THE GLOBAL ENERGY TRANSFORMATION

THE GLOBAL ENERGY TRANSFORMATION Eicke R. Weber Director, Fraunhofer Institute for Solar Energy Systems ISE and University of Freiburg, Germany 3rd...
Author: Paula Schmid
8 downloads 1 Views 4MB Size
THE GLOBAL ENERGY TRANSFORMATION

Eicke R. Weber

Director, Fraunhofer Institute for Solar Energy Systems ISE and University of Freiburg, Germany

3rd Fraunhofer Innovation and Technology Platform: Powering a Greene

Future Bangalore, India, November 22, 2014 © Fraunhofer ISE

Fraunhofer Institute for Solar Energy Systems ISE Research for the Energy Transformation  largest European Solar Energy Research Institute  more than 1300 members of staff (incl. students)  16 % basic financing  84 % contract research , 29 % industry, 55 % public  € 86,7 M budget (2013, incl. investments)  >10 % growth rate (until 2013)

2 © Fraunhofer ISE

Fotos © Fraunhofer ISE

Fraunhofer ISE 12 Areas of Business

 Energy Efficient Buildings

 Hydrogen and Fuel Cell Technology

 Silicon Photovoltaics

 System Integration and Grids – Electricity, Heat, Gas

 III-V and Concentrator Photovoltaics

 Energy Efficient Power Electronics

 Dye, Organic and Novel Solar Cells

 Zero-Emission Mobility

 Photovoltaic Modules and Power Plants

 Storage Technologies

 Solar Thermal Technology 3 © Fraunhofer ISE

 Energy Systems Analysis

Fraunhofer Energy Alliance

 Members:18 Fraunhofer Institutes

 Spokesperson: Prof. Eicke R. Weber  Deputy Spokesperson: Dr. Peter Bretschneider  Managing Director: Dr. Thomas Schlegl [email protected]

 Office: Freiburg, Fraunhofer ISE

4 © Fraunhofer ISE

FRAUNHOFER ENERGY ALLIANCE

Images © Fraunhofer; MEV;

We conduct research in the following areas:

5 © Fraunhofer ISE

Wind energy

Energy-efficient living

Solar energy

Intelligent energy distribution

Bioenergy

Compact energy storage

Efficient use of energy

Energy technology and system assessment

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3rd Industrial Revolution!  Limited availability of fossil fuels

Fossil fuels get scarce

6 © Fraunhofer ISE

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3rd Industrial Revolution!  Limited availability of fossil fuels  Danger of catastrophic climate change  Risk of nuclear disasters  Growing dependency on imports from politically unstable regions The world gets warmer

New since recently:

Increasing economic opportunities! 7 © Fraunhofer ISE

Cornerstones for the Transformation of our Energy System  energy efficiency: buildings, production, transport  massive increase renewable energies: photovoltaics, solar and geo thermal, wind, hydro, biomass...  fast development of the electric grid: transmission and distribution grid, bidirectional  small and large scale energy storage systems: electricity, hydrogen, methane, biogas, solar heat  mobility as integral part of the energy system: electric mobility by means of batteries and hydrogen/fuel cells

8 © Fraunhofer ISE

Electricity generation from renewable energy sources Development in Germany 1990 – 2012/2013

Year 2013 Total* 25.4% 152.6 TWh

PV

4.7% 30 TWh 35.9 GW

Bio

8.0% 48 TWh

Wind

8.9% 53 TWh 34.7 GW

Hydro

3.5% 21 TWh

* Gross electricity demand

9 © Fraunhofer ISE

World EnergyRessources

finite

renewable

World Energy Ressources (TWyear)

60-120 WIND per year

215 Total

SOLAR 23,000 per year

Waves 0.2-2 per year

Natural Gas

3 -11 per year OTEC

240 Total

Petroleum 2 – 6 per year Biomass

2010 World energy use: 16 TWy per year

3 – 4 per year HYDRO TIDES 2050: 28 TW

0.3 per year

90-300 Total

0.3 – 2 per year Geothermal Uranium

900 Total reserve

© R. Perez et al. 10 © Fraunhofer ISE

COAL

finite

renewable

World Energy Ressources (TWyear)

60-120 WIND per year

330 Total

SOLAR 23,000 per year

Waves 0.2-2 per year

Natural Gas

3 -11 per year OTEC

310 Total

Petroleum 2 – 6 per year Biomass

2010 World energy use 16 TWy per year

3 – 4 per year HYDRO TIDES 2050: 28 TW

0.3 per year

90-300 Total

0.3 – 2 per year Geothermal Uranium

900 Total reserve

© R. Perez et al. 11 © Fraunhofer ISE

COAL

Harvesting Solar Energy: Photovoltaics (PV) PV Production Development by Technology

Produktion 2012 2012 (MW (MWp/ Production p/a

Daten: Navigant Consulting. Graph: PSE AG 2013

12 © Fraunhofer ISE

Thin film

3.224

Ribbon-Si

100

Multi-Si

10.822

Mono-Si

9.751

Costs of Solar Energy Price Learning Curve (all c-Si PV Technologies)

Learning Rate: Each time the cumulative production doubled, the price went down by 20 %.

PV-electricity in India 2014: 5-8 $ct/kWh!

Price Learning Curve of PV Module Technologies since 1980. Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: PSE AG 2012

13 © Fraunhofer ISE

Crystalline Silicon Technology Portfolio c-Si PV is not a Commodity, but a High-Tech Product! material quality  diffusion length  base conductivity

material quality

module efficiency

BCHJT 21% IBC-BJ HJT 20% MWTPERC 19% PERC 18%

device quality  passivation of surfaces  low series resistance  light confinement cell structures  PERC: Passivated Emitter and Rear Cell  MWT: Metal Wrap Through  IBC-BJ: Interdigitated Back Contact – Back Junction  HJT: Hetero Junction Technology 14 © Fraunhofer ISE

Industry 17%

Standard 14%

16% 15%

device quality Adapted from Preu et al., EU-PVSEC 2009

High-Efficiency III/V Based Triple-Junction Solar Cells

Slide: courtesy of F. Dimroth

15 © Fraunhofer ISE

FF [%]

World Record 44.7 % Efficiency Solar Cell Wafer-Bonded, 4-Junction Technology Fraunhofer ISE with SOITEC, CEA-LETI, HZB 90 85 80 75

lot12-01-x17y04

VOC [V]

Eff. [%]

45 40

max = 44.7 % @ C=297

35 4.4 4.0 3.6 3.2 1

10

100

1000

Concentration [x, AM1.5d, ASTM G173-03, 1000 W/m²] 16 © Fraunhofer ISE

Advantage of Two-Axis Tracking in CPV: Land Use!

2014: SOITEC SOLAR builds a 300 MW CPV installation, using the new 150 MWp/yr factory near San Diego, CA! 17 © Fraunhofer ISE

World Market Outlook: Experts are Optimistic Example Sarasin Bank, November 2010

Newly installed (right) (right scale) Total new installations Annual (left(left) scale) Annualgrowth growth rate 18 © Fraunhofer ISE

Source: Sarasin, Solar Study, Nov 2010

2014: ca. 46 GWp, 50 % above forecast!

Growth rate

 market forecast: 30 GWp in 2014, 110 GWp in 2020 annual growth rate: in the range of 20 % and 30 %

IEA Outlook on PV Production Worldwide

 Rapidly declining cost of PV generated electricity opens up new market opportunities.  Current 45 GWp/a market will increase to a 100+ GWp/a market in 2020; for 2050 IEA expects more than 3,000 GWp of globally installed PV capacity; for 10 % of energy demand we need more than 10,000 GWp!  Strong increase necessitates construction of GW-scale, highly automated PV production plants.

19 © Fraunhofer ISE

Excess Capacity (GW)

Module Capacity (GW)

Global PV Production Capacity and Installations

Production Capacity Installations Excess Capacity

Outlook for the development of supply and demand in the global PV Source: Lux Research Inc., Grafik: PSE AG market. 20 © Fraunhofer ISE

21 © Fraunhofer ISE

xGWp: European Gigawatt PV Production VISION: European PV system industry as column of European energy transformation and competitiveness • Industrial network • Close partners downstream & upstream • New business models • • • •

Cheaper Solar Power Higher efficiency Lower costs Better characteristics

Political innovation Business model innovation

www.xGWp.eu 22 © Fraunhofer ISE

• leading research institutes directly involved • Permanent high level of innovation

Entrepreneurial innovation Product innovation

• Advanced Technologies • ……..

• European cooperation • Motor: Germany & France • European innovation network

Process innovation Technical innovation

• • • •

Less material needed Less process steps Higher automation Higher quality

VISION: Disruptive PV with next technology generation Combining experiences: PV silicon technology, microeletronics, nanotech

Monthly Electricity Production of PV and Wind 2012

Germany

Monatliche Produktion Solar und Wind Jahr 2012

TWh 7,0 6,0 5,0 4,0 3,0 2,0 1,0 Januar

Legende:

Februar

Wind

März

April

Mai

Juni

Juli

August

Sept.

Oktober

Nov.

Dez.

Solar

Grafik: B. Burger, Fraunhofer ISE; Daten: Leipziger Strombörse EEX

 each month, solar and wind produced between 5 and 7 TWh of electricity in Germany  sun dominates in summer, wind in winter, the combination works best! 23 © Fraunhofer ISE

24 © Fraunhofer ISE

Combined CSP-CPV power plant Example calculated for a location in Chile: 1MW CPV, 1MW CSP-turbine, 18hrs storage, 24hrs stable elctricity Combination of solar generators:

 CPV -> electricity supply for the day  CSP+Storage -> supply for the night Results:  Yearly solar yield:  Operation hours:

10.4 GWh 8640 h

 Cost of electricity LEC: ca.14 $ct/kWh  Electricity from Diesel: >20 $ct/kWh!

25 © Fraunhofer ISE

Optimization of Germany’s future energy system based on hourly modeling Elect ricit y generat ion, st orage and end-use Comprehensive analysis of t he overall syst em

REM od-D Renew able Energy M odel – Deut schland Slide courtesy Hans-Martin Henning 2014

26 © Fraunhofer Fraunhof er ISE ISE

M obilit y (bat t eryelect ric, hydrogen, conv. f uel mix)

Fuels (including biomass and synt het ic f uels f rom RE)

Heat (buildings, incl. st orage and heat ing net w orks)

Processes in indust ry and t ert iary sect or

Optimization of Germany’s future energy system based on hourly modeling erneuerbare Energien PV 147 GW 143 TWh

Wind On 120 GW 217 TWh

5 TWh

Batterien 24 GWh

primäre Stromerzeugung

Wind Off 32 GW 112 TWh

4 TWh

9 TWh

Wasserkraft 5 GW 21 TWh

fossil-nukleare Energien

Atom-KW 0 GW 0 TWh

Steink.-KW 7 GW 26 TWh

Braunk.-KW 3 GW 12 TWh

Öl-KW 0 GW 0 TWh

Pump-Sp-KW 7 60 GWh TWh 108 TWh

103 TWh Elektrolyse 33 GWel 82 TWh

Brennstoffe 394 Erdgas TWh

H2-Speicher 0

82 TWh

TWh

Sabatier 0.0 GWgas

0 TWh

Biomasse

335 TWh

Treibstoff Verkehr

220 TWh

Methan-Sp. 0 TWh

0 TWh

6 TWh

Gasturbine 0 1 GW TWh

GuD-KW 3 GW

23 TWh

Gas-WP 15 GWth

6 TWh

3

34 37 TWh TWh

W-Speicher 27 GWh 5 TWh Gebäude 41 TWh

Einzelgebäude mit Gas-Wärmepumpe

4 TWh 13 TWh

Slide courtesy Hans-Martin Henning 2014

27 © Fraunhofer Fraunhof er ISE ISE

Solarthermie 9 GWth

51 14 TWh TWh

8 TWh

45 TWh

W-Speicher 103 GWh 14 TWh Gebäude 60 TWh

Einzelgebäude mit Sole-Wärmepumpe

3 TWh

Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 TWh ungenutzter Strom (Abregelung) 4 TWh

Verkehr (ohne Schienenverkehr/Strom) Wasserstoff-basierter Verkehr 82 Traktion 41 TWh TWh H2-Bedarf 82 TWh Batterie-basierter Verkehr Traktion 41 TWh Strombedarf 55 TWh Brennstoff-basierter Verkehr 220 Traktion 55 TWh TWh Brennstoffe 220 TWh Traktion gesamt 137 TWh % Wert 2010 100 %

WP zentral 7 GWth

20 TWh

Solarthermie 20 GWth

13 TWh

26 TWh

4 TWh

KWK-BHKW 25 GWel

23 TWh

WP zentral 7 GWth

23 TWh

Solarthermie 20 GWth

13 TWh

15 TWh 8 TWh

44 TWh 55 TWh

W-Speicher 173 GWh 16 TWh Gebäude 59 TWh Wärmenetze mit BHKW-KWK

41 TWh

Brennstoff-basierte Prozesse in Industrie und Gewerbe gesamt 445 TWh Solarthermie 25 TWh Brennstoffe 420 TWh

W-Speicher 173 GWh 20 TWh Gebäude 59 TWh Wärmenetze mit GuD-KWK

57 TWh

14 TWh

420 TWh

27 TWh

40 TWh

2 TWh

Mini-BHKW 6 GWel

23 TWh

4 TWh

Solarthermie 4 GWth

3 TWh

22 TWh

W-Speicher 46 GWh 4 TWh Gebäude 26 TWh

Einzelgebäude mit Mini-BHKW 4 TWh 14 TWh © Fraunhofer ISE

REM od-D Renew able Energy M odel – Deut schland

el. WP Sole 22 GWth

4 TWh

KWK-GuD 35 GWel

20 TWh 7 TWh

0 TWh

3 TWh Solarthermie 7 GWth

60 TWh

el. WP Luft 19 GWth

43 TWh

11 TWh

Solarthermie 8 GWth

7 TWh

39 TWh

W-Speicher 87 GWh 11 TWh Gebäude 50 TWh

Einzelgebäude mit Luft-Wärmepumpe

6 TWh Solarthermie 14 GWth

73 TWh

Gaskessel 32 GWth

12 6 TWh TWh

71 TWh

76 TWh

W-Speicher 56 GWh 10 TWh Gebäude 86 TWh

Einzelgebäude mit Gaskessel

Wärmebedarf gesamt Raumheizung Warmwasser 290 TWh 98 TWh

0.6 TWh

Geothermie 2 GWth

6 TWh

388 TWh ungenutzt 2 TWh

Gebäude 6 TWh

Wärmenetze mit Tiefen-Geothermie

Electricity generation

erneuerbare Energien PV 147 GW 143 TWh

Wind On 120 GW 217 TWh

5 TWh

Batterien 24 GWh

primäre Stromerzeugung

Wind Off 32 GW 112 TWh

4 TWh

9 TWh

Wasserkraft 5 GW 21 TWh

fossil-nukleare Energien

Atom-KW 0 GW 0 TWh

Steink.-KW 7 GW 26 TWh

Braunk.-KW 3 GW 12 TWh

Öl-KW 0 GW 0 TWh

Pump-Sp-KW 7 60 GWh TWh 108 TWh

103 TWh Elektrolyse 33 GWel 82 TWh

Brennstoffe 394 Erdgas TWh

H2-Speicher 0

82 TWh

TWh

Biomasse

335 TWh

Treibstoff Verkehr

220 TWh

0 TWh

6 TWh

Gasturbine 0 1 GW TWh

GuD-KW 3 GW

Phot ovolt aics 147 GW el

Sabatier 0.0 GWgas

0 TWh

Methan-Sp. 0 TWh

23 TWh

Gas-WP 15 GWth

6 TWh

3

34 37 TWh TWh

W-Speicher 27 GWh 5 TWh Gebäude 41 TWh

Einzelgebäude mit Gas-Wärmepumpe

4 TWh 13 TWh

el. WP Sole 22 GWth

51 14 TWh TWh

W-Speicher 103 GWh 14 TWh Gebäude 60 TWh

3 TWh

8 TWh

45 TWh

Einzelgebäude mit Sole-Wärmepumpe

WP zentral 7 GWth

20 TWh 40 TWh

Solarthermie 20 GWth

Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 TWh ungenutzter Strom (Abregelung) 4 TWh

Verkehr (ohne Schienenverkehr/Strom) Wasserstoff-basierter Verkehr 82 Traktion 41 TWh TWh H2-Bedarf 82 TWh Batterie-basierter Verkehr Traktion 41 TWh Strombedarf 55 TWh Brennstoff-basierter Verkehr 220 Traktion 55 TWh TWh Brennstoffe 220 TWh Traktion gesamt 137 TWh % Wert 2010 100 %

420 TWh

27 TWh W-Speicher 173 GWh 20 TWh Gebäude 59 TWh

Off shore Wind 32 GW el 13 TWh

Wärmenetze mit GuD-KWK

57 TWh 26 TWh

4 TWh

KWK-BHKW 25 GWel

23 TWh 15 TWh

8 TWh

WP zentral 7 GWth

23 TWh 44 TWh

Solarthermie 20 GWth

55 TWh

13 TWh

14 TWh

Brennstoff-basierte Prozesse in Industrie und Gewerbe gesamt 445 TWh Solarthermie 25 TWh Brennstoffe 420 TWh

W-Speicher 173 GWh 16 TWh Gebäude 59 TWh Wärmenetze mit BHKW-KWK

41 TWh

M edium and large size CHP (connect ed t o dist rict heat ing) 60 GW el Solarthermie 9 GWth

4 TWh

KWK-GuD 35 GWel

20 TWh 7 TWh

Onshore Wind 120 GW el

0 TWh

3 TWh Solarthermie 7 GWth

60 TWh

2 TWh

Mini-BHKW 6 GWel

23 TWh

4 TWh

Solarthermie 4 GWth

3 TWh

22 TWh

W-Speicher 46 GWh 4 TWh Gebäude 26 TWh

Einzelgebäude mit Mini-BHKW 4 TWh

© Fraunhofer ISE

14 TWh

Slide courtesy Hans-Martin Henning 2014

28 © Fraunhofer Fraunhof er ISE ISE

el. WP Luft 19 GWth

43 TWh

11 TWh

Solarthermie 8 GWth

7 TWh

39 TWh

W-Speicher 87 GWh 11 TWh Gebäude 50 TWh

Einzelgebäude mit Luft-Wärmepumpe

6 TWh Solarthermie 14 GWth

73 TWh

Gaskessel 32 GWth

12 6 TWh TWh

71 TWh

76 TWh

W-Speicher 56 GWh 10 TWh Gebäude 86 TWh

Einzelgebäude mit Gaskessel

Wärmebedarf gesamt Raumheizung Warmwasser 290 TWh 98 TWh

0.6 TWh

Geothermie 2 GWth

6 TWh

388 TWh ungenutzt 2 TWh

Gebäude 6 TWh

Wärmenetze mit Tiefen-Geothermie

Storage

erneuerbare Energien PV 147 GW 143 TWh

Wind On 120 GW 217 TWh

5 TWh

Batterien 24 GWh

primäre Stromerzeugung

Wind Off 32 GW 112 TWh

4 TWh

9 TWh

Wasserkraft 5 GW 21 TWh

fossil-nukleare Energien

Atom-KW 0 GW 0 TWh

Steink.-KW 7 GW 26 TWh

Braunk.-KW 3 GW 12 TWh

Öl-KW 0 GW 0 TWh

Pump-Sp-KW 7 60 GWh TWh 108 TWh

103 TWh Elektrolyse 33 GWel 82 TWh

Brennstoffe 394 Erdgas TWh

St at ionary bat t eries Tot al 24 GWh (e.g. 8 M io unit s w it h 3 kWh each) H2-Speicher 0

82 TWh

TWh

Sabatier 0.0 GWgas

0 TWh

Biomasse

335 TWh

Treibstoff Verkehr

220 TWh

Methan-Sp. 0 TWh

0 TWh

6 TWh

GuD-KW 3 GW

23 TWh

Gas-WP 15 GWth

6 TWh

3

34 37 TWh TWh

4 TWh 13 TWh

el. WP Sole 22 GWth

Solarthermie 9 GWth

51 14 TWh TWh

8 TWh

45 TWh

3 TWh

W-Speicher 103 GWh 14 TWh Gebäude 60 TWh

Verkehr (ohne Schienenverkehr/Strom) Wasserstoff-basierter Verkehr 82 Traktion 41 TWh TWh H2-Bedarf 82 TWh Batterie-basierter Verkehr Traktion 41 TWh Strombedarf 55 TWh Brennstoff-basierter Verkehr 220 Traktion 55 TWh TWh Brennstoffe 220 TWh Traktion gesamt 137 TWh % Wert 2010 100 %

26 TWh

Solarthermie 20 GWth

13 TWh

8 TWh

4 TWh

KWK-BHKW 25 GWel

23 TWh

WP zentral 7 GWth

23 TWh 44 TWh

Solarthermie 20 GWth

55 TWh

13 TWh

W-Speicher 173 GWh 16 TWh Gebäude 59 TWh Wärmenetze mit BHKW-KWK

41 TWh

Brennstoff-basierte Prozesse in Industrie und Gewerbe gesamt 445 TWh Solarthermie 25 TWh Brennstoffe 420 TWh

W-Speicher 173 GWh 20 TWh Gebäude 59 TWh

Wärmenetze mit GuD-KWK

15 TWh

14 TWh

420 TWh

20 TWh

57 TWh

Elect rolysers w it h t ot al capacit y of 33 GW el (needed f or mobilit y)

Einzelgebäude mit Sole-Wärmepumpe

WP zentral 7 GWth

40 TWh

Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 TWh ungenutzter Strom (Abregelung) 4 TWh

Einzelgebäude mit Gas-Wärmepumpe

27 TWh

20 TWh

7 TWh

0 TWh

W-Speicher 27 GWh 5 TWh Gebäude 41 TWh

4 TWh

KWK-GuD 35 GWel

Pumped st orage pow er plant s 42 unit s w it h a t ot al of 60 GWh

Gasturbine 0 1 GW TWh

3 TWh Solarthermie 7 GWth

60 TWh

2 TWh

Mini-BHKW 6 GWel

23 TWh

4 TWh

Solarthermie 4 GWth

3 TWh

22 TWh

W-Speicher 46 GWh 4 TWh Gebäude 26 TWh

Large scale heat st orage in dist rict heat ing syst ems Tot al 350 GWh (e.g. 150 unit s w it h 50.000 m³ each) Einzelgebäude mit Mini-BHKW

4 TWh

Heat buff ers in buildings Tot al 320 GWh (e.g. 7 M io unit s w it h 800 Lit res each) © Fraunhofer ISE

14 TWh

Slide courtesy Hans-Martin Henning 2014

29 © Fraunhofer Fraunhof er ISE ISE

el. WP Luft 19 GWth

43 TWh

11 TWh

Solarthermie 8 GWth

7 TWh

39 TWh

W-Speicher 87 GWh 11 TWh Gebäude 50 TWh

Einzelgebäude mit Luft-Wärmepumpe

6 TWh

Solarthermie 14 GWth

73 TWh

Gaskessel 32 GWth

12 6 TWh TWh

71 TWh

76 TWh

W-Speicher 56 GWh 10 TWh Gebäude 86 TWh

Einzelgebäude mit Gaskessel

Wärmebedarf gesamt Raumheizung Warmwasser 290 TWh 98 TWh

0.6 TWh

Geothermie 2 GWth

6 TWh

388 TWh ungenutzt 2 TWh

Gebäude 6 TWh

Wärmenetze mit Tiefen-Geothermie

The Global Energy Transformation - not a Transition!  The global energy transformation is the challenge of our generation, as first step of our needed transformation to sustainability.  A near-100% renewable energy system is possible, at similar cost as today’s energy supply.

 Harvesting energy from the sun and wind will be the key pillars of our future, renewable energy system  The needed technologies are in principle available today; however, much work is needed for higher efficiency technologies at lower production cost.  India could potentially have one of the largest PV markets worldwide, and develop the needed industrial infrastructure along the food chain!  Fraunhofer ISE offers unbiased technology advice and applied research for industry interested to enter this field.  Politics needs to be bold and visionary – to grab the obvious opportunities of this process for our economies, for innovation, technology development and, ultimately, for healthy, sustainable 30 economies in Germany and India! © Fraunhofer ISE

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE Eicke R. Weber, Hans-Marting Henning and ISE coworkers

www.ise.fraunhofer.de [email protected] 31 © Fraunhofer ISE

Zayed Future Energy Prize 32 World Future Energy Summit – Abu Dhabi, January 20, 2014 © Fraunhofer ISE