSA 1 WSA 2 WSA 3 WSA 4 WSA 5 287 6 127 1040.50 36 0.50

Lenght/width Lenght/width

Lenght/width Lenght/width

n=

Lenght/width

0.65 0.65 0.30 0.30 0.60 0.20 0.20 0.10 0.10 0.00 Depth/width 10 – 20Depth/width mm 100 0.60 0.6 10–20 10–20mm mm0.00 0.10 0.20 0.30 0.40 0.50 1.000.60 0.70 0.80 0.90 100 1.00 Angular Subangular Rounded Well rounded 0.65 0.65 0.30 0.30 0.60 0.60 0.10 0.10 0.20 0.20 0.00 0.00 90 Depth/width 90 0.60 0.60 0.65 0.65 0.70 0.70 10–20 10–20mm mm0.00 1.00 0.70 – 20 0.40 mm 10–2 10–2 0.00 0.10 0.10 0.20 0.20100.30 0.30 0.40 0.50 0.50 0.60 0.601.00 0.70 0.80 0.80 0.90 0.90 0.90 1.00 1.00 100 80 100 0.65 0.65 0.60 0.60 0.20 0.20 0.10 0.10 80 0.00 0.00 Depth/width Depth/width D 90 90 0.85 0.60 0.60 0.65 0.65 0.70 0.70 0.75 0.75 0.80. 10–20 10–20 mm mm 1.00 0.90 0.90 1.00 0.80 10–20mm mm 0.00 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70 0.80 0.80 0.90 0.90 1.00 70 70 10–20 80 800.60 0.60 0.10 0.10 0.00 0.00 Depth/width Depth/width Depth/width Depth/width 60 10 –0.70 mm0.75 60 70 100 70 0.60 0.85 0.85 10–20 10–20 mm mm 0.00 0.600.80 0.65 0.65 0.70 0.7020mm 0.75 0.80 0.80 0.85 0.85 1.00 1.00 0.70 10–20 10–20 mm 0.90 1.00 0.80 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.80 0.80 0.90 0.90 1.00 100 0.60 0.60 0.00 0.00 60 50 60 50 Depth/width Depth/width Depth/width Depth/width 90 90 0.85 0.85 0.60 0.60 0.65 0.65 0.70 0.70 0.75 0.75 0.80 0.80 0.85 0.85 1.00 1.00 0.80 50 40 0.90 0.90 0.80 0.00 0.00 0.10 0.10 0.20 0.20 0.30 0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.70 0.70 0.80 0.80 0.90 0.90 1.00 1.00 0.70 0.70 0.60 50 40 40 80 80 40 Depth/width Depth/width Depth/width Depth/width 30 30 0.85 0.85 0.60 1.00 1.00 0.80 0.80 0.90 0.90 0.80 0.80 0.70 0.60 0.50 30 70 30 70 20 20 20 20 60 0.85 0.85 1.00 1.00 60 0.80 0.80 0.80 0.80 0.90 0.90 0.70 0.70 0.75 0.60 0.50 0.50 0.40 10 10 10 10 50 0 50 0 0.80 0WSA 1 WSA 2 WSA 3 WSA 4 WSA 5 SMZ 0.80 0.90 0.90 0.80 3 COB 1 COB 0.70 20.70 STZ 1 STZ 2 0.60 CRO KRF 2 GOZ 1 GOZ CRO 1 CRO 2 0.80 GOZ 5 0.75 0.75 0.60 0 0.50 0.40 0.40 COB 1313 COB131 2 STZ GOZ 2 GOZ 5 40 GOZ 1 0.30 SMZ 225 CRO 1156 CRO210 WSA 336 WSA346 WSA 2 104 4 WSA 2 CRO n = 40 287 WSA 6 1 127 252 5 337 1593 211 1541 STZ 34 2 KRF n = 287 6 127 1040.80 36 346 0.70 252 337 0.60 225 156 2100.80 159 211 313 131 154 34 0.80 30 0.80 0.70 0.75 0.75 0.60 0.70 0.50 0.50 0.40 30 0.30 0.30 0.20 20 20 0.70 0.70 0.75 0.75 0.60 0.60 Fig. 6. Results of roundness analyses of grain sizes 6.3 – 10 mm (1961). 0.70 0.70 0.50 0.50and 10 – 20 mm 0.40 0.40 after Reichelt 0.30 0.20 0.20 0.10 10 6.3–10 mm10 0.75 0.75 0.60 0.60 Abb. 6. Ergebnisse der Rundheitsanalysen im Korngrößenbereich nach Reichelt 0.70 0.70 0.40 0.40 6,3 – 10 mm 0.50 0.50 0 0.30 0.30und 10 – 20 mm 0.65 0.20 0.10 0.10 (1961). 0.00 0

Depth Depth

0.80 0. Strohsc

Depth/width Depth/width

0.80 0.80 0.85 0.85 Kron Strohschütz Strohschütz Kron

Kronförstchen Kronförstchen Gozdnica Gozdnica

GEOLOGICA SAXONICA — 59: 2013



Table 3. Numerical results of roundness and shape analyses from all samples: a, grain size 6.3 – 10 mm; b, grain size 10 – 20 mm; n, number of investigated pebbles. Tabelle 3. Numerische Ergebnisse der Rundheits- und Formanalysen aller Proben: a, Korngrößenbereich 6,3 – 10 mm; b, Korngrößenbe­ reich 10 – 20  mm; n, Anzahl der untersuchten Gerölle. Sample WSA 1 WSA 2 WSA 3 WSA 4 WSA 5 SMZ CRO 1 CRO 2 CRO 3 COB 1 COB 2 STZ 1 STZ 2 KRF GOZ 1 GOZ 2 GOZ 5

a; n = 303 b; n = 287 a; n = 95 b; n = 6 a; n = 347 b; n = 127 a; n = 328 b; n = 104 a; n = 266 b; n = 36 a; n = 786 b; n = 346 a; n = 661 b; n = 252 a; n = 295 b; n = 337 a; n = 709 b; n = 225 a; n = 409 b; n = 156 a; n = 432 b; n = 210 a; n = 683 b; n = 159 a; n = 905 b; n = 211 a; n = 830 b; n = 313 a; n = 642 b; n = 131 a; n = 693 b; n = 154 a; n = 444 b; n = 34

Angular [%]

Subangular [%]

Rounded [%]

Well rounded [%]

Width/ length

Depth/ width

3.6 1.4 2.1 0 3.5 0 3.7 1.9 1.1 0 5.0 2.0 2.7 2.4 8.5 3.9 3.1 4.5 11.5 5.1 29.9 24.8 8.8 4.4 3.7 1.0 1.9 0.6 1.2 1.5 3.7 7.1 3.6 8.8

84.2 77.0 90.5 100.0 85.6 79.5 79.2 87.5 83.8 83.3 82.8 76.0 93.2 91.2 86.5 88.1 89.3 92.0 75.5 87.2 59.2 49.0 85.9 88.7 84.0 90.5 86.2 80.5 87.9 87.0 89.2 92.9 91.9 91.2

12.2 21.3 7.4 0 10.9 20.5 17.1 10.6 14.7 16.7 12.0 21.7 4.1 6.0 4.7 7.1 7.5 3.1 13.0 7.7 10.9 25.2 5.3 6.9 12.3 8.5 11.8 18.9 10.7 10.7 7.1 0 4.5 0

0 0.3 0 0 0 0 0 0 0.4 0 0.2 0.3 0 0.4 0.3 0.9 0.1 0.4 0 0 0 1.0 0 0 0 0 0.1 0 0.2 0.8 0 0 0 0

0.78 0.76 0.77 0.73 0.80 0.78 0.78 0.76 0.76 0.80 0.76 0.77 0.76 0.76 0.73 0.78 0.76 0.78 0.76 0.76 0.76 0.79 0.76 0.77 0.77 0.77 0.77 0.77 0.75 0.75 0.80 0.74 0.80 0.73

0.67 0.69 0.67 0.73 0.69 0.71 0.68 0.74 0.72 0.69 0.70 0.68 0.69 0.67 0.71 0.72 0.69 0.67 0.70 0.71 0.72 0.72 0.73 0.73 0.72 0.70 0.70 0.68 0.72 0.72 0.72 0.68 0.74 0.69

5. Summary

6. Acknowledgements

The results of the analyses of 17 samples from the Baut­ zen Elbe River are in general agreement with those of Wolf & Schubert (1992). Nevertheless, our new data provoke a more detailed discussion and led to the interpretation of potentially representing a huge gravel fan. The different values of flow velocity and flow direction can be explained as local variances within a single river system. Based on the equality of all samples concerning the roundness and composition, a simultaneous sedimentation within the coexisting three arms of the Bautzen Elbe River is assumed.

We thank Dagmar Denkert, Martin Kaden and Christine Trepte (all Senckenberg Naturhistorische Sammlungen Dresden) for the preparation of the thin sections and their support in laboratory work. Prof. Dr. Arnold Müller (Universität Leipzig), Peter Suhr, Dr. Manuel Lapp and Wolfgang Alexowsky (all Landesamt für Umwelt, Landwirtschaft und Geologie, Freiberg) are thanked for their support in classification of some pebbles and for fruitful discussions.

41

K. Eckelmann, J.-M. Lange: The sediments of the Bautzen Elbe River: distribution, composition and reconstruction of the river course

A

B

C

D

E

F

Plate I Photographic documentation of three selected outcrops exposing gravel deposits of the Bautzen Elbe River. A Deposits of the Bautzen Elbe River overlying granodiorite, kaolin and kaolinitic clay in the active open kaolin pit at Wiesa near Kamenz. B Cryoturbations have been observed within the deposits of the Bautzen Elbe River e.g., in the open kaolin pit at Wiesa. C In the active open kaolin pit at the Galgenberg near Crostwitz the sediments of the Bautzen Elbe River cover the kaolin. D The drift boulder of a two-mica granodiorite occurs within the deposits of the Bautzen Elbe River in Crostwitz. E In the topmost part of the active open kaolin pit at Gozdnica (Freiwaldau, Poland) also gravel deposits of the Bautzen Elbe River are exposed. F Erosional structures prove the incising of the sediments of the Bautzen Elbe River into the underlying Tertiary units e.g., clay layers. Tafel I Fotografische Dokumentation von drei ausgewählten Aufschlüssen mit Schotterablagerungen der Bautzener Elbe. A Sedimente der Bautzener Elbe überlagern Granodiorit, Kaolin und kaolinitischen Ton im aktiven Kaolintagebau in Wiesa bei Kamenz. B In den Ablagerungen der Bautzener Elbe treten Kryoturbationen auf, wie hier im Kaolintagebau Wiesa. C Im aktiven Kaolintagebau am Galgenberg bei Crostwitz wird der Kaolin von Sedimenten der Bautzener Elbe überdeckt. D Der Driftblock eines Zweiglimmergranodiorits befindet sich in den Ablagerungen der Bautzener Elbe bei Crostwitz. E Im Topbereich des aktiven Kaolintagebaus in Gozdnica (Freiwaldau, Polen) sind ebenfalls Schotter der Bautzener Elbe aufgeschlossen. F Erosionsstrukturen belegen das Einschneiden der Sedimente der Bautzener Elbe in die unterlagernden tertiären Einheiten, beispielsweise Tonhorizonte.

42



7. References Bastian, O.; Porada, H.T.; Röder, M.; Syrbe, R.-U. (2005): Oberlausitzer Heide- und Teichlandschaft – Eine landeskundliche Bestandsaufnahme im Raum Lohsa, Klitten, Großdubrau und Baruth. – In: Landschaften in Deutschland – Werte der deutschen Heimat, 67: 1 – 452, Köln, Weimar, Wien (Böhlau Verlag). Buchwald, J. (1966): Die Bedeutung des „Bautzener Elbelaufes“ für die Erkundung von feuerfesten Schamottetonen. – Zeit­ schrift für Angewandte Geologie, 12: 428 – 431, Berlin. Eißmann, L. (1997): Das quartäre Eiszeitalter in Sachsen und Nord­­ ostthüringen. – Altenburger Naturwissenschaftliche For­schun­ gen, 8: 1 – 98, Altenburg. Engelmann, R. (1911): Die Terrassen der Moldau-Elbe zwischen Prag und dem böhmischen Mittelgebirge. – Geographischer Jahresbericht aus Österreich, IX: 38 – 94, Wien. Fliegner, H. (1955): Untersuchungen im Bereich der „Präglazia­ len“ Elbe. – 1 – 81, Berlin (unpublished diploma thesis, Humboldt-Universität Berlin). Genieser, K. (1955): Ehemalige Elbeläufe in der Lausitz. – Geologie, 4: 223 – 279, Berlin. Genieser, K. (1957): Ehemalige Elbeläufe im Raum zwischen Dres­den, Görlitz und Berlin. – Hallesches Jahrbuch für Mittel­ deut­sche Erdgeschichte, 2: 262 – 266, Halle. Genieser, K. (1962): Neue Daten zur Flussgeschichte der Elbe. – Jahrbuch der deutschen Quartärvereinigung, 13: 141 – 156, Stutt­­ gart. Genieser, K.; Diener, I. (1958): Versuch einer Altersdeutung der vor- bis früheiszeitlichen Elbeläufe auf Grund neuer For­ schungs­ergebnisse. – Wissenschaftliche Zeitschrift der Hum­ boldt-Universität zu Berlin, mathematisch-naturwissenschaft­ li­che Reihe, 6: 477 – 487, Berlin. Grahmann, R. (1934): Grundriß der Quartärgeologie Sachsens – Sachsen als Siedlungsraum des Menschen der Vorzeit. – 1 – 60, Leipzig (Verlag Karl Richter). Koch, E.; Alexowsky, W. (1999a): Geologische Karte der eiszeit­ lich bedeckten Gebiete von Sachsen 1 : 50.000, Blatt 2569 Ka­menz. – 1. Aufl., Sächsisches Landesamt für Umwelt und Geo­­logie, Freiberg. Koch, E.; Alexowsky, W. (1999b): Geologische Karte der eiszeit­ lich bedeckten Gebiete von Sachsen 1 : 50.000, Blatt 2470 Weiß­wasser. – 1. Aufl., Sächsisches Landesamt für Umwelt und Geo­logie, Freiberg. Linnemann, U.; Romer, R.L. (2002): The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd-Sr-Pb isotopic characterisation of marginal basins with constraints to geotectonic setting and provenance. – Tectonophysics, 352: 33 – 64, Amsterdam. Neumann, H.; Schmidt, W. (1990): Westliche Oberlausitz zwischen Kamenz und Königswartha – Ergebnisse der heimatkundlichen Bestandsaufnahme in den Gebieten Bernsdorf, Wittichenau, Kamenz und Kloster St. Marienstern. – In: Werte unserer Heimat, 51: 1 – 235, Berlin (Akademie-Verlag). Pietzsch, K. (1956): Abriss der Geologie von Sachsen. – 1 – 200, Berlin (VEB Deutscher Verlag der Wissenschaften). Pietzsch, K. (1962): Geologie von Sachsen. – 1 – 870, Berlin (VEB Deutscher Verlag der Wissenschaften).

GEOLOGICA SAXONICA — 59: 2013

Präger, F. (1976): Quartäre Bildungen in Ostsachsen. – Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 25: 125 – 217, Dresden. Präger, F. (1984): Zur Stratigraphie der Elbeterrassen und glazigenen Bildungen der Elstereiszeit bei Dresden. – Zeitschrift für Geologische Wissenschaften, 12: 727 – 733, Berlin. Rascher, J.; Plüschke, R. (1999): Ton und Kaolinlagerstätte Wiesa, Stephan Schmidt Meißen GmbH. Schriftenreihe für angewandte Geowissenschaften, 2: 1 – 81, Berlin (Verlag der Gesell­schaft für Geowissenschaften e. V.). Reichelt, G. (1961): Über Schotterformen und Rundungsgradanalyse als Feldmethode. – Petermanns Geographische Mitteilungen, 105: 15 – 24, Gotha. Schellenberg, F.; Kleeberg, K. (1997): Kaolinlagerstätten der Lau­ sitz – ihre Entstehung, Nutzung und industrielle Bedeutung. – Der Aufschluss, 48: 267 – 279, Heidelberg. Schubert, G. (1978): Pleistozängeologische Beobachtungen in der Lausitz. – Veröffentlichungen des Museums der Westlausitz, 2: 5 – 22, Kamenz. Schubert, G. (1980): Ein synchroner Taschen- und Tropfenboden in präelsterkaltzeitlichen Flußschottern („Bautzener Elbelauf“) der Lausitz. – Zeitschrift für Geologische Wissenschaften, 8: 1345 – 1348, Berlin. Standke, G. (1999): Geologische Karte der eiszeitlich bedeckten Gebiete von Sachsen 1 : 50.000, Blatt Niesky 2570. – 1. Aufl., Sächsisches Landesamt für Umwelt und Geologie, Frei­berg. Standke, G. (1994): Geologische Karte der nördlichen Oberlausitz 1 : 50.000. – 1. Aufl., Sächsisches Landesamt für Umwelt und Geologie, Freiberg. Wagenbreth, O.; Steiner, W. (1990): Geologische Streifzüge  –  Land­ schaft und Erdgeschichte zwischen Kap Arkona und Fich­tel­ berg.  –  1 – 204, Leipzig (Deutscher Verlag für Grundstoff­in­ dus­trie). Wiegank, F. (1982): Ergebnisse magnetostratigraphischer Unter­su­ chungen im höheren Känozoikum der DDR. – Zeitschrift für Geologische Wissenschaften, 10: 737 – 744, Berlin. Wolf, L. (1980): Die elster- und präelsterkaltzeitlichen Terrassen der Elbe. – Zeitschrift für Geologische Wissenschaften, 8: 1276 – 1280, Berlin. Wolf, L.; Alexowsky, W. (2008): Quartär. – In: Pälchen, W.; Walter, H. (Eds.): Geologie von Sachsen – Geologischer Bau und Ent­ wicklungsgeschichte. – 419 – 472, Stuttgart (Schwei­zer­bart). Wolf, L.; Schubert, G. (1992): Die spättertiären bis elstereiszeitlichen Terrassen der Elbe und ihrer Nebenflüsse und die Gliederung der Elster-Kaltzeit in Sachsen. – Geoprofil, 4: 1 – 43, Frei­ berg. Zingg, T. (1935): Beitrag zur Schotteranalyse. – Schweizerische Mi­ neralogische und Petrographische Mitteilungen, 15: 39 – 140, Zürich.

43

Suggest Documents